Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/sched/sch_qfq.c
15109 views
1
/*
2
* net/sched/sch_qfq.c Quick Fair Queueing Scheduler.
3
*
4
* Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5
*
6
* This program is free software; you can redistribute it and/or
7
* modify it under the terms of the GNU General Public License
8
* version 2 as published by the Free Software Foundation.
9
*/
10
11
#include <linux/module.h>
12
#include <linux/init.h>
13
#include <linux/bitops.h>
14
#include <linux/errno.h>
15
#include <linux/netdevice.h>
16
#include <linux/pkt_sched.h>
17
#include <net/sch_generic.h>
18
#include <net/pkt_sched.h>
19
#include <net/pkt_cls.h>
20
21
22
/* Quick Fair Queueing
23
===================
24
25
Sources:
26
27
Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
28
Packet Scheduling with Tight Bandwidth Distribution Guarantees."
29
30
See also:
31
http://retis.sssup.it/~fabio/linux/qfq/
32
*/
33
34
/*
35
36
Virtual time computations.
37
38
S, F and V are all computed in fixed point arithmetic with
39
FRAC_BITS decimal bits.
40
41
QFQ_MAX_INDEX is the maximum index allowed for a group. We need
42
one bit per index.
43
QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
44
45
The layout of the bits is as below:
46
47
[ MTU_SHIFT ][ FRAC_BITS ]
48
[ MAX_INDEX ][ MIN_SLOT_SHIFT ]
49
^.__grp->index = 0
50
*.__grp->slot_shift
51
52
where MIN_SLOT_SHIFT is derived by difference from the others.
53
54
The max group index corresponds to Lmax/w_min, where
55
Lmax=1<<MTU_SHIFT, w_min = 1 .
56
From this, and knowing how many groups (MAX_INDEX) we want,
57
we can derive the shift corresponding to each group.
58
59
Because we often need to compute
60
F = S + len/w_i and V = V + len/wsum
61
instead of storing w_i store the value
62
inv_w = (1<<FRAC_BITS)/w_i
63
so we can do F = S + len * inv_w * wsum.
64
We use W_TOT in the formulas so we can easily move between
65
static and adaptive weight sum.
66
67
The per-scheduler-instance data contain all the data structures
68
for the scheduler: bitmaps and bucket lists.
69
70
*/
71
72
/*
73
* Maximum number of consecutive slots occupied by backlogged classes
74
* inside a group.
75
*/
76
#define QFQ_MAX_SLOTS 32
77
78
/*
79
* Shifts used for class<->group mapping. We allow class weights that are
80
* in the range [1, 2^MAX_WSHIFT], and we try to map each class i to the
81
* group with the smallest index that can support the L_i / r_i configured
82
* for the class.
83
*
84
* grp->index is the index of the group; and grp->slot_shift
85
* is the shift for the corresponding (scaled) sigma_i.
86
*/
87
#define QFQ_MAX_INDEX 19
88
#define QFQ_MAX_WSHIFT 16
89
90
#define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT)
91
#define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT)
92
93
#define FRAC_BITS 30 /* fixed point arithmetic */
94
#define ONE_FP (1UL << FRAC_BITS)
95
#define IWSUM (ONE_FP/QFQ_MAX_WSUM)
96
97
#define QFQ_MTU_SHIFT 11
98
#define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
99
100
/*
101
* Possible group states. These values are used as indexes for the bitmaps
102
* array of struct qfq_queue.
103
*/
104
enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
105
106
struct qfq_group;
107
108
struct qfq_class {
109
struct Qdisc_class_common common;
110
111
unsigned int refcnt;
112
unsigned int filter_cnt;
113
114
struct gnet_stats_basic_packed bstats;
115
struct gnet_stats_queue qstats;
116
struct gnet_stats_rate_est rate_est;
117
struct Qdisc *qdisc;
118
119
struct hlist_node next; /* Link for the slot list. */
120
u64 S, F; /* flow timestamps (exact) */
121
122
/* group we belong to. In principle we would need the index,
123
* which is log_2(lmax/weight), but we never reference it
124
* directly, only the group.
125
*/
126
struct qfq_group *grp;
127
128
/* these are copied from the flowset. */
129
u32 inv_w; /* ONE_FP/weight */
130
u32 lmax; /* Max packet size for this flow. */
131
};
132
133
struct qfq_group {
134
u64 S, F; /* group timestamps (approx). */
135
unsigned int slot_shift; /* Slot shift. */
136
unsigned int index; /* Group index. */
137
unsigned int front; /* Index of the front slot. */
138
unsigned long full_slots; /* non-empty slots */
139
140
/* Array of RR lists of active classes. */
141
struct hlist_head slots[QFQ_MAX_SLOTS];
142
};
143
144
struct qfq_sched {
145
struct tcf_proto *filter_list;
146
struct Qdisc_class_hash clhash;
147
148
u64 V; /* Precise virtual time. */
149
u32 wsum; /* weight sum */
150
151
unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
152
struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
153
};
154
155
static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
156
{
157
struct qfq_sched *q = qdisc_priv(sch);
158
struct Qdisc_class_common *clc;
159
160
clc = qdisc_class_find(&q->clhash, classid);
161
if (clc == NULL)
162
return NULL;
163
return container_of(clc, struct qfq_class, common);
164
}
165
166
static void qfq_purge_queue(struct qfq_class *cl)
167
{
168
unsigned int len = cl->qdisc->q.qlen;
169
170
qdisc_reset(cl->qdisc);
171
qdisc_tree_decrease_qlen(cl->qdisc, len);
172
}
173
174
static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
175
[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
176
[TCA_QFQ_LMAX] = { .type = NLA_U32 },
177
};
178
179
/*
180
* Calculate a flow index, given its weight and maximum packet length.
181
* index = log_2(maxlen/weight) but we need to apply the scaling.
182
* This is used only once at flow creation.
183
*/
184
static int qfq_calc_index(u32 inv_w, unsigned int maxlen)
185
{
186
u64 slot_size = (u64)maxlen * inv_w;
187
unsigned long size_map;
188
int index = 0;
189
190
size_map = slot_size >> QFQ_MIN_SLOT_SHIFT;
191
if (!size_map)
192
goto out;
193
194
index = __fls(size_map) + 1; /* basically a log_2 */
195
index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
196
197
if (index < 0)
198
index = 0;
199
out:
200
pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
201
(unsigned long) ONE_FP/inv_w, maxlen, index);
202
203
return index;
204
}
205
206
static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
207
struct nlattr **tca, unsigned long *arg)
208
{
209
struct qfq_sched *q = qdisc_priv(sch);
210
struct qfq_class *cl = (struct qfq_class *)*arg;
211
struct nlattr *tb[TCA_QFQ_MAX + 1];
212
u32 weight, lmax, inv_w;
213
int i, err;
214
215
if (tca[TCA_OPTIONS] == NULL) {
216
pr_notice("qfq: no options\n");
217
return -EINVAL;
218
}
219
220
err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
221
if (err < 0)
222
return err;
223
224
if (tb[TCA_QFQ_WEIGHT]) {
225
weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
226
if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
227
pr_notice("qfq: invalid weight %u\n", weight);
228
return -EINVAL;
229
}
230
} else
231
weight = 1;
232
233
inv_w = ONE_FP / weight;
234
weight = ONE_FP / inv_w;
235
if (q->wsum + weight > QFQ_MAX_WSUM) {
236
pr_notice("qfq: total weight out of range (%u + %u)\n",
237
weight, q->wsum);
238
return -EINVAL;
239
}
240
241
if (tb[TCA_QFQ_LMAX]) {
242
lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
243
if (!lmax || lmax > (1UL << QFQ_MTU_SHIFT)) {
244
pr_notice("qfq: invalid max length %u\n", lmax);
245
return -EINVAL;
246
}
247
} else
248
lmax = 1UL << QFQ_MTU_SHIFT;
249
250
if (cl != NULL) {
251
if (tca[TCA_RATE]) {
252
err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
253
qdisc_root_sleeping_lock(sch),
254
tca[TCA_RATE]);
255
if (err)
256
return err;
257
}
258
259
sch_tree_lock(sch);
260
if (tb[TCA_QFQ_WEIGHT]) {
261
q->wsum = weight - ONE_FP / cl->inv_w;
262
cl->inv_w = inv_w;
263
}
264
sch_tree_unlock(sch);
265
266
return 0;
267
}
268
269
cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
270
if (cl == NULL)
271
return -ENOBUFS;
272
273
cl->refcnt = 1;
274
cl->common.classid = classid;
275
cl->lmax = lmax;
276
cl->inv_w = inv_w;
277
i = qfq_calc_index(cl->inv_w, cl->lmax);
278
279
cl->grp = &q->groups[i];
280
q->wsum += weight;
281
282
cl->qdisc = qdisc_create_dflt(sch->dev_queue,
283
&pfifo_qdisc_ops, classid);
284
if (cl->qdisc == NULL)
285
cl->qdisc = &noop_qdisc;
286
287
if (tca[TCA_RATE]) {
288
err = gen_new_estimator(&cl->bstats, &cl->rate_est,
289
qdisc_root_sleeping_lock(sch),
290
tca[TCA_RATE]);
291
if (err) {
292
qdisc_destroy(cl->qdisc);
293
kfree(cl);
294
return err;
295
}
296
}
297
298
sch_tree_lock(sch);
299
qdisc_class_hash_insert(&q->clhash, &cl->common);
300
sch_tree_unlock(sch);
301
302
qdisc_class_hash_grow(sch, &q->clhash);
303
304
*arg = (unsigned long)cl;
305
return 0;
306
}
307
308
static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
309
{
310
struct qfq_sched *q = qdisc_priv(sch);
311
312
if (cl->inv_w) {
313
q->wsum -= ONE_FP / cl->inv_w;
314
cl->inv_w = 0;
315
}
316
317
gen_kill_estimator(&cl->bstats, &cl->rate_est);
318
qdisc_destroy(cl->qdisc);
319
kfree(cl);
320
}
321
322
static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
323
{
324
struct qfq_sched *q = qdisc_priv(sch);
325
struct qfq_class *cl = (struct qfq_class *)arg;
326
327
if (cl->filter_cnt > 0)
328
return -EBUSY;
329
330
sch_tree_lock(sch);
331
332
qfq_purge_queue(cl);
333
qdisc_class_hash_remove(&q->clhash, &cl->common);
334
335
BUG_ON(--cl->refcnt == 0);
336
/*
337
* This shouldn't happen: we "hold" one cops->get() when called
338
* from tc_ctl_tclass; the destroy method is done from cops->put().
339
*/
340
341
sch_tree_unlock(sch);
342
return 0;
343
}
344
345
static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
346
{
347
struct qfq_class *cl = qfq_find_class(sch, classid);
348
349
if (cl != NULL)
350
cl->refcnt++;
351
352
return (unsigned long)cl;
353
}
354
355
static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
356
{
357
struct qfq_class *cl = (struct qfq_class *)arg;
358
359
if (--cl->refcnt == 0)
360
qfq_destroy_class(sch, cl);
361
}
362
363
static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
364
{
365
struct qfq_sched *q = qdisc_priv(sch);
366
367
if (cl)
368
return NULL;
369
370
return &q->filter_list;
371
}
372
373
static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
374
u32 classid)
375
{
376
struct qfq_class *cl = qfq_find_class(sch, classid);
377
378
if (cl != NULL)
379
cl->filter_cnt++;
380
381
return (unsigned long)cl;
382
}
383
384
static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
385
{
386
struct qfq_class *cl = (struct qfq_class *)arg;
387
388
cl->filter_cnt--;
389
}
390
391
static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
392
struct Qdisc *new, struct Qdisc **old)
393
{
394
struct qfq_class *cl = (struct qfq_class *)arg;
395
396
if (new == NULL) {
397
new = qdisc_create_dflt(sch->dev_queue,
398
&pfifo_qdisc_ops, cl->common.classid);
399
if (new == NULL)
400
new = &noop_qdisc;
401
}
402
403
sch_tree_lock(sch);
404
qfq_purge_queue(cl);
405
*old = cl->qdisc;
406
cl->qdisc = new;
407
sch_tree_unlock(sch);
408
return 0;
409
}
410
411
static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
412
{
413
struct qfq_class *cl = (struct qfq_class *)arg;
414
415
return cl->qdisc;
416
}
417
418
static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
419
struct sk_buff *skb, struct tcmsg *tcm)
420
{
421
struct qfq_class *cl = (struct qfq_class *)arg;
422
struct nlattr *nest;
423
424
tcm->tcm_parent = TC_H_ROOT;
425
tcm->tcm_handle = cl->common.classid;
426
tcm->tcm_info = cl->qdisc->handle;
427
428
nest = nla_nest_start(skb, TCA_OPTIONS);
429
if (nest == NULL)
430
goto nla_put_failure;
431
NLA_PUT_U32(skb, TCA_QFQ_WEIGHT, ONE_FP/cl->inv_w);
432
NLA_PUT_U32(skb, TCA_QFQ_LMAX, cl->lmax);
433
return nla_nest_end(skb, nest);
434
435
nla_put_failure:
436
nla_nest_cancel(skb, nest);
437
return -EMSGSIZE;
438
}
439
440
static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
441
struct gnet_dump *d)
442
{
443
struct qfq_class *cl = (struct qfq_class *)arg;
444
struct tc_qfq_stats xstats;
445
446
memset(&xstats, 0, sizeof(xstats));
447
cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
448
449
xstats.weight = ONE_FP/cl->inv_w;
450
xstats.lmax = cl->lmax;
451
452
if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
453
gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
454
gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
455
return -1;
456
457
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
458
}
459
460
static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
461
{
462
struct qfq_sched *q = qdisc_priv(sch);
463
struct qfq_class *cl;
464
struct hlist_node *n;
465
unsigned int i;
466
467
if (arg->stop)
468
return;
469
470
for (i = 0; i < q->clhash.hashsize; i++) {
471
hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) {
472
if (arg->count < arg->skip) {
473
arg->count++;
474
continue;
475
}
476
if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
477
arg->stop = 1;
478
return;
479
}
480
arg->count++;
481
}
482
}
483
}
484
485
static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
486
int *qerr)
487
{
488
struct qfq_sched *q = qdisc_priv(sch);
489
struct qfq_class *cl;
490
struct tcf_result res;
491
int result;
492
493
if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
494
pr_debug("qfq_classify: found %d\n", skb->priority);
495
cl = qfq_find_class(sch, skb->priority);
496
if (cl != NULL)
497
return cl;
498
}
499
500
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
501
result = tc_classify(skb, q->filter_list, &res);
502
if (result >= 0) {
503
#ifdef CONFIG_NET_CLS_ACT
504
switch (result) {
505
case TC_ACT_QUEUED:
506
case TC_ACT_STOLEN:
507
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
508
case TC_ACT_SHOT:
509
return NULL;
510
}
511
#endif
512
cl = (struct qfq_class *)res.class;
513
if (cl == NULL)
514
cl = qfq_find_class(sch, res.classid);
515
return cl;
516
}
517
518
return NULL;
519
}
520
521
/* Generic comparison function, handling wraparound. */
522
static inline int qfq_gt(u64 a, u64 b)
523
{
524
return (s64)(a - b) > 0;
525
}
526
527
/* Round a precise timestamp to its slotted value. */
528
static inline u64 qfq_round_down(u64 ts, unsigned int shift)
529
{
530
return ts & ~((1ULL << shift) - 1);
531
}
532
533
/* return the pointer to the group with lowest index in the bitmap */
534
static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
535
unsigned long bitmap)
536
{
537
int index = __ffs(bitmap);
538
return &q->groups[index];
539
}
540
/* Calculate a mask to mimic what would be ffs_from(). */
541
static inline unsigned long mask_from(unsigned long bitmap, int from)
542
{
543
return bitmap & ~((1UL << from) - 1);
544
}
545
546
/*
547
* The state computation relies on ER=0, IR=1, EB=2, IB=3
548
* First compute eligibility comparing grp->S, q->V,
549
* then check if someone is blocking us and possibly add EB
550
*/
551
static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
552
{
553
/* if S > V we are not eligible */
554
unsigned int state = qfq_gt(grp->S, q->V);
555
unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
556
struct qfq_group *next;
557
558
if (mask) {
559
next = qfq_ffs(q, mask);
560
if (qfq_gt(grp->F, next->F))
561
state |= EB;
562
}
563
564
return state;
565
}
566
567
568
/*
569
* In principle
570
* q->bitmaps[dst] |= q->bitmaps[src] & mask;
571
* q->bitmaps[src] &= ~mask;
572
* but we should make sure that src != dst
573
*/
574
static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
575
int src, int dst)
576
{
577
q->bitmaps[dst] |= q->bitmaps[src] & mask;
578
q->bitmaps[src] &= ~mask;
579
}
580
581
static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
582
{
583
unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
584
struct qfq_group *next;
585
586
if (mask) {
587
next = qfq_ffs(q, mask);
588
if (!qfq_gt(next->F, old_F))
589
return;
590
}
591
592
mask = (1UL << index) - 1;
593
qfq_move_groups(q, mask, EB, ER);
594
qfq_move_groups(q, mask, IB, IR);
595
}
596
597
/*
598
* perhaps
599
*
600
old_V ^= q->V;
601
old_V >>= QFQ_MIN_SLOT_SHIFT;
602
if (old_V) {
603
...
604
}
605
*
606
*/
607
static void qfq_make_eligible(struct qfq_sched *q, u64 old_V)
608
{
609
unsigned long vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
610
unsigned long old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
611
612
if (vslot != old_vslot) {
613
unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1;
614
qfq_move_groups(q, mask, IR, ER);
615
qfq_move_groups(q, mask, IB, EB);
616
}
617
}
618
619
620
/*
621
* XXX we should make sure that slot becomes less than 32.
622
* This is guaranteed by the input values.
623
* roundedS is always cl->S rounded on grp->slot_shift bits.
624
*/
625
static void qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl,
626
u64 roundedS)
627
{
628
u64 slot = (roundedS - grp->S) >> grp->slot_shift;
629
unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
630
631
hlist_add_head(&cl->next, &grp->slots[i]);
632
__set_bit(slot, &grp->full_slots);
633
}
634
635
/* Maybe introduce hlist_first_entry?? */
636
static struct qfq_class *qfq_slot_head(struct qfq_group *grp)
637
{
638
return hlist_entry(grp->slots[grp->front].first,
639
struct qfq_class, next);
640
}
641
642
/*
643
* remove the entry from the slot
644
*/
645
static void qfq_front_slot_remove(struct qfq_group *grp)
646
{
647
struct qfq_class *cl = qfq_slot_head(grp);
648
649
BUG_ON(!cl);
650
hlist_del(&cl->next);
651
if (hlist_empty(&grp->slots[grp->front]))
652
__clear_bit(0, &grp->full_slots);
653
}
654
655
/*
656
* Returns the first full queue in a group. As a side effect,
657
* adjust the bucket list so the first non-empty bucket is at
658
* position 0 in full_slots.
659
*/
660
static struct qfq_class *qfq_slot_scan(struct qfq_group *grp)
661
{
662
unsigned int i;
663
664
pr_debug("qfq slot_scan: grp %u full %#lx\n",
665
grp->index, grp->full_slots);
666
667
if (grp->full_slots == 0)
668
return NULL;
669
670
i = __ffs(grp->full_slots); /* zero based */
671
if (i > 0) {
672
grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
673
grp->full_slots >>= i;
674
}
675
676
return qfq_slot_head(grp);
677
}
678
679
/*
680
* adjust the bucket list. When the start time of a group decreases,
681
* we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
682
* move the objects. The mask of occupied slots must be shifted
683
* because we use ffs() to find the first non-empty slot.
684
* This covers decreases in the group's start time, but what about
685
* increases of the start time ?
686
* Here too we should make sure that i is less than 32
687
*/
688
static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
689
{
690
unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
691
692
grp->full_slots <<= i;
693
grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
694
}
695
696
static void qfq_update_eligible(struct qfq_sched *q, u64 old_V)
697
{
698
struct qfq_group *grp;
699
unsigned long ineligible;
700
701
ineligible = q->bitmaps[IR] | q->bitmaps[IB];
702
if (ineligible) {
703
if (!q->bitmaps[ER]) {
704
grp = qfq_ffs(q, ineligible);
705
if (qfq_gt(grp->S, q->V))
706
q->V = grp->S;
707
}
708
qfq_make_eligible(q, old_V);
709
}
710
}
711
712
/* What is length of next packet in queue (0 if queue is empty) */
713
static unsigned int qdisc_peek_len(struct Qdisc *sch)
714
{
715
struct sk_buff *skb;
716
717
skb = sch->ops->peek(sch);
718
return skb ? qdisc_pkt_len(skb) : 0;
719
}
720
721
/*
722
* Updates the class, returns true if also the group needs to be updated.
723
*/
724
static bool qfq_update_class(struct qfq_group *grp, struct qfq_class *cl)
725
{
726
unsigned int len = qdisc_peek_len(cl->qdisc);
727
728
cl->S = cl->F;
729
if (!len)
730
qfq_front_slot_remove(grp); /* queue is empty */
731
else {
732
u64 roundedS;
733
734
cl->F = cl->S + (u64)len * cl->inv_w;
735
roundedS = qfq_round_down(cl->S, grp->slot_shift);
736
if (roundedS == grp->S)
737
return false;
738
739
qfq_front_slot_remove(grp);
740
qfq_slot_insert(grp, cl, roundedS);
741
}
742
743
return true;
744
}
745
746
static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
747
{
748
struct qfq_sched *q = qdisc_priv(sch);
749
struct qfq_group *grp;
750
struct qfq_class *cl;
751
struct sk_buff *skb;
752
unsigned int len;
753
u64 old_V;
754
755
if (!q->bitmaps[ER])
756
return NULL;
757
758
grp = qfq_ffs(q, q->bitmaps[ER]);
759
760
cl = qfq_slot_head(grp);
761
skb = qdisc_dequeue_peeked(cl->qdisc);
762
if (!skb) {
763
WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
764
return NULL;
765
}
766
767
sch->q.qlen--;
768
qdisc_bstats_update(sch, skb);
769
770
old_V = q->V;
771
len = qdisc_pkt_len(skb);
772
q->V += (u64)len * IWSUM;
773
pr_debug("qfq dequeue: len %u F %lld now %lld\n",
774
len, (unsigned long long) cl->F, (unsigned long long) q->V);
775
776
if (qfq_update_class(grp, cl)) {
777
u64 old_F = grp->F;
778
779
cl = qfq_slot_scan(grp);
780
if (!cl)
781
__clear_bit(grp->index, &q->bitmaps[ER]);
782
else {
783
u64 roundedS = qfq_round_down(cl->S, grp->slot_shift);
784
unsigned int s;
785
786
if (grp->S == roundedS)
787
goto skip_unblock;
788
grp->S = roundedS;
789
grp->F = roundedS + (2ULL << grp->slot_shift);
790
__clear_bit(grp->index, &q->bitmaps[ER]);
791
s = qfq_calc_state(q, grp);
792
__set_bit(grp->index, &q->bitmaps[s]);
793
}
794
795
qfq_unblock_groups(q, grp->index, old_F);
796
}
797
798
skip_unblock:
799
qfq_update_eligible(q, old_V);
800
801
return skb;
802
}
803
804
/*
805
* Assign a reasonable start time for a new flow k in group i.
806
* Admissible values for \hat(F) are multiples of \sigma_i
807
* no greater than V+\sigma_i . Larger values mean that
808
* we had a wraparound so we consider the timestamp to be stale.
809
*
810
* If F is not stale and F >= V then we set S = F.
811
* Otherwise we should assign S = V, but this may violate
812
* the ordering in ER. So, if we have groups in ER, set S to
813
* the F_j of the first group j which would be blocking us.
814
* We are guaranteed not to move S backward because
815
* otherwise our group i would still be blocked.
816
*/
817
static void qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
818
{
819
unsigned long mask;
820
uint32_t limit, roundedF;
821
int slot_shift = cl->grp->slot_shift;
822
823
roundedF = qfq_round_down(cl->F, slot_shift);
824
limit = qfq_round_down(q->V, slot_shift) + (1UL << slot_shift);
825
826
if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
827
/* timestamp was stale */
828
mask = mask_from(q->bitmaps[ER], cl->grp->index);
829
if (mask) {
830
struct qfq_group *next = qfq_ffs(q, mask);
831
if (qfq_gt(roundedF, next->F)) {
832
cl->S = next->F;
833
return;
834
}
835
}
836
cl->S = q->V;
837
} else /* timestamp is not stale */
838
cl->S = cl->F;
839
}
840
841
static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
842
{
843
struct qfq_sched *q = qdisc_priv(sch);
844
struct qfq_group *grp;
845
struct qfq_class *cl;
846
int err;
847
u64 roundedS;
848
int s;
849
850
cl = qfq_classify(skb, sch, &err);
851
if (cl == NULL) {
852
if (err & __NET_XMIT_BYPASS)
853
sch->qstats.drops++;
854
kfree_skb(skb);
855
return err;
856
}
857
pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
858
859
err = qdisc_enqueue(skb, cl->qdisc);
860
if (unlikely(err != NET_XMIT_SUCCESS)) {
861
pr_debug("qfq_enqueue: enqueue failed %d\n", err);
862
if (net_xmit_drop_count(err)) {
863
cl->qstats.drops++;
864
sch->qstats.drops++;
865
}
866
return err;
867
}
868
869
bstats_update(&cl->bstats, skb);
870
++sch->q.qlen;
871
872
/* If the new skb is not the head of queue, then done here. */
873
if (cl->qdisc->q.qlen != 1)
874
return err;
875
876
/* If reach this point, queue q was idle */
877
grp = cl->grp;
878
qfq_update_start(q, cl);
879
880
/* compute new finish time and rounded start. */
881
cl->F = cl->S + (u64)qdisc_pkt_len(skb) * cl->inv_w;
882
roundedS = qfq_round_down(cl->S, grp->slot_shift);
883
884
/*
885
* insert cl in the correct bucket.
886
* If cl->S >= grp->S we don't need to adjust the
887
* bucket list and simply go to the insertion phase.
888
* Otherwise grp->S is decreasing, we must make room
889
* in the bucket list, and also recompute the group state.
890
* Finally, if there were no flows in this group and nobody
891
* was in ER make sure to adjust V.
892
*/
893
if (grp->full_slots) {
894
if (!qfq_gt(grp->S, cl->S))
895
goto skip_update;
896
897
/* create a slot for this cl->S */
898
qfq_slot_rotate(grp, roundedS);
899
/* group was surely ineligible, remove */
900
__clear_bit(grp->index, &q->bitmaps[IR]);
901
__clear_bit(grp->index, &q->bitmaps[IB]);
902
} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
903
q->V = roundedS;
904
905
grp->S = roundedS;
906
grp->F = roundedS + (2ULL << grp->slot_shift);
907
s = qfq_calc_state(q, grp);
908
__set_bit(grp->index, &q->bitmaps[s]);
909
910
pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
911
s, q->bitmaps[s],
912
(unsigned long long) cl->S,
913
(unsigned long long) cl->F,
914
(unsigned long long) q->V);
915
916
skip_update:
917
qfq_slot_insert(grp, cl, roundedS);
918
919
return err;
920
}
921
922
923
static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
924
struct qfq_class *cl)
925
{
926
unsigned int i, offset;
927
u64 roundedS;
928
929
roundedS = qfq_round_down(cl->S, grp->slot_shift);
930
offset = (roundedS - grp->S) >> grp->slot_shift;
931
i = (grp->front + offset) % QFQ_MAX_SLOTS;
932
933
hlist_del(&cl->next);
934
if (hlist_empty(&grp->slots[i]))
935
__clear_bit(offset, &grp->full_slots);
936
}
937
938
/*
939
* called to forcibly destroy a queue.
940
* If the queue is not in the front bucket, or if it has
941
* other queues in the front bucket, we can simply remove
942
* the queue with no other side effects.
943
* Otherwise we must propagate the event up.
944
*/
945
static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
946
{
947
struct qfq_group *grp = cl->grp;
948
unsigned long mask;
949
u64 roundedS;
950
int s;
951
952
cl->F = cl->S;
953
qfq_slot_remove(q, grp, cl);
954
955
if (!grp->full_slots) {
956
__clear_bit(grp->index, &q->bitmaps[IR]);
957
__clear_bit(grp->index, &q->bitmaps[EB]);
958
__clear_bit(grp->index, &q->bitmaps[IB]);
959
960
if (test_bit(grp->index, &q->bitmaps[ER]) &&
961
!(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
962
mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
963
if (mask)
964
mask = ~((1UL << __fls(mask)) - 1);
965
else
966
mask = ~0UL;
967
qfq_move_groups(q, mask, EB, ER);
968
qfq_move_groups(q, mask, IB, IR);
969
}
970
__clear_bit(grp->index, &q->bitmaps[ER]);
971
} else if (hlist_empty(&grp->slots[grp->front])) {
972
cl = qfq_slot_scan(grp);
973
roundedS = qfq_round_down(cl->S, grp->slot_shift);
974
if (grp->S != roundedS) {
975
__clear_bit(grp->index, &q->bitmaps[ER]);
976
__clear_bit(grp->index, &q->bitmaps[IR]);
977
__clear_bit(grp->index, &q->bitmaps[EB]);
978
__clear_bit(grp->index, &q->bitmaps[IB]);
979
grp->S = roundedS;
980
grp->F = roundedS + (2ULL << grp->slot_shift);
981
s = qfq_calc_state(q, grp);
982
__set_bit(grp->index, &q->bitmaps[s]);
983
}
984
}
985
986
qfq_update_eligible(q, q->V);
987
}
988
989
static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
990
{
991
struct qfq_sched *q = qdisc_priv(sch);
992
struct qfq_class *cl = (struct qfq_class *)arg;
993
994
if (cl->qdisc->q.qlen == 0)
995
qfq_deactivate_class(q, cl);
996
}
997
998
static unsigned int qfq_drop(struct Qdisc *sch)
999
{
1000
struct qfq_sched *q = qdisc_priv(sch);
1001
struct qfq_group *grp;
1002
unsigned int i, j, len;
1003
1004
for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1005
grp = &q->groups[i];
1006
for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1007
struct qfq_class *cl;
1008
struct hlist_node *n;
1009
1010
hlist_for_each_entry(cl, n, &grp->slots[j], next) {
1011
1012
if (!cl->qdisc->ops->drop)
1013
continue;
1014
1015
len = cl->qdisc->ops->drop(cl->qdisc);
1016
if (len > 0) {
1017
sch->q.qlen--;
1018
if (!cl->qdisc->q.qlen)
1019
qfq_deactivate_class(q, cl);
1020
1021
return len;
1022
}
1023
}
1024
}
1025
}
1026
1027
return 0;
1028
}
1029
1030
static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1031
{
1032
struct qfq_sched *q = qdisc_priv(sch);
1033
struct qfq_group *grp;
1034
int i, j, err;
1035
1036
err = qdisc_class_hash_init(&q->clhash);
1037
if (err < 0)
1038
return err;
1039
1040
for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1041
grp = &q->groups[i];
1042
grp->index = i;
1043
grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS
1044
- (QFQ_MAX_INDEX - i);
1045
for (j = 0; j < QFQ_MAX_SLOTS; j++)
1046
INIT_HLIST_HEAD(&grp->slots[j]);
1047
}
1048
1049
return 0;
1050
}
1051
1052
static void qfq_reset_qdisc(struct Qdisc *sch)
1053
{
1054
struct qfq_sched *q = qdisc_priv(sch);
1055
struct qfq_group *grp;
1056
struct qfq_class *cl;
1057
struct hlist_node *n, *tmp;
1058
unsigned int i, j;
1059
1060
for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1061
grp = &q->groups[i];
1062
for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1063
hlist_for_each_entry_safe(cl, n, tmp,
1064
&grp->slots[j], next) {
1065
qfq_deactivate_class(q, cl);
1066
}
1067
}
1068
}
1069
1070
for (i = 0; i < q->clhash.hashsize; i++) {
1071
hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode)
1072
qdisc_reset(cl->qdisc);
1073
}
1074
sch->q.qlen = 0;
1075
}
1076
1077
static void qfq_destroy_qdisc(struct Qdisc *sch)
1078
{
1079
struct qfq_sched *q = qdisc_priv(sch);
1080
struct qfq_class *cl;
1081
struct hlist_node *n, *next;
1082
unsigned int i;
1083
1084
tcf_destroy_chain(&q->filter_list);
1085
1086
for (i = 0; i < q->clhash.hashsize; i++) {
1087
hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i],
1088
common.hnode) {
1089
qfq_destroy_class(sch, cl);
1090
}
1091
}
1092
qdisc_class_hash_destroy(&q->clhash);
1093
}
1094
1095
static const struct Qdisc_class_ops qfq_class_ops = {
1096
.change = qfq_change_class,
1097
.delete = qfq_delete_class,
1098
.get = qfq_get_class,
1099
.put = qfq_put_class,
1100
.tcf_chain = qfq_tcf_chain,
1101
.bind_tcf = qfq_bind_tcf,
1102
.unbind_tcf = qfq_unbind_tcf,
1103
.graft = qfq_graft_class,
1104
.leaf = qfq_class_leaf,
1105
.qlen_notify = qfq_qlen_notify,
1106
.dump = qfq_dump_class,
1107
.dump_stats = qfq_dump_class_stats,
1108
.walk = qfq_walk,
1109
};
1110
1111
static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1112
.cl_ops = &qfq_class_ops,
1113
.id = "qfq",
1114
.priv_size = sizeof(struct qfq_sched),
1115
.enqueue = qfq_enqueue,
1116
.dequeue = qfq_dequeue,
1117
.peek = qdisc_peek_dequeued,
1118
.drop = qfq_drop,
1119
.init = qfq_init_qdisc,
1120
.reset = qfq_reset_qdisc,
1121
.destroy = qfq_destroy_qdisc,
1122
.owner = THIS_MODULE,
1123
};
1124
1125
static int __init qfq_init(void)
1126
{
1127
return register_qdisc(&qfq_qdisc_ops);
1128
}
1129
1130
static void __exit qfq_exit(void)
1131
{
1132
unregister_qdisc(&qfq_qdisc_ops);
1133
}
1134
1135
module_init(qfq_init);
1136
module_exit(qfq_exit);
1137
MODULE_LICENSE("GPL");
1138
1139