Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/sched/sch_netem.c
15109 views
1
/*
2
* net/sched/sch_netem.c Network emulator
3
*
4
* This program is free software; you can redistribute it and/or
5
* modify it under the terms of the GNU General Public License
6
* as published by the Free Software Foundation; either version
7
* 2 of the License.
8
*
9
* Many of the algorithms and ideas for this came from
10
* NIST Net which is not copyrighted.
11
*
12
* Authors: Stephen Hemminger <[email protected]>
13
* Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14
*/
15
16
#include <linux/module.h>
17
#include <linux/slab.h>
18
#include <linux/types.h>
19
#include <linux/kernel.h>
20
#include <linux/errno.h>
21
#include <linux/skbuff.h>
22
#include <linux/vmalloc.h>
23
#include <linux/rtnetlink.h>
24
25
#include <net/netlink.h>
26
#include <net/pkt_sched.h>
27
28
#define VERSION "1.3"
29
30
/* Network Emulation Queuing algorithm.
31
====================================
32
33
Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
34
Network Emulation Tool
35
[2] Luigi Rizzo, DummyNet for FreeBSD
36
37
----------------------------------------------------------------
38
39
This started out as a simple way to delay outgoing packets to
40
test TCP but has grown to include most of the functionality
41
of a full blown network emulator like NISTnet. It can delay
42
packets and add random jitter (and correlation). The random
43
distribution can be loaded from a table as well to provide
44
normal, Pareto, or experimental curves. Packet loss,
45
duplication, and reordering can also be emulated.
46
47
This qdisc does not do classification that can be handled in
48
layering other disciplines. It does not need to do bandwidth
49
control either since that can be handled by using token
50
bucket or other rate control.
51
52
Correlated Loss Generator models
53
54
Added generation of correlated loss according to the
55
"Gilbert-Elliot" model, a 4-state markov model.
56
57
References:
58
[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
59
[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
60
and intuitive loss model for packet networks and its implementation
61
in the Netem module in the Linux kernel", available in [1]
62
63
Authors: Stefano Salsano <stefano.salsano at uniroma2.it
64
Fabio Ludovici <fabio.ludovici at yahoo.it>
65
*/
66
67
struct netem_sched_data {
68
struct Qdisc *qdisc;
69
struct qdisc_watchdog watchdog;
70
71
psched_tdiff_t latency;
72
psched_tdiff_t jitter;
73
74
u32 loss;
75
u32 limit;
76
u32 counter;
77
u32 gap;
78
u32 duplicate;
79
u32 reorder;
80
u32 corrupt;
81
82
struct crndstate {
83
u32 last;
84
u32 rho;
85
} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
86
87
struct disttable {
88
u32 size;
89
s16 table[0];
90
} *delay_dist;
91
92
enum {
93
CLG_RANDOM,
94
CLG_4_STATES,
95
CLG_GILB_ELL,
96
} loss_model;
97
98
/* Correlated Loss Generation models */
99
struct clgstate {
100
/* state of the Markov chain */
101
u8 state;
102
103
/* 4-states and Gilbert-Elliot models */
104
u32 a1; /* p13 for 4-states or p for GE */
105
u32 a2; /* p31 for 4-states or r for GE */
106
u32 a3; /* p32 for 4-states or h for GE */
107
u32 a4; /* p14 for 4-states or 1-k for GE */
108
u32 a5; /* p23 used only in 4-states */
109
} clg;
110
111
};
112
113
/* Time stamp put into socket buffer control block */
114
struct netem_skb_cb {
115
psched_time_t time_to_send;
116
};
117
118
static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
119
{
120
BUILD_BUG_ON(sizeof(skb->cb) <
121
sizeof(struct qdisc_skb_cb) + sizeof(struct netem_skb_cb));
122
return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
123
}
124
125
/* init_crandom - initialize correlated random number generator
126
* Use entropy source for initial seed.
127
*/
128
static void init_crandom(struct crndstate *state, unsigned long rho)
129
{
130
state->rho = rho;
131
state->last = net_random();
132
}
133
134
/* get_crandom - correlated random number generator
135
* Next number depends on last value.
136
* rho is scaled to avoid floating point.
137
*/
138
static u32 get_crandom(struct crndstate *state)
139
{
140
u64 value, rho;
141
unsigned long answer;
142
143
if (state->rho == 0) /* no correlation */
144
return net_random();
145
146
value = net_random();
147
rho = (u64)state->rho + 1;
148
answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
149
state->last = answer;
150
return answer;
151
}
152
153
/* loss_4state - 4-state model loss generator
154
* Generates losses according to the 4-state Markov chain adopted in
155
* the GI (General and Intuitive) loss model.
156
*/
157
static bool loss_4state(struct netem_sched_data *q)
158
{
159
struct clgstate *clg = &q->clg;
160
u32 rnd = net_random();
161
162
/*
163
* Makes a comparison between rnd and the transition
164
* probabilities outgoing from the current state, then decides the
165
* next state and if the next packet has to be transmitted or lost.
166
* The four states correspond to:
167
* 1 => successfully transmitted packets within a gap period
168
* 4 => isolated losses within a gap period
169
* 3 => lost packets within a burst period
170
* 2 => successfully transmitted packets within a burst period
171
*/
172
switch (clg->state) {
173
case 1:
174
if (rnd < clg->a4) {
175
clg->state = 4;
176
return true;
177
} else if (clg->a4 < rnd && rnd < clg->a1) {
178
clg->state = 3;
179
return true;
180
} else if (clg->a1 < rnd)
181
clg->state = 1;
182
183
break;
184
case 2:
185
if (rnd < clg->a5) {
186
clg->state = 3;
187
return true;
188
} else
189
clg->state = 2;
190
191
break;
192
case 3:
193
if (rnd < clg->a3)
194
clg->state = 2;
195
else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
196
clg->state = 1;
197
return true;
198
} else if (clg->a2 + clg->a3 < rnd) {
199
clg->state = 3;
200
return true;
201
}
202
break;
203
case 4:
204
clg->state = 1;
205
break;
206
}
207
208
return false;
209
}
210
211
/* loss_gilb_ell - Gilbert-Elliot model loss generator
212
* Generates losses according to the Gilbert-Elliot loss model or
213
* its special cases (Gilbert or Simple Gilbert)
214
*
215
* Makes a comparison between random number and the transition
216
* probabilities outgoing from the current state, then decides the
217
* next state. A second random number is extracted and the comparison
218
* with the loss probability of the current state decides if the next
219
* packet will be transmitted or lost.
220
*/
221
static bool loss_gilb_ell(struct netem_sched_data *q)
222
{
223
struct clgstate *clg = &q->clg;
224
225
switch (clg->state) {
226
case 1:
227
if (net_random() < clg->a1)
228
clg->state = 2;
229
if (net_random() < clg->a4)
230
return true;
231
case 2:
232
if (net_random() < clg->a2)
233
clg->state = 1;
234
if (clg->a3 > net_random())
235
return true;
236
}
237
238
return false;
239
}
240
241
static bool loss_event(struct netem_sched_data *q)
242
{
243
switch (q->loss_model) {
244
case CLG_RANDOM:
245
/* Random packet drop 0 => none, ~0 => all */
246
return q->loss && q->loss >= get_crandom(&q->loss_cor);
247
248
case CLG_4_STATES:
249
/* 4state loss model algorithm (used also for GI model)
250
* Extracts a value from the markov 4 state loss generator,
251
* if it is 1 drops a packet and if needed writes the event in
252
* the kernel logs
253
*/
254
return loss_4state(q);
255
256
case CLG_GILB_ELL:
257
/* Gilbert-Elliot loss model algorithm
258
* Extracts a value from the Gilbert-Elliot loss generator,
259
* if it is 1 drops a packet and if needed writes the event in
260
* the kernel logs
261
*/
262
return loss_gilb_ell(q);
263
}
264
265
return false; /* not reached */
266
}
267
268
269
/* tabledist - return a pseudo-randomly distributed value with mean mu and
270
* std deviation sigma. Uses table lookup to approximate the desired
271
* distribution, and a uniformly-distributed pseudo-random source.
272
*/
273
static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
274
struct crndstate *state,
275
const struct disttable *dist)
276
{
277
psched_tdiff_t x;
278
long t;
279
u32 rnd;
280
281
if (sigma == 0)
282
return mu;
283
284
rnd = get_crandom(state);
285
286
/* default uniform distribution */
287
if (dist == NULL)
288
return (rnd % (2*sigma)) - sigma + mu;
289
290
t = dist->table[rnd % dist->size];
291
x = (sigma % NETEM_DIST_SCALE) * t;
292
if (x >= 0)
293
x += NETEM_DIST_SCALE/2;
294
else
295
x -= NETEM_DIST_SCALE/2;
296
297
return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
298
}
299
300
/*
301
* Insert one skb into qdisc.
302
* Note: parent depends on return value to account for queue length.
303
* NET_XMIT_DROP: queue length didn't change.
304
* NET_XMIT_SUCCESS: one skb was queued.
305
*/
306
static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
307
{
308
struct netem_sched_data *q = qdisc_priv(sch);
309
/* We don't fill cb now as skb_unshare() may invalidate it */
310
struct netem_skb_cb *cb;
311
struct sk_buff *skb2;
312
int ret;
313
int count = 1;
314
315
/* Random duplication */
316
if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
317
++count;
318
319
/* Drop packet? */
320
if (loss_event(q))
321
--count;
322
323
if (count == 0) {
324
sch->qstats.drops++;
325
kfree_skb(skb);
326
return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
327
}
328
329
skb_orphan(skb);
330
331
/*
332
* If we need to duplicate packet, then re-insert at top of the
333
* qdisc tree, since parent queuer expects that only one
334
* skb will be queued.
335
*/
336
if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
337
struct Qdisc *rootq = qdisc_root(sch);
338
u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
339
q->duplicate = 0;
340
341
qdisc_enqueue_root(skb2, rootq);
342
q->duplicate = dupsave;
343
}
344
345
/*
346
* Randomized packet corruption.
347
* Make copy if needed since we are modifying
348
* If packet is going to be hardware checksummed, then
349
* do it now in software before we mangle it.
350
*/
351
if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
352
if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
353
(skb->ip_summed == CHECKSUM_PARTIAL &&
354
skb_checksum_help(skb))) {
355
sch->qstats.drops++;
356
return NET_XMIT_DROP;
357
}
358
359
skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
360
}
361
362
cb = netem_skb_cb(skb);
363
if (q->gap == 0 || /* not doing reordering */
364
q->counter < q->gap || /* inside last reordering gap */
365
q->reorder < get_crandom(&q->reorder_cor)) {
366
psched_time_t now;
367
psched_tdiff_t delay;
368
369
delay = tabledist(q->latency, q->jitter,
370
&q->delay_cor, q->delay_dist);
371
372
now = psched_get_time();
373
cb->time_to_send = now + delay;
374
++q->counter;
375
ret = qdisc_enqueue(skb, q->qdisc);
376
} else {
377
/*
378
* Do re-ordering by putting one out of N packets at the front
379
* of the queue.
380
*/
381
cb->time_to_send = psched_get_time();
382
q->counter = 0;
383
384
__skb_queue_head(&q->qdisc->q, skb);
385
q->qdisc->qstats.backlog += qdisc_pkt_len(skb);
386
q->qdisc->qstats.requeues++;
387
ret = NET_XMIT_SUCCESS;
388
}
389
390
if (ret != NET_XMIT_SUCCESS) {
391
if (net_xmit_drop_count(ret)) {
392
sch->qstats.drops++;
393
return ret;
394
}
395
}
396
397
sch->q.qlen++;
398
return NET_XMIT_SUCCESS;
399
}
400
401
static unsigned int netem_drop(struct Qdisc *sch)
402
{
403
struct netem_sched_data *q = qdisc_priv(sch);
404
unsigned int len = 0;
405
406
if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
407
sch->q.qlen--;
408
sch->qstats.drops++;
409
}
410
return len;
411
}
412
413
static struct sk_buff *netem_dequeue(struct Qdisc *sch)
414
{
415
struct netem_sched_data *q = qdisc_priv(sch);
416
struct sk_buff *skb;
417
418
if (qdisc_is_throttled(sch))
419
return NULL;
420
421
skb = q->qdisc->ops->peek(q->qdisc);
422
if (skb) {
423
const struct netem_skb_cb *cb = netem_skb_cb(skb);
424
psched_time_t now = psched_get_time();
425
426
/* if more time remaining? */
427
if (cb->time_to_send <= now) {
428
skb = qdisc_dequeue_peeked(q->qdisc);
429
if (unlikely(!skb))
430
return NULL;
431
432
#ifdef CONFIG_NET_CLS_ACT
433
/*
434
* If it's at ingress let's pretend the delay is
435
* from the network (tstamp will be updated).
436
*/
437
if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
438
skb->tstamp.tv64 = 0;
439
#endif
440
441
sch->q.qlen--;
442
qdisc_unthrottled(sch);
443
qdisc_bstats_update(sch, skb);
444
return skb;
445
}
446
447
qdisc_watchdog_schedule(&q->watchdog, cb->time_to_send);
448
}
449
450
return NULL;
451
}
452
453
static void netem_reset(struct Qdisc *sch)
454
{
455
struct netem_sched_data *q = qdisc_priv(sch);
456
457
qdisc_reset(q->qdisc);
458
sch->q.qlen = 0;
459
qdisc_watchdog_cancel(&q->watchdog);
460
}
461
462
static void dist_free(struct disttable *d)
463
{
464
if (d) {
465
if (is_vmalloc_addr(d))
466
vfree(d);
467
else
468
kfree(d);
469
}
470
}
471
472
/*
473
* Distribution data is a variable size payload containing
474
* signed 16 bit values.
475
*/
476
static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
477
{
478
struct netem_sched_data *q = qdisc_priv(sch);
479
size_t n = nla_len(attr)/sizeof(__s16);
480
const __s16 *data = nla_data(attr);
481
spinlock_t *root_lock;
482
struct disttable *d;
483
int i;
484
size_t s;
485
486
if (n > NETEM_DIST_MAX)
487
return -EINVAL;
488
489
s = sizeof(struct disttable) + n * sizeof(s16);
490
d = kmalloc(s, GFP_KERNEL);
491
if (!d)
492
d = vmalloc(s);
493
if (!d)
494
return -ENOMEM;
495
496
d->size = n;
497
for (i = 0; i < n; i++)
498
d->table[i] = data[i];
499
500
root_lock = qdisc_root_sleeping_lock(sch);
501
502
spin_lock_bh(root_lock);
503
dist_free(q->delay_dist);
504
q->delay_dist = d;
505
spin_unlock_bh(root_lock);
506
return 0;
507
}
508
509
static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
510
{
511
struct netem_sched_data *q = qdisc_priv(sch);
512
const struct tc_netem_corr *c = nla_data(attr);
513
514
init_crandom(&q->delay_cor, c->delay_corr);
515
init_crandom(&q->loss_cor, c->loss_corr);
516
init_crandom(&q->dup_cor, c->dup_corr);
517
}
518
519
static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
520
{
521
struct netem_sched_data *q = qdisc_priv(sch);
522
const struct tc_netem_reorder *r = nla_data(attr);
523
524
q->reorder = r->probability;
525
init_crandom(&q->reorder_cor, r->correlation);
526
}
527
528
static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
529
{
530
struct netem_sched_data *q = qdisc_priv(sch);
531
const struct tc_netem_corrupt *r = nla_data(attr);
532
533
q->corrupt = r->probability;
534
init_crandom(&q->corrupt_cor, r->correlation);
535
}
536
537
static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr)
538
{
539
struct netem_sched_data *q = qdisc_priv(sch);
540
const struct nlattr *la;
541
int rem;
542
543
nla_for_each_nested(la, attr, rem) {
544
u16 type = nla_type(la);
545
546
switch(type) {
547
case NETEM_LOSS_GI: {
548
const struct tc_netem_gimodel *gi = nla_data(la);
549
550
if (nla_len(la) != sizeof(struct tc_netem_gimodel)) {
551
pr_info("netem: incorrect gi model size\n");
552
return -EINVAL;
553
}
554
555
q->loss_model = CLG_4_STATES;
556
557
q->clg.state = 1;
558
q->clg.a1 = gi->p13;
559
q->clg.a2 = gi->p31;
560
q->clg.a3 = gi->p32;
561
q->clg.a4 = gi->p14;
562
q->clg.a5 = gi->p23;
563
break;
564
}
565
566
case NETEM_LOSS_GE: {
567
const struct tc_netem_gemodel *ge = nla_data(la);
568
569
if (nla_len(la) != sizeof(struct tc_netem_gemodel)) {
570
pr_info("netem: incorrect gi model size\n");
571
return -EINVAL;
572
}
573
574
q->loss_model = CLG_GILB_ELL;
575
q->clg.state = 1;
576
q->clg.a1 = ge->p;
577
q->clg.a2 = ge->r;
578
q->clg.a3 = ge->h;
579
q->clg.a4 = ge->k1;
580
break;
581
}
582
583
default:
584
pr_info("netem: unknown loss type %u\n", type);
585
return -EINVAL;
586
}
587
}
588
589
return 0;
590
}
591
592
static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
593
[TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
594
[TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
595
[TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
596
[TCA_NETEM_LOSS] = { .type = NLA_NESTED },
597
};
598
599
static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
600
const struct nla_policy *policy, int len)
601
{
602
int nested_len = nla_len(nla) - NLA_ALIGN(len);
603
604
if (nested_len < 0) {
605
pr_info("netem: invalid attributes len %d\n", nested_len);
606
return -EINVAL;
607
}
608
609
if (nested_len >= nla_attr_size(0))
610
return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
611
nested_len, policy);
612
613
memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
614
return 0;
615
}
616
617
/* Parse netlink message to set options */
618
static int netem_change(struct Qdisc *sch, struct nlattr *opt)
619
{
620
struct netem_sched_data *q = qdisc_priv(sch);
621
struct nlattr *tb[TCA_NETEM_MAX + 1];
622
struct tc_netem_qopt *qopt;
623
int ret;
624
625
if (opt == NULL)
626
return -EINVAL;
627
628
qopt = nla_data(opt);
629
ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
630
if (ret < 0)
631
return ret;
632
633
ret = fifo_set_limit(q->qdisc, qopt->limit);
634
if (ret) {
635
pr_info("netem: can't set fifo limit\n");
636
return ret;
637
}
638
639
q->latency = qopt->latency;
640
q->jitter = qopt->jitter;
641
q->limit = qopt->limit;
642
q->gap = qopt->gap;
643
q->counter = 0;
644
q->loss = qopt->loss;
645
q->duplicate = qopt->duplicate;
646
647
/* for compatibility with earlier versions.
648
* if gap is set, need to assume 100% probability
649
*/
650
if (q->gap)
651
q->reorder = ~0;
652
653
if (tb[TCA_NETEM_CORR])
654
get_correlation(sch, tb[TCA_NETEM_CORR]);
655
656
if (tb[TCA_NETEM_DELAY_DIST]) {
657
ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
658
if (ret)
659
return ret;
660
}
661
662
if (tb[TCA_NETEM_REORDER])
663
get_reorder(sch, tb[TCA_NETEM_REORDER]);
664
665
if (tb[TCA_NETEM_CORRUPT])
666
get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
667
668
q->loss_model = CLG_RANDOM;
669
if (tb[TCA_NETEM_LOSS])
670
ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]);
671
672
return ret;
673
}
674
675
/*
676
* Special case version of FIFO queue for use by netem.
677
* It queues in order based on timestamps in skb's
678
*/
679
struct fifo_sched_data {
680
u32 limit;
681
psched_time_t oldest;
682
};
683
684
static int tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
685
{
686
struct fifo_sched_data *q = qdisc_priv(sch);
687
struct sk_buff_head *list = &sch->q;
688
psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
689
struct sk_buff *skb;
690
691
if (likely(skb_queue_len(list) < q->limit)) {
692
/* Optimize for add at tail */
693
if (likely(skb_queue_empty(list) || tnext >= q->oldest)) {
694
q->oldest = tnext;
695
return qdisc_enqueue_tail(nskb, sch);
696
}
697
698
skb_queue_reverse_walk(list, skb) {
699
const struct netem_skb_cb *cb = netem_skb_cb(skb);
700
701
if (tnext >= cb->time_to_send)
702
break;
703
}
704
705
__skb_queue_after(list, skb, nskb);
706
707
sch->qstats.backlog += qdisc_pkt_len(nskb);
708
709
return NET_XMIT_SUCCESS;
710
}
711
712
return qdisc_reshape_fail(nskb, sch);
713
}
714
715
static int tfifo_init(struct Qdisc *sch, struct nlattr *opt)
716
{
717
struct fifo_sched_data *q = qdisc_priv(sch);
718
719
if (opt) {
720
struct tc_fifo_qopt *ctl = nla_data(opt);
721
if (nla_len(opt) < sizeof(*ctl))
722
return -EINVAL;
723
724
q->limit = ctl->limit;
725
} else
726
q->limit = max_t(u32, qdisc_dev(sch)->tx_queue_len, 1);
727
728
q->oldest = PSCHED_PASTPERFECT;
729
return 0;
730
}
731
732
static int tfifo_dump(struct Qdisc *sch, struct sk_buff *skb)
733
{
734
struct fifo_sched_data *q = qdisc_priv(sch);
735
struct tc_fifo_qopt opt = { .limit = q->limit };
736
737
NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
738
return skb->len;
739
740
nla_put_failure:
741
return -1;
742
}
743
744
static struct Qdisc_ops tfifo_qdisc_ops __read_mostly = {
745
.id = "tfifo",
746
.priv_size = sizeof(struct fifo_sched_data),
747
.enqueue = tfifo_enqueue,
748
.dequeue = qdisc_dequeue_head,
749
.peek = qdisc_peek_head,
750
.drop = qdisc_queue_drop,
751
.init = tfifo_init,
752
.reset = qdisc_reset_queue,
753
.change = tfifo_init,
754
.dump = tfifo_dump,
755
};
756
757
static int netem_init(struct Qdisc *sch, struct nlattr *opt)
758
{
759
struct netem_sched_data *q = qdisc_priv(sch);
760
int ret;
761
762
if (!opt)
763
return -EINVAL;
764
765
qdisc_watchdog_init(&q->watchdog, sch);
766
767
q->loss_model = CLG_RANDOM;
768
q->qdisc = qdisc_create_dflt(sch->dev_queue, &tfifo_qdisc_ops,
769
TC_H_MAKE(sch->handle, 1));
770
if (!q->qdisc) {
771
pr_notice("netem: qdisc create tfifo qdisc failed\n");
772
return -ENOMEM;
773
}
774
775
ret = netem_change(sch, opt);
776
if (ret) {
777
pr_info("netem: change failed\n");
778
qdisc_destroy(q->qdisc);
779
}
780
return ret;
781
}
782
783
static void netem_destroy(struct Qdisc *sch)
784
{
785
struct netem_sched_data *q = qdisc_priv(sch);
786
787
qdisc_watchdog_cancel(&q->watchdog);
788
qdisc_destroy(q->qdisc);
789
dist_free(q->delay_dist);
790
}
791
792
static int dump_loss_model(const struct netem_sched_data *q,
793
struct sk_buff *skb)
794
{
795
struct nlattr *nest;
796
797
nest = nla_nest_start(skb, TCA_NETEM_LOSS);
798
if (nest == NULL)
799
goto nla_put_failure;
800
801
switch (q->loss_model) {
802
case CLG_RANDOM:
803
/* legacy loss model */
804
nla_nest_cancel(skb, nest);
805
return 0; /* no data */
806
807
case CLG_4_STATES: {
808
struct tc_netem_gimodel gi = {
809
.p13 = q->clg.a1,
810
.p31 = q->clg.a2,
811
.p32 = q->clg.a3,
812
.p14 = q->clg.a4,
813
.p23 = q->clg.a5,
814
};
815
816
NLA_PUT(skb, NETEM_LOSS_GI, sizeof(gi), &gi);
817
break;
818
}
819
case CLG_GILB_ELL: {
820
struct tc_netem_gemodel ge = {
821
.p = q->clg.a1,
822
.r = q->clg.a2,
823
.h = q->clg.a3,
824
.k1 = q->clg.a4,
825
};
826
827
NLA_PUT(skb, NETEM_LOSS_GE, sizeof(ge), &ge);
828
break;
829
}
830
}
831
832
nla_nest_end(skb, nest);
833
return 0;
834
835
nla_put_failure:
836
nla_nest_cancel(skb, nest);
837
return -1;
838
}
839
840
static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
841
{
842
const struct netem_sched_data *q = qdisc_priv(sch);
843
struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
844
struct tc_netem_qopt qopt;
845
struct tc_netem_corr cor;
846
struct tc_netem_reorder reorder;
847
struct tc_netem_corrupt corrupt;
848
849
qopt.latency = q->latency;
850
qopt.jitter = q->jitter;
851
qopt.limit = q->limit;
852
qopt.loss = q->loss;
853
qopt.gap = q->gap;
854
qopt.duplicate = q->duplicate;
855
NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
856
857
cor.delay_corr = q->delay_cor.rho;
858
cor.loss_corr = q->loss_cor.rho;
859
cor.dup_corr = q->dup_cor.rho;
860
NLA_PUT(skb, TCA_NETEM_CORR, sizeof(cor), &cor);
861
862
reorder.probability = q->reorder;
863
reorder.correlation = q->reorder_cor.rho;
864
NLA_PUT(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder);
865
866
corrupt.probability = q->corrupt;
867
corrupt.correlation = q->corrupt_cor.rho;
868
NLA_PUT(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt);
869
870
if (dump_loss_model(q, skb) != 0)
871
goto nla_put_failure;
872
873
return nla_nest_end(skb, nla);
874
875
nla_put_failure:
876
nlmsg_trim(skb, nla);
877
return -1;
878
}
879
880
static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
881
struct sk_buff *skb, struct tcmsg *tcm)
882
{
883
struct netem_sched_data *q = qdisc_priv(sch);
884
885
if (cl != 1) /* only one class */
886
return -ENOENT;
887
888
tcm->tcm_handle |= TC_H_MIN(1);
889
tcm->tcm_info = q->qdisc->handle;
890
891
return 0;
892
}
893
894
static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
895
struct Qdisc **old)
896
{
897
struct netem_sched_data *q = qdisc_priv(sch);
898
899
if (new == NULL)
900
new = &noop_qdisc;
901
902
sch_tree_lock(sch);
903
*old = q->qdisc;
904
q->qdisc = new;
905
qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
906
qdisc_reset(*old);
907
sch_tree_unlock(sch);
908
909
return 0;
910
}
911
912
static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
913
{
914
struct netem_sched_data *q = qdisc_priv(sch);
915
return q->qdisc;
916
}
917
918
static unsigned long netem_get(struct Qdisc *sch, u32 classid)
919
{
920
return 1;
921
}
922
923
static void netem_put(struct Qdisc *sch, unsigned long arg)
924
{
925
}
926
927
static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
928
{
929
if (!walker->stop) {
930
if (walker->count >= walker->skip)
931
if (walker->fn(sch, 1, walker) < 0) {
932
walker->stop = 1;
933
return;
934
}
935
walker->count++;
936
}
937
}
938
939
static const struct Qdisc_class_ops netem_class_ops = {
940
.graft = netem_graft,
941
.leaf = netem_leaf,
942
.get = netem_get,
943
.put = netem_put,
944
.walk = netem_walk,
945
.dump = netem_dump_class,
946
};
947
948
static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
949
.id = "netem",
950
.cl_ops = &netem_class_ops,
951
.priv_size = sizeof(struct netem_sched_data),
952
.enqueue = netem_enqueue,
953
.dequeue = netem_dequeue,
954
.peek = qdisc_peek_dequeued,
955
.drop = netem_drop,
956
.init = netem_init,
957
.reset = netem_reset,
958
.destroy = netem_destroy,
959
.change = netem_change,
960
.dump = netem_dump,
961
.owner = THIS_MODULE,
962
};
963
964
965
static int __init netem_module_init(void)
966
{
967
pr_info("netem: version " VERSION "\n");
968
return register_qdisc(&netem_qdisc_ops);
969
}
970
static void __exit netem_module_exit(void)
971
{
972
unregister_qdisc(&netem_qdisc_ops);
973
}
974
module_init(netem_module_init)
975
module_exit(netem_module_exit)
976
MODULE_LICENSE("GPL");
977
978