Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/sched/sch_sfb.c
15111 views
1
/*
2
* net/sched/sch_sfb.c Stochastic Fair Blue
3
*
4
* Copyright (c) 2008-2011 Juliusz Chroboczek <[email protected]>
5
* Copyright (c) 2011 Eric Dumazet <[email protected]>
6
*
7
* This program is free software; you can redistribute it and/or
8
* modify it under the terms of the GNU General Public License
9
* version 2 as published by the Free Software Foundation.
10
*
11
* W. Feng, D. Kandlur, D. Saha, K. Shin. Blue:
12
* A New Class of Active Queue Management Algorithms.
13
* U. Michigan CSE-TR-387-99, April 1999.
14
*
15
* http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf
16
*
17
*/
18
19
#include <linux/module.h>
20
#include <linux/types.h>
21
#include <linux/kernel.h>
22
#include <linux/errno.h>
23
#include <linux/skbuff.h>
24
#include <linux/random.h>
25
#include <linux/jhash.h>
26
#include <net/ip.h>
27
#include <net/pkt_sched.h>
28
#include <net/inet_ecn.h>
29
30
/*
31
* SFB uses two B[l][n] : L x N arrays of bins (L levels, N bins per level)
32
* This implementation uses L = 8 and N = 16
33
* This permits us to split one 32bit hash (provided per packet by rxhash or
34
* external classifier) into 8 subhashes of 4 bits.
35
*/
36
#define SFB_BUCKET_SHIFT 4
37
#define SFB_NUMBUCKETS (1 << SFB_BUCKET_SHIFT) /* N bins per Level */
38
#define SFB_BUCKET_MASK (SFB_NUMBUCKETS - 1)
39
#define SFB_LEVELS (32 / SFB_BUCKET_SHIFT) /* L */
40
41
/* SFB algo uses a virtual queue, named "bin" */
42
struct sfb_bucket {
43
u16 qlen; /* length of virtual queue */
44
u16 p_mark; /* marking probability */
45
};
46
47
/* We use a double buffering right before hash change
48
* (Section 4.4 of SFB reference : moving hash functions)
49
*/
50
struct sfb_bins {
51
u32 perturbation; /* jhash perturbation */
52
struct sfb_bucket bins[SFB_LEVELS][SFB_NUMBUCKETS];
53
};
54
55
struct sfb_sched_data {
56
struct Qdisc *qdisc;
57
struct tcf_proto *filter_list;
58
unsigned long rehash_interval;
59
unsigned long warmup_time; /* double buffering warmup time in jiffies */
60
u32 max;
61
u32 bin_size; /* maximum queue length per bin */
62
u32 increment; /* d1 */
63
u32 decrement; /* d2 */
64
u32 limit; /* HARD maximal queue length */
65
u32 penalty_rate;
66
u32 penalty_burst;
67
u32 tokens_avail;
68
unsigned long rehash_time;
69
unsigned long token_time;
70
71
u8 slot; /* current active bins (0 or 1) */
72
bool double_buffering;
73
struct sfb_bins bins[2];
74
75
struct {
76
u32 earlydrop;
77
u32 penaltydrop;
78
u32 bucketdrop;
79
u32 queuedrop;
80
u32 childdrop; /* drops in child qdisc */
81
u32 marked; /* ECN mark */
82
} stats;
83
};
84
85
/*
86
* Each queued skb might be hashed on one or two bins
87
* We store in skb_cb the two hash values.
88
* (A zero value means double buffering was not used)
89
*/
90
struct sfb_skb_cb {
91
u32 hashes[2];
92
};
93
94
static inline struct sfb_skb_cb *sfb_skb_cb(const struct sk_buff *skb)
95
{
96
BUILD_BUG_ON(sizeof(skb->cb) <
97
sizeof(struct qdisc_skb_cb) + sizeof(struct sfb_skb_cb));
98
return (struct sfb_skb_cb *)qdisc_skb_cb(skb)->data;
99
}
100
101
/*
102
* If using 'internal' SFB flow classifier, hash comes from skb rxhash
103
* If using external classifier, hash comes from the classid.
104
*/
105
static u32 sfb_hash(const struct sk_buff *skb, u32 slot)
106
{
107
return sfb_skb_cb(skb)->hashes[slot];
108
}
109
110
/* Probabilities are coded as Q0.16 fixed-point values,
111
* with 0xFFFF representing 65535/65536 (almost 1.0)
112
* Addition and subtraction are saturating in [0, 65535]
113
*/
114
static u32 prob_plus(u32 p1, u32 p2)
115
{
116
u32 res = p1 + p2;
117
118
return min_t(u32, res, SFB_MAX_PROB);
119
}
120
121
static u32 prob_minus(u32 p1, u32 p2)
122
{
123
return p1 > p2 ? p1 - p2 : 0;
124
}
125
126
static void increment_one_qlen(u32 sfbhash, u32 slot, struct sfb_sched_data *q)
127
{
128
int i;
129
struct sfb_bucket *b = &q->bins[slot].bins[0][0];
130
131
for (i = 0; i < SFB_LEVELS; i++) {
132
u32 hash = sfbhash & SFB_BUCKET_MASK;
133
134
sfbhash >>= SFB_BUCKET_SHIFT;
135
if (b[hash].qlen < 0xFFFF)
136
b[hash].qlen++;
137
b += SFB_NUMBUCKETS; /* next level */
138
}
139
}
140
141
static void increment_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
142
{
143
u32 sfbhash;
144
145
sfbhash = sfb_hash(skb, 0);
146
if (sfbhash)
147
increment_one_qlen(sfbhash, 0, q);
148
149
sfbhash = sfb_hash(skb, 1);
150
if (sfbhash)
151
increment_one_qlen(sfbhash, 1, q);
152
}
153
154
static void decrement_one_qlen(u32 sfbhash, u32 slot,
155
struct sfb_sched_data *q)
156
{
157
int i;
158
struct sfb_bucket *b = &q->bins[slot].bins[0][0];
159
160
for (i = 0; i < SFB_LEVELS; i++) {
161
u32 hash = sfbhash & SFB_BUCKET_MASK;
162
163
sfbhash >>= SFB_BUCKET_SHIFT;
164
if (b[hash].qlen > 0)
165
b[hash].qlen--;
166
b += SFB_NUMBUCKETS; /* next level */
167
}
168
}
169
170
static void decrement_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
171
{
172
u32 sfbhash;
173
174
sfbhash = sfb_hash(skb, 0);
175
if (sfbhash)
176
decrement_one_qlen(sfbhash, 0, q);
177
178
sfbhash = sfb_hash(skb, 1);
179
if (sfbhash)
180
decrement_one_qlen(sfbhash, 1, q);
181
}
182
183
static void decrement_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
184
{
185
b->p_mark = prob_minus(b->p_mark, q->decrement);
186
}
187
188
static void increment_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
189
{
190
b->p_mark = prob_plus(b->p_mark, q->increment);
191
}
192
193
static void sfb_zero_all_buckets(struct sfb_sched_data *q)
194
{
195
memset(&q->bins, 0, sizeof(q->bins));
196
}
197
198
/*
199
* compute max qlen, max p_mark, and avg p_mark
200
*/
201
static u32 sfb_compute_qlen(u32 *prob_r, u32 *avgpm_r, const struct sfb_sched_data *q)
202
{
203
int i;
204
u32 qlen = 0, prob = 0, totalpm = 0;
205
const struct sfb_bucket *b = &q->bins[q->slot].bins[0][0];
206
207
for (i = 0; i < SFB_LEVELS * SFB_NUMBUCKETS; i++) {
208
if (qlen < b->qlen)
209
qlen = b->qlen;
210
totalpm += b->p_mark;
211
if (prob < b->p_mark)
212
prob = b->p_mark;
213
b++;
214
}
215
*prob_r = prob;
216
*avgpm_r = totalpm / (SFB_LEVELS * SFB_NUMBUCKETS);
217
return qlen;
218
}
219
220
221
static void sfb_init_perturbation(u32 slot, struct sfb_sched_data *q)
222
{
223
q->bins[slot].perturbation = net_random();
224
}
225
226
static void sfb_swap_slot(struct sfb_sched_data *q)
227
{
228
sfb_init_perturbation(q->slot, q);
229
q->slot ^= 1;
230
q->double_buffering = false;
231
}
232
233
/* Non elastic flows are allowed to use part of the bandwidth, expressed
234
* in "penalty_rate" packets per second, with "penalty_burst" burst
235
*/
236
static bool sfb_rate_limit(struct sk_buff *skb, struct sfb_sched_data *q)
237
{
238
if (q->penalty_rate == 0 || q->penalty_burst == 0)
239
return true;
240
241
if (q->tokens_avail < 1) {
242
unsigned long age = min(10UL * HZ, jiffies - q->token_time);
243
244
q->tokens_avail = (age * q->penalty_rate) / HZ;
245
if (q->tokens_avail > q->penalty_burst)
246
q->tokens_avail = q->penalty_burst;
247
q->token_time = jiffies;
248
if (q->tokens_avail < 1)
249
return true;
250
}
251
252
q->tokens_avail--;
253
return false;
254
}
255
256
static bool sfb_classify(struct sk_buff *skb, struct sfb_sched_data *q,
257
int *qerr, u32 *salt)
258
{
259
struct tcf_result res;
260
int result;
261
262
result = tc_classify(skb, q->filter_list, &res);
263
if (result >= 0) {
264
#ifdef CONFIG_NET_CLS_ACT
265
switch (result) {
266
case TC_ACT_STOLEN:
267
case TC_ACT_QUEUED:
268
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
269
case TC_ACT_SHOT:
270
return false;
271
}
272
#endif
273
*salt = TC_H_MIN(res.classid);
274
return true;
275
}
276
return false;
277
}
278
279
static int sfb_enqueue(struct sk_buff *skb, struct Qdisc *sch)
280
{
281
282
struct sfb_sched_data *q = qdisc_priv(sch);
283
struct Qdisc *child = q->qdisc;
284
int i;
285
u32 p_min = ~0;
286
u32 minqlen = ~0;
287
u32 r, slot, salt, sfbhash;
288
int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
289
290
if (q->rehash_interval > 0) {
291
unsigned long limit = q->rehash_time + q->rehash_interval;
292
293
if (unlikely(time_after(jiffies, limit))) {
294
sfb_swap_slot(q);
295
q->rehash_time = jiffies;
296
} else if (unlikely(!q->double_buffering && q->warmup_time > 0 &&
297
time_after(jiffies, limit - q->warmup_time))) {
298
q->double_buffering = true;
299
}
300
}
301
302
if (q->filter_list) {
303
/* If using external classifiers, get result and record it. */
304
if (!sfb_classify(skb, q, &ret, &salt))
305
goto other_drop;
306
} else {
307
salt = skb_get_rxhash(skb);
308
}
309
310
slot = q->slot;
311
312
sfbhash = jhash_1word(salt, q->bins[slot].perturbation);
313
if (!sfbhash)
314
sfbhash = 1;
315
sfb_skb_cb(skb)->hashes[slot] = sfbhash;
316
317
for (i = 0; i < SFB_LEVELS; i++) {
318
u32 hash = sfbhash & SFB_BUCKET_MASK;
319
struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
320
321
sfbhash >>= SFB_BUCKET_SHIFT;
322
if (b->qlen == 0)
323
decrement_prob(b, q);
324
else if (b->qlen >= q->bin_size)
325
increment_prob(b, q);
326
if (minqlen > b->qlen)
327
minqlen = b->qlen;
328
if (p_min > b->p_mark)
329
p_min = b->p_mark;
330
}
331
332
slot ^= 1;
333
sfb_skb_cb(skb)->hashes[slot] = 0;
334
335
if (unlikely(minqlen >= q->max || sch->q.qlen >= q->limit)) {
336
sch->qstats.overlimits++;
337
if (minqlen >= q->max)
338
q->stats.bucketdrop++;
339
else
340
q->stats.queuedrop++;
341
goto drop;
342
}
343
344
if (unlikely(p_min >= SFB_MAX_PROB)) {
345
/* Inelastic flow */
346
if (q->double_buffering) {
347
sfbhash = jhash_1word(salt, q->bins[slot].perturbation);
348
if (!sfbhash)
349
sfbhash = 1;
350
sfb_skb_cb(skb)->hashes[slot] = sfbhash;
351
352
for (i = 0; i < SFB_LEVELS; i++) {
353
u32 hash = sfbhash & SFB_BUCKET_MASK;
354
struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
355
356
sfbhash >>= SFB_BUCKET_SHIFT;
357
if (b->qlen == 0)
358
decrement_prob(b, q);
359
else if (b->qlen >= q->bin_size)
360
increment_prob(b, q);
361
}
362
}
363
if (sfb_rate_limit(skb, q)) {
364
sch->qstats.overlimits++;
365
q->stats.penaltydrop++;
366
goto drop;
367
}
368
goto enqueue;
369
}
370
371
r = net_random() & SFB_MAX_PROB;
372
373
if (unlikely(r < p_min)) {
374
if (unlikely(p_min > SFB_MAX_PROB / 2)) {
375
/* If we're marking that many packets, then either
376
* this flow is unresponsive, or we're badly congested.
377
* In either case, we want to start dropping packets.
378
*/
379
if (r < (p_min - SFB_MAX_PROB / 2) * 2) {
380
q->stats.earlydrop++;
381
goto drop;
382
}
383
}
384
if (INET_ECN_set_ce(skb)) {
385
q->stats.marked++;
386
} else {
387
q->stats.earlydrop++;
388
goto drop;
389
}
390
}
391
392
enqueue:
393
ret = qdisc_enqueue(skb, child);
394
if (likely(ret == NET_XMIT_SUCCESS)) {
395
sch->q.qlen++;
396
increment_qlen(skb, q);
397
} else if (net_xmit_drop_count(ret)) {
398
q->stats.childdrop++;
399
sch->qstats.drops++;
400
}
401
return ret;
402
403
drop:
404
qdisc_drop(skb, sch);
405
return NET_XMIT_CN;
406
other_drop:
407
if (ret & __NET_XMIT_BYPASS)
408
sch->qstats.drops++;
409
kfree_skb(skb);
410
return ret;
411
}
412
413
static struct sk_buff *sfb_dequeue(struct Qdisc *sch)
414
{
415
struct sfb_sched_data *q = qdisc_priv(sch);
416
struct Qdisc *child = q->qdisc;
417
struct sk_buff *skb;
418
419
skb = child->dequeue(q->qdisc);
420
421
if (skb) {
422
qdisc_bstats_update(sch, skb);
423
sch->q.qlen--;
424
decrement_qlen(skb, q);
425
}
426
427
return skb;
428
}
429
430
static struct sk_buff *sfb_peek(struct Qdisc *sch)
431
{
432
struct sfb_sched_data *q = qdisc_priv(sch);
433
struct Qdisc *child = q->qdisc;
434
435
return child->ops->peek(child);
436
}
437
438
/* No sfb_drop -- impossible since the child doesn't return the dropped skb. */
439
440
static void sfb_reset(struct Qdisc *sch)
441
{
442
struct sfb_sched_data *q = qdisc_priv(sch);
443
444
qdisc_reset(q->qdisc);
445
sch->q.qlen = 0;
446
q->slot = 0;
447
q->double_buffering = false;
448
sfb_zero_all_buckets(q);
449
sfb_init_perturbation(0, q);
450
}
451
452
static void sfb_destroy(struct Qdisc *sch)
453
{
454
struct sfb_sched_data *q = qdisc_priv(sch);
455
456
tcf_destroy_chain(&q->filter_list);
457
qdisc_destroy(q->qdisc);
458
}
459
460
static const struct nla_policy sfb_policy[TCA_SFB_MAX + 1] = {
461
[TCA_SFB_PARMS] = { .len = sizeof(struct tc_sfb_qopt) },
462
};
463
464
static const struct tc_sfb_qopt sfb_default_ops = {
465
.rehash_interval = 600 * MSEC_PER_SEC,
466
.warmup_time = 60 * MSEC_PER_SEC,
467
.limit = 0,
468
.max = 25,
469
.bin_size = 20,
470
.increment = (SFB_MAX_PROB + 500) / 1000, /* 0.1 % */
471
.decrement = (SFB_MAX_PROB + 3000) / 6000,
472
.penalty_rate = 10,
473
.penalty_burst = 20,
474
};
475
476
static int sfb_change(struct Qdisc *sch, struct nlattr *opt)
477
{
478
struct sfb_sched_data *q = qdisc_priv(sch);
479
struct Qdisc *child;
480
struct nlattr *tb[TCA_SFB_MAX + 1];
481
const struct tc_sfb_qopt *ctl = &sfb_default_ops;
482
u32 limit;
483
int err;
484
485
if (opt) {
486
err = nla_parse_nested(tb, TCA_SFB_MAX, opt, sfb_policy);
487
if (err < 0)
488
return -EINVAL;
489
490
if (tb[TCA_SFB_PARMS] == NULL)
491
return -EINVAL;
492
493
ctl = nla_data(tb[TCA_SFB_PARMS]);
494
}
495
496
limit = ctl->limit;
497
if (limit == 0)
498
limit = max_t(u32, qdisc_dev(sch)->tx_queue_len, 1);
499
500
child = fifo_create_dflt(sch, &pfifo_qdisc_ops, limit);
501
if (IS_ERR(child))
502
return PTR_ERR(child);
503
504
sch_tree_lock(sch);
505
506
qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
507
qdisc_destroy(q->qdisc);
508
q->qdisc = child;
509
510
q->rehash_interval = msecs_to_jiffies(ctl->rehash_interval);
511
q->warmup_time = msecs_to_jiffies(ctl->warmup_time);
512
q->rehash_time = jiffies;
513
q->limit = limit;
514
q->increment = ctl->increment;
515
q->decrement = ctl->decrement;
516
q->max = ctl->max;
517
q->bin_size = ctl->bin_size;
518
q->penalty_rate = ctl->penalty_rate;
519
q->penalty_burst = ctl->penalty_burst;
520
q->tokens_avail = ctl->penalty_burst;
521
q->token_time = jiffies;
522
523
q->slot = 0;
524
q->double_buffering = false;
525
sfb_zero_all_buckets(q);
526
sfb_init_perturbation(0, q);
527
sfb_init_perturbation(1, q);
528
529
sch_tree_unlock(sch);
530
531
return 0;
532
}
533
534
static int sfb_init(struct Qdisc *sch, struct nlattr *opt)
535
{
536
struct sfb_sched_data *q = qdisc_priv(sch);
537
538
q->qdisc = &noop_qdisc;
539
return sfb_change(sch, opt);
540
}
541
542
static int sfb_dump(struct Qdisc *sch, struct sk_buff *skb)
543
{
544
struct sfb_sched_data *q = qdisc_priv(sch);
545
struct nlattr *opts;
546
struct tc_sfb_qopt opt = {
547
.rehash_interval = jiffies_to_msecs(q->rehash_interval),
548
.warmup_time = jiffies_to_msecs(q->warmup_time),
549
.limit = q->limit,
550
.max = q->max,
551
.bin_size = q->bin_size,
552
.increment = q->increment,
553
.decrement = q->decrement,
554
.penalty_rate = q->penalty_rate,
555
.penalty_burst = q->penalty_burst,
556
};
557
558
sch->qstats.backlog = q->qdisc->qstats.backlog;
559
opts = nla_nest_start(skb, TCA_OPTIONS);
560
NLA_PUT(skb, TCA_SFB_PARMS, sizeof(opt), &opt);
561
return nla_nest_end(skb, opts);
562
563
nla_put_failure:
564
nla_nest_cancel(skb, opts);
565
return -EMSGSIZE;
566
}
567
568
static int sfb_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
569
{
570
struct sfb_sched_data *q = qdisc_priv(sch);
571
struct tc_sfb_xstats st = {
572
.earlydrop = q->stats.earlydrop,
573
.penaltydrop = q->stats.penaltydrop,
574
.bucketdrop = q->stats.bucketdrop,
575
.queuedrop = q->stats.queuedrop,
576
.childdrop = q->stats.childdrop,
577
.marked = q->stats.marked,
578
};
579
580
st.maxqlen = sfb_compute_qlen(&st.maxprob, &st.avgprob, q);
581
582
return gnet_stats_copy_app(d, &st, sizeof(st));
583
}
584
585
static int sfb_dump_class(struct Qdisc *sch, unsigned long cl,
586
struct sk_buff *skb, struct tcmsg *tcm)
587
{
588
return -ENOSYS;
589
}
590
591
static int sfb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
592
struct Qdisc **old)
593
{
594
struct sfb_sched_data *q = qdisc_priv(sch);
595
596
if (new == NULL)
597
new = &noop_qdisc;
598
599
sch_tree_lock(sch);
600
*old = q->qdisc;
601
q->qdisc = new;
602
qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
603
qdisc_reset(*old);
604
sch_tree_unlock(sch);
605
return 0;
606
}
607
608
static struct Qdisc *sfb_leaf(struct Qdisc *sch, unsigned long arg)
609
{
610
struct sfb_sched_data *q = qdisc_priv(sch);
611
612
return q->qdisc;
613
}
614
615
static unsigned long sfb_get(struct Qdisc *sch, u32 classid)
616
{
617
return 1;
618
}
619
620
static void sfb_put(struct Qdisc *sch, unsigned long arg)
621
{
622
}
623
624
static int sfb_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
625
struct nlattr **tca, unsigned long *arg)
626
{
627
return -ENOSYS;
628
}
629
630
static int sfb_delete(struct Qdisc *sch, unsigned long cl)
631
{
632
return -ENOSYS;
633
}
634
635
static void sfb_walk(struct Qdisc *sch, struct qdisc_walker *walker)
636
{
637
if (!walker->stop) {
638
if (walker->count >= walker->skip)
639
if (walker->fn(sch, 1, walker) < 0) {
640
walker->stop = 1;
641
return;
642
}
643
walker->count++;
644
}
645
}
646
647
static struct tcf_proto **sfb_find_tcf(struct Qdisc *sch, unsigned long cl)
648
{
649
struct sfb_sched_data *q = qdisc_priv(sch);
650
651
if (cl)
652
return NULL;
653
return &q->filter_list;
654
}
655
656
static unsigned long sfb_bind(struct Qdisc *sch, unsigned long parent,
657
u32 classid)
658
{
659
return 0;
660
}
661
662
663
static const struct Qdisc_class_ops sfb_class_ops = {
664
.graft = sfb_graft,
665
.leaf = sfb_leaf,
666
.get = sfb_get,
667
.put = sfb_put,
668
.change = sfb_change_class,
669
.delete = sfb_delete,
670
.walk = sfb_walk,
671
.tcf_chain = sfb_find_tcf,
672
.bind_tcf = sfb_bind,
673
.unbind_tcf = sfb_put,
674
.dump = sfb_dump_class,
675
};
676
677
static struct Qdisc_ops sfb_qdisc_ops __read_mostly = {
678
.id = "sfb",
679
.priv_size = sizeof(struct sfb_sched_data),
680
.cl_ops = &sfb_class_ops,
681
.enqueue = sfb_enqueue,
682
.dequeue = sfb_dequeue,
683
.peek = sfb_peek,
684
.init = sfb_init,
685
.reset = sfb_reset,
686
.destroy = sfb_destroy,
687
.change = sfb_change,
688
.dump = sfb_dump,
689
.dump_stats = sfb_dump_stats,
690
.owner = THIS_MODULE,
691
};
692
693
static int __init sfb_module_init(void)
694
{
695
return register_qdisc(&sfb_qdisc_ops);
696
}
697
698
static void __exit sfb_module_exit(void)
699
{
700
unregister_qdisc(&sfb_qdisc_ops);
701
}
702
703
module_init(sfb_module_init)
704
module_exit(sfb_module_exit)
705
706
MODULE_DESCRIPTION("Stochastic Fair Blue queue discipline");
707
MODULE_AUTHOR("Juliusz Chroboczek");
708
MODULE_AUTHOR("Eric Dumazet");
709
MODULE_LICENSE("GPL");
710
711