Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/sctp/associola.c
15109 views
1
/* SCTP kernel implementation
2
* (C) Copyright IBM Corp. 2001, 2004
3
* Copyright (c) 1999-2000 Cisco, Inc.
4
* Copyright (c) 1999-2001 Motorola, Inc.
5
* Copyright (c) 2001 Intel Corp.
6
* Copyright (c) 2001 La Monte H.P. Yarroll
7
*
8
* This file is part of the SCTP kernel implementation
9
*
10
* This module provides the abstraction for an SCTP association.
11
*
12
* This SCTP implementation is free software;
13
* you can redistribute it and/or modify it under the terms of
14
* the GNU General Public License as published by
15
* the Free Software Foundation; either version 2, or (at your option)
16
* any later version.
17
*
18
* This SCTP implementation is distributed in the hope that it
19
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
20
* ************************
21
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22
* See the GNU General Public License for more details.
23
*
24
* You should have received a copy of the GNU General Public License
25
* along with GNU CC; see the file COPYING. If not, write to
26
* the Free Software Foundation, 59 Temple Place - Suite 330,
27
* Boston, MA 02111-1307, USA.
28
*
29
* Please send any bug reports or fixes you make to the
30
* email address(es):
31
* lksctp developers <[email protected]>
32
*
33
* Or submit a bug report through the following website:
34
* http://www.sf.net/projects/lksctp
35
*
36
* Written or modified by:
37
* La Monte H.P. Yarroll <[email protected]>
38
* Karl Knutson <[email protected]>
39
* Jon Grimm <[email protected]>
40
* Xingang Guo <[email protected]>
41
* Hui Huang <[email protected]>
42
* Sridhar Samudrala <[email protected]>
43
* Daisy Chang <[email protected]>
44
* Ryan Layer <[email protected]>
45
* Kevin Gao <[email protected]>
46
*
47
* Any bugs reported given to us we will try to fix... any fixes shared will
48
* be incorporated into the next SCTP release.
49
*/
50
51
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52
53
#include <linux/types.h>
54
#include <linux/fcntl.h>
55
#include <linux/poll.h>
56
#include <linux/init.h>
57
58
#include <linux/slab.h>
59
#include <linux/in.h>
60
#include <net/ipv6.h>
61
#include <net/sctp/sctp.h>
62
#include <net/sctp/sm.h>
63
64
/* Forward declarations for internal functions. */
65
static void sctp_assoc_bh_rcv(struct work_struct *work);
66
static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67
static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
68
69
/* Keep track of the new idr low so that we don't re-use association id
70
* numbers too fast. It is protected by they idr spin lock is in the
71
* range of 1 - INT_MAX.
72
*/
73
static u32 idr_low = 1;
74
75
76
/* 1st Level Abstractions. */
77
78
/* Initialize a new association from provided memory. */
79
static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
80
const struct sctp_endpoint *ep,
81
const struct sock *sk,
82
sctp_scope_t scope,
83
gfp_t gfp)
84
{
85
struct sctp_sock *sp;
86
int i;
87
sctp_paramhdr_t *p;
88
int err;
89
90
/* Retrieve the SCTP per socket area. */
91
sp = sctp_sk((struct sock *)sk);
92
93
/* Discarding const is appropriate here. */
94
asoc->ep = (struct sctp_endpoint *)ep;
95
sctp_endpoint_hold(asoc->ep);
96
97
/* Hold the sock. */
98
asoc->base.sk = (struct sock *)sk;
99
sock_hold(asoc->base.sk);
100
101
/* Initialize the common base substructure. */
102
asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
103
104
/* Initialize the object handling fields. */
105
atomic_set(&asoc->base.refcnt, 1);
106
asoc->base.dead = 0;
107
asoc->base.malloced = 0;
108
109
/* Initialize the bind addr area. */
110
sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
111
112
asoc->state = SCTP_STATE_CLOSED;
113
114
/* Set these values from the socket values, a conversion between
115
* millsecons to seconds/microseconds must also be done.
116
*/
117
asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
118
asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
119
* 1000;
120
asoc->frag_point = 0;
121
asoc->user_frag = sp->user_frag;
122
123
/* Set the association max_retrans and RTO values from the
124
* socket values.
125
*/
126
asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
127
asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
128
asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
129
asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
130
131
asoc->overall_error_count = 0;
132
133
/* Initialize the association's heartbeat interval based on the
134
* sock configured value.
135
*/
136
asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
137
138
/* Initialize path max retrans value. */
139
asoc->pathmaxrxt = sp->pathmaxrxt;
140
141
/* Initialize default path MTU. */
142
asoc->pathmtu = sp->pathmtu;
143
144
/* Set association default SACK delay */
145
asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
146
asoc->sackfreq = sp->sackfreq;
147
148
/* Set the association default flags controlling
149
* Heartbeat, SACK delay, and Path MTU Discovery.
150
*/
151
asoc->param_flags = sp->param_flags;
152
153
/* Initialize the maximum mumber of new data packets that can be sent
154
* in a burst.
155
*/
156
asoc->max_burst = sp->max_burst;
157
158
/* initialize association timers */
159
asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
160
asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
161
asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
162
asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
163
asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
164
asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
165
166
/* sctpimpguide Section 2.12.2
167
* If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
168
* recommended value of 5 times 'RTO.Max'.
169
*/
170
asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
171
= 5 * asoc->rto_max;
172
173
asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
174
asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
175
asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
176
(unsigned long)sp->autoclose * HZ;
177
178
/* Initializes the timers */
179
for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
180
setup_timer(&asoc->timers[i], sctp_timer_events[i],
181
(unsigned long)asoc);
182
183
/* Pull default initialization values from the sock options.
184
* Note: This assumes that the values have already been
185
* validated in the sock.
186
*/
187
asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
188
asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
189
asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
190
191
asoc->max_init_timeo =
192
msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
193
194
/* Allocate storage for the ssnmap after the inbound and outbound
195
* streams have been negotiated during Init.
196
*/
197
asoc->ssnmap = NULL;
198
199
/* Set the local window size for receive.
200
* This is also the rcvbuf space per association.
201
* RFC 6 - A SCTP receiver MUST be able to receive a minimum of
202
* 1500 bytes in one SCTP packet.
203
*/
204
if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
205
asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
206
else
207
asoc->rwnd = sk->sk_rcvbuf/2;
208
209
asoc->a_rwnd = asoc->rwnd;
210
211
asoc->rwnd_over = 0;
212
asoc->rwnd_press = 0;
213
214
/* Use my own max window until I learn something better. */
215
asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
216
217
/* Set the sndbuf size for transmit. */
218
asoc->sndbuf_used = 0;
219
220
/* Initialize the receive memory counter */
221
atomic_set(&asoc->rmem_alloc, 0);
222
223
init_waitqueue_head(&asoc->wait);
224
225
asoc->c.my_vtag = sctp_generate_tag(ep);
226
asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
227
asoc->c.peer_vtag = 0;
228
asoc->c.my_ttag = 0;
229
asoc->c.peer_ttag = 0;
230
asoc->c.my_port = ep->base.bind_addr.port;
231
232
asoc->c.initial_tsn = sctp_generate_tsn(ep);
233
234
asoc->next_tsn = asoc->c.initial_tsn;
235
236
asoc->ctsn_ack_point = asoc->next_tsn - 1;
237
asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
238
asoc->highest_sacked = asoc->ctsn_ack_point;
239
asoc->last_cwr_tsn = asoc->ctsn_ack_point;
240
asoc->unack_data = 0;
241
242
/* ADDIP Section 4.1 Asconf Chunk Procedures
243
*
244
* When an endpoint has an ASCONF signaled change to be sent to the
245
* remote endpoint it should do the following:
246
* ...
247
* A2) a serial number should be assigned to the chunk. The serial
248
* number SHOULD be a monotonically increasing number. The serial
249
* numbers SHOULD be initialized at the start of the
250
* association to the same value as the initial TSN.
251
*/
252
asoc->addip_serial = asoc->c.initial_tsn;
253
254
INIT_LIST_HEAD(&asoc->addip_chunk_list);
255
INIT_LIST_HEAD(&asoc->asconf_ack_list);
256
257
/* Make an empty list of remote transport addresses. */
258
INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
259
asoc->peer.transport_count = 0;
260
261
/* RFC 2960 5.1 Normal Establishment of an Association
262
*
263
* After the reception of the first data chunk in an
264
* association the endpoint must immediately respond with a
265
* sack to acknowledge the data chunk. Subsequent
266
* acknowledgements should be done as described in Section
267
* 6.2.
268
*
269
* [We implement this by telling a new association that it
270
* already received one packet.]
271
*/
272
asoc->peer.sack_needed = 1;
273
asoc->peer.sack_cnt = 0;
274
275
/* Assume that the peer will tell us if he recognizes ASCONF
276
* as part of INIT exchange.
277
* The sctp_addip_noauth option is there for backward compatibilty
278
* and will revert old behavior.
279
*/
280
asoc->peer.asconf_capable = 0;
281
if (sctp_addip_noauth)
282
asoc->peer.asconf_capable = 1;
283
284
/* Create an input queue. */
285
sctp_inq_init(&asoc->base.inqueue);
286
sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
287
288
/* Create an output queue. */
289
sctp_outq_init(asoc, &asoc->outqueue);
290
291
if (!sctp_ulpq_init(&asoc->ulpq, asoc))
292
goto fail_init;
293
294
memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
295
296
asoc->need_ecne = 0;
297
298
asoc->assoc_id = 0;
299
300
/* Assume that peer would support both address types unless we are
301
* told otherwise.
302
*/
303
asoc->peer.ipv4_address = 1;
304
if (asoc->base.sk->sk_family == PF_INET6)
305
asoc->peer.ipv6_address = 1;
306
INIT_LIST_HEAD(&asoc->asocs);
307
308
asoc->autoclose = sp->autoclose;
309
310
asoc->default_stream = sp->default_stream;
311
asoc->default_ppid = sp->default_ppid;
312
asoc->default_flags = sp->default_flags;
313
asoc->default_context = sp->default_context;
314
asoc->default_timetolive = sp->default_timetolive;
315
asoc->default_rcv_context = sp->default_rcv_context;
316
317
/* AUTH related initializations */
318
INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
319
err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
320
if (err)
321
goto fail_init;
322
323
asoc->active_key_id = ep->active_key_id;
324
asoc->asoc_shared_key = NULL;
325
326
asoc->default_hmac_id = 0;
327
/* Save the hmacs and chunks list into this association */
328
if (ep->auth_hmacs_list)
329
memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
330
ntohs(ep->auth_hmacs_list->param_hdr.length));
331
if (ep->auth_chunk_list)
332
memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
333
ntohs(ep->auth_chunk_list->param_hdr.length));
334
335
/* Get the AUTH random number for this association */
336
p = (sctp_paramhdr_t *)asoc->c.auth_random;
337
p->type = SCTP_PARAM_RANDOM;
338
p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
339
get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
340
341
return asoc;
342
343
fail_init:
344
sctp_endpoint_put(asoc->ep);
345
sock_put(asoc->base.sk);
346
return NULL;
347
}
348
349
/* Allocate and initialize a new association */
350
struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
351
const struct sock *sk,
352
sctp_scope_t scope,
353
gfp_t gfp)
354
{
355
struct sctp_association *asoc;
356
357
asoc = t_new(struct sctp_association, gfp);
358
if (!asoc)
359
goto fail;
360
361
if (!sctp_association_init(asoc, ep, sk, scope, gfp))
362
goto fail_init;
363
364
asoc->base.malloced = 1;
365
SCTP_DBG_OBJCNT_INC(assoc);
366
SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
367
368
return asoc;
369
370
fail_init:
371
kfree(asoc);
372
fail:
373
return NULL;
374
}
375
376
/* Free this association if possible. There may still be users, so
377
* the actual deallocation may be delayed.
378
*/
379
void sctp_association_free(struct sctp_association *asoc)
380
{
381
struct sock *sk = asoc->base.sk;
382
struct sctp_transport *transport;
383
struct list_head *pos, *temp;
384
int i;
385
386
/* Only real associations count against the endpoint, so
387
* don't bother for if this is a temporary association.
388
*/
389
if (!asoc->temp) {
390
list_del(&asoc->asocs);
391
392
/* Decrement the backlog value for a TCP-style listening
393
* socket.
394
*/
395
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
396
sk->sk_ack_backlog--;
397
}
398
399
/* Mark as dead, so other users can know this structure is
400
* going away.
401
*/
402
asoc->base.dead = 1;
403
404
/* Dispose of any data lying around in the outqueue. */
405
sctp_outq_free(&asoc->outqueue);
406
407
/* Dispose of any pending messages for the upper layer. */
408
sctp_ulpq_free(&asoc->ulpq);
409
410
/* Dispose of any pending chunks on the inqueue. */
411
sctp_inq_free(&asoc->base.inqueue);
412
413
sctp_tsnmap_free(&asoc->peer.tsn_map);
414
415
/* Free ssnmap storage. */
416
sctp_ssnmap_free(asoc->ssnmap);
417
418
/* Clean up the bound address list. */
419
sctp_bind_addr_free(&asoc->base.bind_addr);
420
421
/* Do we need to go through all of our timers and
422
* delete them? To be safe we will try to delete all, but we
423
* should be able to go through and make a guess based
424
* on our state.
425
*/
426
for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
427
if (timer_pending(&asoc->timers[i]) &&
428
del_timer(&asoc->timers[i]))
429
sctp_association_put(asoc);
430
}
431
432
/* Free peer's cached cookie. */
433
kfree(asoc->peer.cookie);
434
kfree(asoc->peer.peer_random);
435
kfree(asoc->peer.peer_chunks);
436
kfree(asoc->peer.peer_hmacs);
437
438
/* Release the transport structures. */
439
list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
440
transport = list_entry(pos, struct sctp_transport, transports);
441
list_del(pos);
442
sctp_transport_free(transport);
443
}
444
445
asoc->peer.transport_count = 0;
446
447
sctp_asconf_queue_teardown(asoc);
448
449
/* AUTH - Free the endpoint shared keys */
450
sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
451
452
/* AUTH - Free the association shared key */
453
sctp_auth_key_put(asoc->asoc_shared_key);
454
455
sctp_association_put(asoc);
456
}
457
458
/* Cleanup and free up an association. */
459
static void sctp_association_destroy(struct sctp_association *asoc)
460
{
461
SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
462
463
sctp_endpoint_put(asoc->ep);
464
sock_put(asoc->base.sk);
465
466
if (asoc->assoc_id != 0) {
467
spin_lock_bh(&sctp_assocs_id_lock);
468
idr_remove(&sctp_assocs_id, asoc->assoc_id);
469
spin_unlock_bh(&sctp_assocs_id_lock);
470
}
471
472
WARN_ON(atomic_read(&asoc->rmem_alloc));
473
474
if (asoc->base.malloced) {
475
kfree(asoc);
476
SCTP_DBG_OBJCNT_DEC(assoc);
477
}
478
}
479
480
/* Change the primary destination address for the peer. */
481
void sctp_assoc_set_primary(struct sctp_association *asoc,
482
struct sctp_transport *transport)
483
{
484
int changeover = 0;
485
486
/* it's a changeover only if we already have a primary path
487
* that we are changing
488
*/
489
if (asoc->peer.primary_path != NULL &&
490
asoc->peer.primary_path != transport)
491
changeover = 1 ;
492
493
asoc->peer.primary_path = transport;
494
495
/* Set a default msg_name for events. */
496
memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
497
sizeof(union sctp_addr));
498
499
/* If the primary path is changing, assume that the
500
* user wants to use this new path.
501
*/
502
if ((transport->state == SCTP_ACTIVE) ||
503
(transport->state == SCTP_UNKNOWN))
504
asoc->peer.active_path = transport;
505
506
/*
507
* SFR-CACC algorithm:
508
* Upon the receipt of a request to change the primary
509
* destination address, on the data structure for the new
510
* primary destination, the sender MUST do the following:
511
*
512
* 1) If CHANGEOVER_ACTIVE is set, then there was a switch
513
* to this destination address earlier. The sender MUST set
514
* CYCLING_CHANGEOVER to indicate that this switch is a
515
* double switch to the same destination address.
516
*
517
* Really, only bother is we have data queued or outstanding on
518
* the association.
519
*/
520
if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
521
return;
522
523
if (transport->cacc.changeover_active)
524
transport->cacc.cycling_changeover = changeover;
525
526
/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
527
* a changeover has occurred.
528
*/
529
transport->cacc.changeover_active = changeover;
530
531
/* 3) The sender MUST store the next TSN to be sent in
532
* next_tsn_at_change.
533
*/
534
transport->cacc.next_tsn_at_change = asoc->next_tsn;
535
}
536
537
/* Remove a transport from an association. */
538
void sctp_assoc_rm_peer(struct sctp_association *asoc,
539
struct sctp_transport *peer)
540
{
541
struct list_head *pos;
542
struct sctp_transport *transport;
543
544
SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
545
" port: %d\n",
546
asoc,
547
(&peer->ipaddr),
548
ntohs(peer->ipaddr.v4.sin_port));
549
550
/* If we are to remove the current retran_path, update it
551
* to the next peer before removing this peer from the list.
552
*/
553
if (asoc->peer.retran_path == peer)
554
sctp_assoc_update_retran_path(asoc);
555
556
/* Remove this peer from the list. */
557
list_del(&peer->transports);
558
559
/* Get the first transport of asoc. */
560
pos = asoc->peer.transport_addr_list.next;
561
transport = list_entry(pos, struct sctp_transport, transports);
562
563
/* Update any entries that match the peer to be deleted. */
564
if (asoc->peer.primary_path == peer)
565
sctp_assoc_set_primary(asoc, transport);
566
if (asoc->peer.active_path == peer)
567
asoc->peer.active_path = transport;
568
if (asoc->peer.retran_path == peer)
569
asoc->peer.retran_path = transport;
570
if (asoc->peer.last_data_from == peer)
571
asoc->peer.last_data_from = transport;
572
573
/* If we remove the transport an INIT was last sent to, set it to
574
* NULL. Combined with the update of the retran path above, this
575
* will cause the next INIT to be sent to the next available
576
* transport, maintaining the cycle.
577
*/
578
if (asoc->init_last_sent_to == peer)
579
asoc->init_last_sent_to = NULL;
580
581
/* If we remove the transport an SHUTDOWN was last sent to, set it
582
* to NULL. Combined with the update of the retran path above, this
583
* will cause the next SHUTDOWN to be sent to the next available
584
* transport, maintaining the cycle.
585
*/
586
if (asoc->shutdown_last_sent_to == peer)
587
asoc->shutdown_last_sent_to = NULL;
588
589
/* If we remove the transport an ASCONF was last sent to, set it to
590
* NULL.
591
*/
592
if (asoc->addip_last_asconf &&
593
asoc->addip_last_asconf->transport == peer)
594
asoc->addip_last_asconf->transport = NULL;
595
596
/* If we have something on the transmitted list, we have to
597
* save it off. The best place is the active path.
598
*/
599
if (!list_empty(&peer->transmitted)) {
600
struct sctp_transport *active = asoc->peer.active_path;
601
struct sctp_chunk *ch;
602
603
/* Reset the transport of each chunk on this list */
604
list_for_each_entry(ch, &peer->transmitted,
605
transmitted_list) {
606
ch->transport = NULL;
607
ch->rtt_in_progress = 0;
608
}
609
610
list_splice_tail_init(&peer->transmitted,
611
&active->transmitted);
612
613
/* Start a T3 timer here in case it wasn't running so
614
* that these migrated packets have a chance to get
615
* retrnasmitted.
616
*/
617
if (!timer_pending(&active->T3_rtx_timer))
618
if (!mod_timer(&active->T3_rtx_timer,
619
jiffies + active->rto))
620
sctp_transport_hold(active);
621
}
622
623
asoc->peer.transport_count--;
624
625
sctp_transport_free(peer);
626
}
627
628
/* Add a transport address to an association. */
629
struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
630
const union sctp_addr *addr,
631
const gfp_t gfp,
632
const int peer_state)
633
{
634
struct sctp_transport *peer;
635
struct sctp_sock *sp;
636
unsigned short port;
637
638
sp = sctp_sk(asoc->base.sk);
639
640
/* AF_INET and AF_INET6 share common port field. */
641
port = ntohs(addr->v4.sin_port);
642
643
SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
644
" port: %d state:%d\n",
645
asoc,
646
addr,
647
port,
648
peer_state);
649
650
/* Set the port if it has not been set yet. */
651
if (0 == asoc->peer.port)
652
asoc->peer.port = port;
653
654
/* Check to see if this is a duplicate. */
655
peer = sctp_assoc_lookup_paddr(asoc, addr);
656
if (peer) {
657
/* An UNKNOWN state is only set on transports added by
658
* user in sctp_connectx() call. Such transports should be
659
* considered CONFIRMED per RFC 4960, Section 5.4.
660
*/
661
if (peer->state == SCTP_UNKNOWN) {
662
peer->state = SCTP_ACTIVE;
663
}
664
return peer;
665
}
666
667
peer = sctp_transport_new(addr, gfp);
668
if (!peer)
669
return NULL;
670
671
sctp_transport_set_owner(peer, asoc);
672
673
/* Initialize the peer's heartbeat interval based on the
674
* association configured value.
675
*/
676
peer->hbinterval = asoc->hbinterval;
677
678
/* Set the path max_retrans. */
679
peer->pathmaxrxt = asoc->pathmaxrxt;
680
681
/* Initialize the peer's SACK delay timeout based on the
682
* association configured value.
683
*/
684
peer->sackdelay = asoc->sackdelay;
685
peer->sackfreq = asoc->sackfreq;
686
687
/* Enable/disable heartbeat, SACK delay, and path MTU discovery
688
* based on association setting.
689
*/
690
peer->param_flags = asoc->param_flags;
691
692
sctp_transport_route(peer, NULL, sp);
693
694
/* Initialize the pmtu of the transport. */
695
if (peer->param_flags & SPP_PMTUD_DISABLE) {
696
if (asoc->pathmtu)
697
peer->pathmtu = asoc->pathmtu;
698
else
699
peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
700
}
701
702
/* If this is the first transport addr on this association,
703
* initialize the association PMTU to the peer's PMTU.
704
* If not and the current association PMTU is higher than the new
705
* peer's PMTU, reset the association PMTU to the new peer's PMTU.
706
*/
707
if (asoc->pathmtu)
708
asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
709
else
710
asoc->pathmtu = peer->pathmtu;
711
712
SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
713
"%d\n", asoc, asoc->pathmtu);
714
peer->pmtu_pending = 0;
715
716
asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
717
718
/* The asoc->peer.port might not be meaningful yet, but
719
* initialize the packet structure anyway.
720
*/
721
sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
722
asoc->peer.port);
723
724
/* 7.2.1 Slow-Start
725
*
726
* o The initial cwnd before DATA transmission or after a sufficiently
727
* long idle period MUST be set to
728
* min(4*MTU, max(2*MTU, 4380 bytes))
729
*
730
* o The initial value of ssthresh MAY be arbitrarily high
731
* (for example, implementations MAY use the size of the
732
* receiver advertised window).
733
*/
734
peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
735
736
/* At this point, we may not have the receiver's advertised window,
737
* so initialize ssthresh to the default value and it will be set
738
* later when we process the INIT.
739
*/
740
peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
741
742
peer->partial_bytes_acked = 0;
743
peer->flight_size = 0;
744
peer->burst_limited = 0;
745
746
/* Set the transport's RTO.initial value */
747
peer->rto = asoc->rto_initial;
748
749
/* Set the peer's active state. */
750
peer->state = peer_state;
751
752
/* Attach the remote transport to our asoc. */
753
list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
754
asoc->peer.transport_count++;
755
756
/* If we do not yet have a primary path, set one. */
757
if (!asoc->peer.primary_path) {
758
sctp_assoc_set_primary(asoc, peer);
759
asoc->peer.retran_path = peer;
760
}
761
762
if (asoc->peer.active_path == asoc->peer.retran_path &&
763
peer->state != SCTP_UNCONFIRMED) {
764
asoc->peer.retran_path = peer;
765
}
766
767
return peer;
768
}
769
770
/* Delete a transport address from an association. */
771
void sctp_assoc_del_peer(struct sctp_association *asoc,
772
const union sctp_addr *addr)
773
{
774
struct list_head *pos;
775
struct list_head *temp;
776
struct sctp_transport *transport;
777
778
list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
779
transport = list_entry(pos, struct sctp_transport, transports);
780
if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
781
/* Do book keeping for removing the peer and free it. */
782
sctp_assoc_rm_peer(asoc, transport);
783
break;
784
}
785
}
786
}
787
788
/* Lookup a transport by address. */
789
struct sctp_transport *sctp_assoc_lookup_paddr(
790
const struct sctp_association *asoc,
791
const union sctp_addr *address)
792
{
793
struct sctp_transport *t;
794
795
/* Cycle through all transports searching for a peer address. */
796
797
list_for_each_entry(t, &asoc->peer.transport_addr_list,
798
transports) {
799
if (sctp_cmp_addr_exact(address, &t->ipaddr))
800
return t;
801
}
802
803
return NULL;
804
}
805
806
/* Remove all transports except a give one */
807
void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
808
struct sctp_transport *primary)
809
{
810
struct sctp_transport *temp;
811
struct sctp_transport *t;
812
813
list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
814
transports) {
815
/* if the current transport is not the primary one, delete it */
816
if (t != primary)
817
sctp_assoc_rm_peer(asoc, t);
818
}
819
}
820
821
/* Engage in transport control operations.
822
* Mark the transport up or down and send a notification to the user.
823
* Select and update the new active and retran paths.
824
*/
825
void sctp_assoc_control_transport(struct sctp_association *asoc,
826
struct sctp_transport *transport,
827
sctp_transport_cmd_t command,
828
sctp_sn_error_t error)
829
{
830
struct sctp_transport *t = NULL;
831
struct sctp_transport *first;
832
struct sctp_transport *second;
833
struct sctp_ulpevent *event;
834
struct sockaddr_storage addr;
835
int spc_state = 0;
836
837
/* Record the transition on the transport. */
838
switch (command) {
839
case SCTP_TRANSPORT_UP:
840
/* If we are moving from UNCONFIRMED state due
841
* to heartbeat success, report the SCTP_ADDR_CONFIRMED
842
* state to the user, otherwise report SCTP_ADDR_AVAILABLE.
843
*/
844
if (SCTP_UNCONFIRMED == transport->state &&
845
SCTP_HEARTBEAT_SUCCESS == error)
846
spc_state = SCTP_ADDR_CONFIRMED;
847
else
848
spc_state = SCTP_ADDR_AVAILABLE;
849
transport->state = SCTP_ACTIVE;
850
break;
851
852
case SCTP_TRANSPORT_DOWN:
853
/* If the transport was never confirmed, do not transition it
854
* to inactive state. Also, release the cached route since
855
* there may be a better route next time.
856
*/
857
if (transport->state != SCTP_UNCONFIRMED)
858
transport->state = SCTP_INACTIVE;
859
else {
860
dst_release(transport->dst);
861
transport->dst = NULL;
862
}
863
864
spc_state = SCTP_ADDR_UNREACHABLE;
865
break;
866
867
default:
868
return;
869
}
870
871
/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
872
* user.
873
*/
874
memset(&addr, 0, sizeof(struct sockaddr_storage));
875
memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
876
event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
877
0, spc_state, error, GFP_ATOMIC);
878
if (event)
879
sctp_ulpq_tail_event(&asoc->ulpq, event);
880
881
/* Select new active and retran paths. */
882
883
/* Look for the two most recently used active transports.
884
*
885
* This code produces the wrong ordering whenever jiffies
886
* rolls over, but we still get usable transports, so we don't
887
* worry about it.
888
*/
889
first = NULL; second = NULL;
890
891
list_for_each_entry(t, &asoc->peer.transport_addr_list,
892
transports) {
893
894
if ((t->state == SCTP_INACTIVE) ||
895
(t->state == SCTP_UNCONFIRMED))
896
continue;
897
if (!first || t->last_time_heard > first->last_time_heard) {
898
second = first;
899
first = t;
900
}
901
if (!second || t->last_time_heard > second->last_time_heard)
902
second = t;
903
}
904
905
/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
906
*
907
* By default, an endpoint should always transmit to the
908
* primary path, unless the SCTP user explicitly specifies the
909
* destination transport address (and possibly source
910
* transport address) to use.
911
*
912
* [If the primary is active but not most recent, bump the most
913
* recently used transport.]
914
*/
915
if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
916
(asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
917
first != asoc->peer.primary_path) {
918
second = first;
919
first = asoc->peer.primary_path;
920
}
921
922
/* If we failed to find a usable transport, just camp on the
923
* primary, even if it is inactive.
924
*/
925
if (!first) {
926
first = asoc->peer.primary_path;
927
second = asoc->peer.primary_path;
928
}
929
930
/* Set the active and retran transports. */
931
asoc->peer.active_path = first;
932
asoc->peer.retran_path = second;
933
}
934
935
/* Hold a reference to an association. */
936
void sctp_association_hold(struct sctp_association *asoc)
937
{
938
atomic_inc(&asoc->base.refcnt);
939
}
940
941
/* Release a reference to an association and cleanup
942
* if there are no more references.
943
*/
944
void sctp_association_put(struct sctp_association *asoc)
945
{
946
if (atomic_dec_and_test(&asoc->base.refcnt))
947
sctp_association_destroy(asoc);
948
}
949
950
/* Allocate the next TSN, Transmission Sequence Number, for the given
951
* association.
952
*/
953
__u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
954
{
955
/* From Section 1.6 Serial Number Arithmetic:
956
* Transmission Sequence Numbers wrap around when they reach
957
* 2**32 - 1. That is, the next TSN a DATA chunk MUST use
958
* after transmitting TSN = 2*32 - 1 is TSN = 0.
959
*/
960
__u32 retval = asoc->next_tsn;
961
asoc->next_tsn++;
962
asoc->unack_data++;
963
964
return retval;
965
}
966
967
/* Compare two addresses to see if they match. Wildcard addresses
968
* only match themselves.
969
*/
970
int sctp_cmp_addr_exact(const union sctp_addr *ss1,
971
const union sctp_addr *ss2)
972
{
973
struct sctp_af *af;
974
975
af = sctp_get_af_specific(ss1->sa.sa_family);
976
if (unlikely(!af))
977
return 0;
978
979
return af->cmp_addr(ss1, ss2);
980
}
981
982
/* Return an ecne chunk to get prepended to a packet.
983
* Note: We are sly and return a shared, prealloced chunk. FIXME:
984
* No we don't, but we could/should.
985
*/
986
struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
987
{
988
struct sctp_chunk *chunk;
989
990
/* Send ECNE if needed.
991
* Not being able to allocate a chunk here is not deadly.
992
*/
993
if (asoc->need_ecne)
994
chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
995
else
996
chunk = NULL;
997
998
return chunk;
999
}
1000
1001
/*
1002
* Find which transport this TSN was sent on.
1003
*/
1004
struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1005
__u32 tsn)
1006
{
1007
struct sctp_transport *active;
1008
struct sctp_transport *match;
1009
struct sctp_transport *transport;
1010
struct sctp_chunk *chunk;
1011
__be32 key = htonl(tsn);
1012
1013
match = NULL;
1014
1015
/*
1016
* FIXME: In general, find a more efficient data structure for
1017
* searching.
1018
*/
1019
1020
/*
1021
* The general strategy is to search each transport's transmitted
1022
* list. Return which transport this TSN lives on.
1023
*
1024
* Let's be hopeful and check the active_path first.
1025
* Another optimization would be to know if there is only one
1026
* outbound path and not have to look for the TSN at all.
1027
*
1028
*/
1029
1030
active = asoc->peer.active_path;
1031
1032
list_for_each_entry(chunk, &active->transmitted,
1033
transmitted_list) {
1034
1035
if (key == chunk->subh.data_hdr->tsn) {
1036
match = active;
1037
goto out;
1038
}
1039
}
1040
1041
/* If not found, go search all the other transports. */
1042
list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1043
transports) {
1044
1045
if (transport == active)
1046
break;
1047
list_for_each_entry(chunk, &transport->transmitted,
1048
transmitted_list) {
1049
if (key == chunk->subh.data_hdr->tsn) {
1050
match = transport;
1051
goto out;
1052
}
1053
}
1054
}
1055
out:
1056
return match;
1057
}
1058
1059
/* Is this the association we are looking for? */
1060
struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1061
const union sctp_addr *laddr,
1062
const union sctp_addr *paddr)
1063
{
1064
struct sctp_transport *transport;
1065
1066
if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1067
(htons(asoc->peer.port) == paddr->v4.sin_port)) {
1068
transport = sctp_assoc_lookup_paddr(asoc, paddr);
1069
if (!transport)
1070
goto out;
1071
1072
if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1073
sctp_sk(asoc->base.sk)))
1074
goto out;
1075
}
1076
transport = NULL;
1077
1078
out:
1079
return transport;
1080
}
1081
1082
/* Do delayed input processing. This is scheduled by sctp_rcv(). */
1083
static void sctp_assoc_bh_rcv(struct work_struct *work)
1084
{
1085
struct sctp_association *asoc =
1086
container_of(work, struct sctp_association,
1087
base.inqueue.immediate);
1088
struct sctp_endpoint *ep;
1089
struct sctp_chunk *chunk;
1090
struct sctp_inq *inqueue;
1091
int state;
1092
sctp_subtype_t subtype;
1093
int error = 0;
1094
1095
/* The association should be held so we should be safe. */
1096
ep = asoc->ep;
1097
1098
inqueue = &asoc->base.inqueue;
1099
sctp_association_hold(asoc);
1100
while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1101
state = asoc->state;
1102
subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1103
1104
/* SCTP-AUTH, Section 6.3:
1105
* The receiver has a list of chunk types which it expects
1106
* to be received only after an AUTH-chunk. This list has
1107
* been sent to the peer during the association setup. It
1108
* MUST silently discard these chunks if they are not placed
1109
* after an AUTH chunk in the packet.
1110
*/
1111
if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1112
continue;
1113
1114
/* Remember where the last DATA chunk came from so we
1115
* know where to send the SACK.
1116
*/
1117
if (sctp_chunk_is_data(chunk))
1118
asoc->peer.last_data_from = chunk->transport;
1119
else
1120
SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
1121
1122
if (chunk->transport)
1123
chunk->transport->last_time_heard = jiffies;
1124
1125
/* Run through the state machine. */
1126
error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
1127
state, ep, asoc, chunk, GFP_ATOMIC);
1128
1129
/* Check to see if the association is freed in response to
1130
* the incoming chunk. If so, get out of the while loop.
1131
*/
1132
if (asoc->base.dead)
1133
break;
1134
1135
/* If there is an error on chunk, discard this packet. */
1136
if (error && chunk)
1137
chunk->pdiscard = 1;
1138
}
1139
sctp_association_put(asoc);
1140
}
1141
1142
/* This routine moves an association from its old sk to a new sk. */
1143
void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1144
{
1145
struct sctp_sock *newsp = sctp_sk(newsk);
1146
struct sock *oldsk = assoc->base.sk;
1147
1148
/* Delete the association from the old endpoint's list of
1149
* associations.
1150
*/
1151
list_del_init(&assoc->asocs);
1152
1153
/* Decrement the backlog value for a TCP-style socket. */
1154
if (sctp_style(oldsk, TCP))
1155
oldsk->sk_ack_backlog--;
1156
1157
/* Release references to the old endpoint and the sock. */
1158
sctp_endpoint_put(assoc->ep);
1159
sock_put(assoc->base.sk);
1160
1161
/* Get a reference to the new endpoint. */
1162
assoc->ep = newsp->ep;
1163
sctp_endpoint_hold(assoc->ep);
1164
1165
/* Get a reference to the new sock. */
1166
assoc->base.sk = newsk;
1167
sock_hold(assoc->base.sk);
1168
1169
/* Add the association to the new endpoint's list of associations. */
1170
sctp_endpoint_add_asoc(newsp->ep, assoc);
1171
}
1172
1173
/* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1174
void sctp_assoc_update(struct sctp_association *asoc,
1175
struct sctp_association *new)
1176
{
1177
struct sctp_transport *trans;
1178
struct list_head *pos, *temp;
1179
1180
/* Copy in new parameters of peer. */
1181
asoc->c = new->c;
1182
asoc->peer.rwnd = new->peer.rwnd;
1183
asoc->peer.sack_needed = new->peer.sack_needed;
1184
asoc->peer.i = new->peer.i;
1185
sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1186
asoc->peer.i.initial_tsn, GFP_ATOMIC);
1187
1188
/* Remove any peer addresses not present in the new association. */
1189
list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1190
trans = list_entry(pos, struct sctp_transport, transports);
1191
if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1192
sctp_assoc_rm_peer(asoc, trans);
1193
continue;
1194
}
1195
1196
if (asoc->state >= SCTP_STATE_ESTABLISHED)
1197
sctp_transport_reset(trans);
1198
}
1199
1200
/* If the case is A (association restart), use
1201
* initial_tsn as next_tsn. If the case is B, use
1202
* current next_tsn in case data sent to peer
1203
* has been discarded and needs retransmission.
1204
*/
1205
if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1206
asoc->next_tsn = new->next_tsn;
1207
asoc->ctsn_ack_point = new->ctsn_ack_point;
1208
asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1209
1210
/* Reinitialize SSN for both local streams
1211
* and peer's streams.
1212
*/
1213
sctp_ssnmap_clear(asoc->ssnmap);
1214
1215
/* Flush the ULP reassembly and ordered queue.
1216
* Any data there will now be stale and will
1217
* cause problems.
1218
*/
1219
sctp_ulpq_flush(&asoc->ulpq);
1220
1221
/* reset the overall association error count so
1222
* that the restarted association doesn't get torn
1223
* down on the next retransmission timer.
1224
*/
1225
asoc->overall_error_count = 0;
1226
1227
} else {
1228
/* Add any peer addresses from the new association. */
1229
list_for_each_entry(trans, &new->peer.transport_addr_list,
1230
transports) {
1231
if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1232
sctp_assoc_add_peer(asoc, &trans->ipaddr,
1233
GFP_ATOMIC, trans->state);
1234
}
1235
1236
asoc->ctsn_ack_point = asoc->next_tsn - 1;
1237
asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1238
if (!asoc->ssnmap) {
1239
/* Move the ssnmap. */
1240
asoc->ssnmap = new->ssnmap;
1241
new->ssnmap = NULL;
1242
}
1243
1244
if (!asoc->assoc_id) {
1245
/* get a new association id since we don't have one
1246
* yet.
1247
*/
1248
sctp_assoc_set_id(asoc, GFP_ATOMIC);
1249
}
1250
}
1251
1252
/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1253
* and also move the association shared keys over
1254
*/
1255
kfree(asoc->peer.peer_random);
1256
asoc->peer.peer_random = new->peer.peer_random;
1257
new->peer.peer_random = NULL;
1258
1259
kfree(asoc->peer.peer_chunks);
1260
asoc->peer.peer_chunks = new->peer.peer_chunks;
1261
new->peer.peer_chunks = NULL;
1262
1263
kfree(asoc->peer.peer_hmacs);
1264
asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1265
new->peer.peer_hmacs = NULL;
1266
1267
sctp_auth_key_put(asoc->asoc_shared_key);
1268
sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1269
}
1270
1271
/* Update the retran path for sending a retransmitted packet.
1272
* Round-robin through the active transports, else round-robin
1273
* through the inactive transports as this is the next best thing
1274
* we can try.
1275
*/
1276
void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1277
{
1278
struct sctp_transport *t, *next;
1279
struct list_head *head = &asoc->peer.transport_addr_list;
1280
struct list_head *pos;
1281
1282
if (asoc->peer.transport_count == 1)
1283
return;
1284
1285
/* Find the next transport in a round-robin fashion. */
1286
t = asoc->peer.retran_path;
1287
pos = &t->transports;
1288
next = NULL;
1289
1290
while (1) {
1291
/* Skip the head. */
1292
if (pos->next == head)
1293
pos = head->next;
1294
else
1295
pos = pos->next;
1296
1297
t = list_entry(pos, struct sctp_transport, transports);
1298
1299
/* We have exhausted the list, but didn't find any
1300
* other active transports. If so, use the next
1301
* transport.
1302
*/
1303
if (t == asoc->peer.retran_path) {
1304
t = next;
1305
break;
1306
}
1307
1308
/* Try to find an active transport. */
1309
1310
if ((t->state == SCTP_ACTIVE) ||
1311
(t->state == SCTP_UNKNOWN)) {
1312
break;
1313
} else {
1314
/* Keep track of the next transport in case
1315
* we don't find any active transport.
1316
*/
1317
if (t->state != SCTP_UNCONFIRMED && !next)
1318
next = t;
1319
}
1320
}
1321
1322
if (t)
1323
asoc->peer.retran_path = t;
1324
else
1325
t = asoc->peer.retran_path;
1326
1327
SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1328
" %p addr: ",
1329
" port: %d\n",
1330
asoc,
1331
(&t->ipaddr),
1332
ntohs(t->ipaddr.v4.sin_port));
1333
}
1334
1335
/* Choose the transport for sending retransmit packet. */
1336
struct sctp_transport *sctp_assoc_choose_alter_transport(
1337
struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1338
{
1339
/* If this is the first time packet is sent, use the active path,
1340
* else use the retran path. If the last packet was sent over the
1341
* retran path, update the retran path and use it.
1342
*/
1343
if (!last_sent_to)
1344
return asoc->peer.active_path;
1345
else {
1346
if (last_sent_to == asoc->peer.retran_path)
1347
sctp_assoc_update_retran_path(asoc);
1348
return asoc->peer.retran_path;
1349
}
1350
}
1351
1352
/* Update the association's pmtu and frag_point by going through all the
1353
* transports. This routine is called when a transport's PMTU has changed.
1354
*/
1355
void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1356
{
1357
struct sctp_transport *t;
1358
__u32 pmtu = 0;
1359
1360
if (!asoc)
1361
return;
1362
1363
/* Get the lowest pmtu of all the transports. */
1364
list_for_each_entry(t, &asoc->peer.transport_addr_list,
1365
transports) {
1366
if (t->pmtu_pending && t->dst) {
1367
sctp_transport_update_pmtu(t, dst_mtu(t->dst));
1368
t->pmtu_pending = 0;
1369
}
1370
if (!pmtu || (t->pathmtu < pmtu))
1371
pmtu = t->pathmtu;
1372
}
1373
1374
if (pmtu) {
1375
asoc->pathmtu = pmtu;
1376
asoc->frag_point = sctp_frag_point(asoc, pmtu);
1377
}
1378
1379
SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1380
__func__, asoc, asoc->pathmtu, asoc->frag_point);
1381
}
1382
1383
/* Should we send a SACK to update our peer? */
1384
static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1385
{
1386
switch (asoc->state) {
1387
case SCTP_STATE_ESTABLISHED:
1388
case SCTP_STATE_SHUTDOWN_PENDING:
1389
case SCTP_STATE_SHUTDOWN_RECEIVED:
1390
case SCTP_STATE_SHUTDOWN_SENT:
1391
if ((asoc->rwnd > asoc->a_rwnd) &&
1392
((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1393
(asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift),
1394
asoc->pathmtu)))
1395
return 1;
1396
break;
1397
default:
1398
break;
1399
}
1400
return 0;
1401
}
1402
1403
/* Increase asoc's rwnd by len and send any window update SACK if needed. */
1404
void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1405
{
1406
struct sctp_chunk *sack;
1407
struct timer_list *timer;
1408
1409
if (asoc->rwnd_over) {
1410
if (asoc->rwnd_over >= len) {
1411
asoc->rwnd_over -= len;
1412
} else {
1413
asoc->rwnd += (len - asoc->rwnd_over);
1414
asoc->rwnd_over = 0;
1415
}
1416
} else {
1417
asoc->rwnd += len;
1418
}
1419
1420
/* If we had window pressure, start recovering it
1421
* once our rwnd had reached the accumulated pressure
1422
* threshold. The idea is to recover slowly, but up
1423
* to the initial advertised window.
1424
*/
1425
if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1426
int change = min(asoc->pathmtu, asoc->rwnd_press);
1427
asoc->rwnd += change;
1428
asoc->rwnd_press -= change;
1429
}
1430
1431
SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1432
"- %u\n", __func__, asoc, len, asoc->rwnd,
1433
asoc->rwnd_over, asoc->a_rwnd);
1434
1435
/* Send a window update SACK if the rwnd has increased by at least the
1436
* minimum of the association's PMTU and half of the receive buffer.
1437
* The algorithm used is similar to the one described in
1438
* Section 4.2.3.3 of RFC 1122.
1439
*/
1440
if (sctp_peer_needs_update(asoc)) {
1441
asoc->a_rwnd = asoc->rwnd;
1442
SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1443
"rwnd: %u a_rwnd: %u\n", __func__,
1444
asoc, asoc->rwnd, asoc->a_rwnd);
1445
sack = sctp_make_sack(asoc);
1446
if (!sack)
1447
return;
1448
1449
asoc->peer.sack_needed = 0;
1450
1451
sctp_outq_tail(&asoc->outqueue, sack);
1452
1453
/* Stop the SACK timer. */
1454
timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1455
if (timer_pending(timer) && del_timer(timer))
1456
sctp_association_put(asoc);
1457
}
1458
}
1459
1460
/* Decrease asoc's rwnd by len. */
1461
void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1462
{
1463
int rx_count;
1464
int over = 0;
1465
1466
SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1467
SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1468
1469
if (asoc->ep->rcvbuf_policy)
1470
rx_count = atomic_read(&asoc->rmem_alloc);
1471
else
1472
rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1473
1474
/* If we've reached or overflowed our receive buffer, announce
1475
* a 0 rwnd if rwnd would still be positive. Store the
1476
* the pottential pressure overflow so that the window can be restored
1477
* back to original value.
1478
*/
1479
if (rx_count >= asoc->base.sk->sk_rcvbuf)
1480
over = 1;
1481
1482
if (asoc->rwnd >= len) {
1483
asoc->rwnd -= len;
1484
if (over) {
1485
asoc->rwnd_press += asoc->rwnd;
1486
asoc->rwnd = 0;
1487
}
1488
} else {
1489
asoc->rwnd_over = len - asoc->rwnd;
1490
asoc->rwnd = 0;
1491
}
1492
SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1493
__func__, asoc, len, asoc->rwnd,
1494
asoc->rwnd_over, asoc->rwnd_press);
1495
}
1496
1497
/* Build the bind address list for the association based on info from the
1498
* local endpoint and the remote peer.
1499
*/
1500
int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1501
sctp_scope_t scope, gfp_t gfp)
1502
{
1503
int flags;
1504
1505
/* Use scoping rules to determine the subset of addresses from
1506
* the endpoint.
1507
*/
1508
flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1509
if (asoc->peer.ipv4_address)
1510
flags |= SCTP_ADDR4_PEERSUPP;
1511
if (asoc->peer.ipv6_address)
1512
flags |= SCTP_ADDR6_PEERSUPP;
1513
1514
return sctp_bind_addr_copy(&asoc->base.bind_addr,
1515
&asoc->ep->base.bind_addr,
1516
scope, gfp, flags);
1517
}
1518
1519
/* Build the association's bind address list from the cookie. */
1520
int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1521
struct sctp_cookie *cookie,
1522
gfp_t gfp)
1523
{
1524
int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1525
int var_size3 = cookie->raw_addr_list_len;
1526
__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1527
1528
return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1529
asoc->ep->base.bind_addr.port, gfp);
1530
}
1531
1532
/* Lookup laddr in the bind address list of an association. */
1533
int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1534
const union sctp_addr *laddr)
1535
{
1536
int found = 0;
1537
1538
if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1539
sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1540
sctp_sk(asoc->base.sk)))
1541
found = 1;
1542
1543
return found;
1544
}
1545
1546
/* Set an association id for a given association */
1547
int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1548
{
1549
int assoc_id;
1550
int error = 0;
1551
1552
/* If the id is already assigned, keep it. */
1553
if (asoc->assoc_id)
1554
return error;
1555
retry:
1556
if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1557
return -ENOMEM;
1558
1559
spin_lock_bh(&sctp_assocs_id_lock);
1560
error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1561
idr_low, &assoc_id);
1562
if (!error) {
1563
idr_low = assoc_id + 1;
1564
if (idr_low == INT_MAX)
1565
idr_low = 1;
1566
}
1567
spin_unlock_bh(&sctp_assocs_id_lock);
1568
if (error == -EAGAIN)
1569
goto retry;
1570
else if (error)
1571
return error;
1572
1573
asoc->assoc_id = (sctp_assoc_t) assoc_id;
1574
return error;
1575
}
1576
1577
/* Free the ASCONF queue */
1578
static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1579
{
1580
struct sctp_chunk *asconf;
1581
struct sctp_chunk *tmp;
1582
1583
list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1584
list_del_init(&asconf->list);
1585
sctp_chunk_free(asconf);
1586
}
1587
}
1588
1589
/* Free asconf_ack cache */
1590
static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1591
{
1592
struct sctp_chunk *ack;
1593
struct sctp_chunk *tmp;
1594
1595
list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1596
transmitted_list) {
1597
list_del_init(&ack->transmitted_list);
1598
sctp_chunk_free(ack);
1599
}
1600
}
1601
1602
/* Clean up the ASCONF_ACK queue */
1603
void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1604
{
1605
struct sctp_chunk *ack;
1606
struct sctp_chunk *tmp;
1607
1608
/* We can remove all the entries from the queue up to
1609
* the "Peer-Sequence-Number".
1610
*/
1611
list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1612
transmitted_list) {
1613
if (ack->subh.addip_hdr->serial ==
1614
htonl(asoc->peer.addip_serial))
1615
break;
1616
1617
list_del_init(&ack->transmitted_list);
1618
sctp_chunk_free(ack);
1619
}
1620
}
1621
1622
/* Find the ASCONF_ACK whose serial number matches ASCONF */
1623
struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1624
const struct sctp_association *asoc,
1625
__be32 serial)
1626
{
1627
struct sctp_chunk *ack;
1628
1629
/* Walk through the list of cached ASCONF-ACKs and find the
1630
* ack chunk whose serial number matches that of the request.
1631
*/
1632
list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1633
if (ack->subh.addip_hdr->serial == serial) {
1634
sctp_chunk_hold(ack);
1635
return ack;
1636
}
1637
}
1638
1639
return NULL;
1640
}
1641
1642
void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1643
{
1644
/* Free any cached ASCONF_ACK chunk. */
1645
sctp_assoc_free_asconf_acks(asoc);
1646
1647
/* Free the ASCONF queue. */
1648
sctp_assoc_free_asconf_queue(asoc);
1649
1650
/* Free any cached ASCONF chunk. */
1651
if (asoc->addip_last_asconf)
1652
sctp_chunk_free(asoc->addip_last_asconf);
1653
}
1654
1655