Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/sctp/auth.c
15109 views
1
/* SCTP kernel implementation
2
* (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3
*
4
* This file is part of the SCTP kernel implementation
5
*
6
* This SCTP implementation is free software;
7
* you can redistribute it and/or modify it under the terms of
8
* the GNU General Public License as published by
9
* the Free Software Foundation; either version 2, or (at your option)
10
* any later version.
11
*
12
* This SCTP implementation is distributed in the hope that it
13
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
14
* ************************
15
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16
* See the GNU General Public License for more details.
17
*
18
* You should have received a copy of the GNU General Public License
19
* along with GNU CC; see the file COPYING. If not, write to
20
* the Free Software Foundation, 59 Temple Place - Suite 330,
21
* Boston, MA 02111-1307, USA.
22
*
23
* Please send any bug reports or fixes you make to the
24
* email address(es):
25
* lksctp developers <[email protected]>
26
*
27
* Or submit a bug report through the following website:
28
* http://www.sf.net/projects/lksctp
29
*
30
* Written or modified by:
31
* Vlad Yasevich <[email protected]>
32
*
33
* Any bugs reported given to us we will try to fix... any fixes shared will
34
* be incorporated into the next SCTP release.
35
*/
36
37
#include <linux/slab.h>
38
#include <linux/types.h>
39
#include <linux/crypto.h>
40
#include <linux/scatterlist.h>
41
#include <net/sctp/sctp.h>
42
#include <net/sctp/auth.h>
43
44
static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
45
{
46
/* id 0 is reserved. as all 0 */
47
.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
48
},
49
{
50
.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
51
.hmac_name="hmac(sha1)",
52
.hmac_len = SCTP_SHA1_SIG_SIZE,
53
},
54
{
55
/* id 2 is reserved as well */
56
.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
57
},
58
#if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
59
{
60
.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
61
.hmac_name="hmac(sha256)",
62
.hmac_len = SCTP_SHA256_SIG_SIZE,
63
}
64
#endif
65
};
66
67
68
void sctp_auth_key_put(struct sctp_auth_bytes *key)
69
{
70
if (!key)
71
return;
72
73
if (atomic_dec_and_test(&key->refcnt)) {
74
kfree(key);
75
SCTP_DBG_OBJCNT_DEC(keys);
76
}
77
}
78
79
/* Create a new key structure of a given length */
80
static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
81
{
82
struct sctp_auth_bytes *key;
83
84
/* Verify that we are not going to overflow INT_MAX */
85
if ((INT_MAX - key_len) < sizeof(struct sctp_auth_bytes))
86
return NULL;
87
88
/* Allocate the shared key */
89
key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
90
if (!key)
91
return NULL;
92
93
key->len = key_len;
94
atomic_set(&key->refcnt, 1);
95
SCTP_DBG_OBJCNT_INC(keys);
96
97
return key;
98
}
99
100
/* Create a new shared key container with a give key id */
101
struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
102
{
103
struct sctp_shared_key *new;
104
105
/* Allocate the shared key container */
106
new = kzalloc(sizeof(struct sctp_shared_key), gfp);
107
if (!new)
108
return NULL;
109
110
INIT_LIST_HEAD(&new->key_list);
111
new->key_id = key_id;
112
113
return new;
114
}
115
116
/* Free the shared key structure */
117
static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
118
{
119
BUG_ON(!list_empty(&sh_key->key_list));
120
sctp_auth_key_put(sh_key->key);
121
sh_key->key = NULL;
122
kfree(sh_key);
123
}
124
125
/* Destroy the entire key list. This is done during the
126
* associon and endpoint free process.
127
*/
128
void sctp_auth_destroy_keys(struct list_head *keys)
129
{
130
struct sctp_shared_key *ep_key;
131
struct sctp_shared_key *tmp;
132
133
if (list_empty(keys))
134
return;
135
136
key_for_each_safe(ep_key, tmp, keys) {
137
list_del_init(&ep_key->key_list);
138
sctp_auth_shkey_free(ep_key);
139
}
140
}
141
142
/* Compare two byte vectors as numbers. Return values
143
* are:
144
* 0 - vectors are equal
145
* < 0 - vector 1 is smaller than vector2
146
* > 0 - vector 1 is greater than vector2
147
*
148
* Algorithm is:
149
* This is performed by selecting the numerically smaller key vector...
150
* If the key vectors are equal as numbers but differ in length ...
151
* the shorter vector is considered smaller
152
*
153
* Examples (with small values):
154
* 000123456789 > 123456789 (first number is longer)
155
* 000123456789 < 234567891 (second number is larger numerically)
156
* 123456789 > 2345678 (first number is both larger & longer)
157
*/
158
static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
159
struct sctp_auth_bytes *vector2)
160
{
161
int diff;
162
int i;
163
const __u8 *longer;
164
165
diff = vector1->len - vector2->len;
166
if (diff) {
167
longer = (diff > 0) ? vector1->data : vector2->data;
168
169
/* Check to see if the longer number is
170
* lead-zero padded. If it is not, it
171
* is automatically larger numerically.
172
*/
173
for (i = 0; i < abs(diff); i++ ) {
174
if (longer[i] != 0)
175
return diff;
176
}
177
}
178
179
/* lengths are the same, compare numbers */
180
return memcmp(vector1->data, vector2->data, vector1->len);
181
}
182
183
/*
184
* Create a key vector as described in SCTP-AUTH, Section 6.1
185
* The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
186
* parameter sent by each endpoint are concatenated as byte vectors.
187
* These parameters include the parameter type, parameter length, and
188
* the parameter value, but padding is omitted; all padding MUST be
189
* removed from this concatenation before proceeding with further
190
* computation of keys. Parameters which were not sent are simply
191
* omitted from the concatenation process. The resulting two vectors
192
* are called the two key vectors.
193
*/
194
static struct sctp_auth_bytes *sctp_auth_make_key_vector(
195
sctp_random_param_t *random,
196
sctp_chunks_param_t *chunks,
197
sctp_hmac_algo_param_t *hmacs,
198
gfp_t gfp)
199
{
200
struct sctp_auth_bytes *new;
201
__u32 len;
202
__u32 offset = 0;
203
204
len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
205
if (chunks)
206
len += ntohs(chunks->param_hdr.length);
207
208
new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
209
if (!new)
210
return NULL;
211
212
new->len = len;
213
214
memcpy(new->data, random, ntohs(random->param_hdr.length));
215
offset += ntohs(random->param_hdr.length);
216
217
if (chunks) {
218
memcpy(new->data + offset, chunks,
219
ntohs(chunks->param_hdr.length));
220
offset += ntohs(chunks->param_hdr.length);
221
}
222
223
memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
224
225
return new;
226
}
227
228
229
/* Make a key vector based on our local parameters */
230
static struct sctp_auth_bytes *sctp_auth_make_local_vector(
231
const struct sctp_association *asoc,
232
gfp_t gfp)
233
{
234
return sctp_auth_make_key_vector(
235
(sctp_random_param_t*)asoc->c.auth_random,
236
(sctp_chunks_param_t*)asoc->c.auth_chunks,
237
(sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
238
gfp);
239
}
240
241
/* Make a key vector based on peer's parameters */
242
static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
243
const struct sctp_association *asoc,
244
gfp_t gfp)
245
{
246
return sctp_auth_make_key_vector(asoc->peer.peer_random,
247
asoc->peer.peer_chunks,
248
asoc->peer.peer_hmacs,
249
gfp);
250
}
251
252
253
/* Set the value of the association shared key base on the parameters
254
* given. The algorithm is:
255
* From the endpoint pair shared keys and the key vectors the
256
* association shared keys are computed. This is performed by selecting
257
* the numerically smaller key vector and concatenating it to the
258
* endpoint pair shared key, and then concatenating the numerically
259
* larger key vector to that. The result of the concatenation is the
260
* association shared key.
261
*/
262
static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
263
struct sctp_shared_key *ep_key,
264
struct sctp_auth_bytes *first_vector,
265
struct sctp_auth_bytes *last_vector,
266
gfp_t gfp)
267
{
268
struct sctp_auth_bytes *secret;
269
__u32 offset = 0;
270
__u32 auth_len;
271
272
auth_len = first_vector->len + last_vector->len;
273
if (ep_key->key)
274
auth_len += ep_key->key->len;
275
276
secret = sctp_auth_create_key(auth_len, gfp);
277
if (!secret)
278
return NULL;
279
280
if (ep_key->key) {
281
memcpy(secret->data, ep_key->key->data, ep_key->key->len);
282
offset += ep_key->key->len;
283
}
284
285
memcpy(secret->data + offset, first_vector->data, first_vector->len);
286
offset += first_vector->len;
287
288
memcpy(secret->data + offset, last_vector->data, last_vector->len);
289
290
return secret;
291
}
292
293
/* Create an association shared key. Follow the algorithm
294
* described in SCTP-AUTH, Section 6.1
295
*/
296
static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
297
const struct sctp_association *asoc,
298
struct sctp_shared_key *ep_key,
299
gfp_t gfp)
300
{
301
struct sctp_auth_bytes *local_key_vector;
302
struct sctp_auth_bytes *peer_key_vector;
303
struct sctp_auth_bytes *first_vector,
304
*last_vector;
305
struct sctp_auth_bytes *secret = NULL;
306
int cmp;
307
308
309
/* Now we need to build the key vectors
310
* SCTP-AUTH , Section 6.1
311
* The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
312
* parameter sent by each endpoint are concatenated as byte vectors.
313
* These parameters include the parameter type, parameter length, and
314
* the parameter value, but padding is omitted; all padding MUST be
315
* removed from this concatenation before proceeding with further
316
* computation of keys. Parameters which were not sent are simply
317
* omitted from the concatenation process. The resulting two vectors
318
* are called the two key vectors.
319
*/
320
321
local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
322
peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
323
324
if (!peer_key_vector || !local_key_vector)
325
goto out;
326
327
/* Figure out the order in which the key_vectors will be
328
* added to the endpoint shared key.
329
* SCTP-AUTH, Section 6.1:
330
* This is performed by selecting the numerically smaller key
331
* vector and concatenating it to the endpoint pair shared
332
* key, and then concatenating the numerically larger key
333
* vector to that. If the key vectors are equal as numbers
334
* but differ in length, then the concatenation order is the
335
* endpoint shared key, followed by the shorter key vector,
336
* followed by the longer key vector. Otherwise, the key
337
* vectors are identical, and may be concatenated to the
338
* endpoint pair key in any order.
339
*/
340
cmp = sctp_auth_compare_vectors(local_key_vector,
341
peer_key_vector);
342
if (cmp < 0) {
343
first_vector = local_key_vector;
344
last_vector = peer_key_vector;
345
} else {
346
first_vector = peer_key_vector;
347
last_vector = local_key_vector;
348
}
349
350
secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
351
gfp);
352
out:
353
kfree(local_key_vector);
354
kfree(peer_key_vector);
355
356
return secret;
357
}
358
359
/*
360
* Populate the association overlay list with the list
361
* from the endpoint.
362
*/
363
int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
364
struct sctp_association *asoc,
365
gfp_t gfp)
366
{
367
struct sctp_shared_key *sh_key;
368
struct sctp_shared_key *new;
369
370
BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
371
372
key_for_each(sh_key, &ep->endpoint_shared_keys) {
373
new = sctp_auth_shkey_create(sh_key->key_id, gfp);
374
if (!new)
375
goto nomem;
376
377
new->key = sh_key->key;
378
sctp_auth_key_hold(new->key);
379
list_add(&new->key_list, &asoc->endpoint_shared_keys);
380
}
381
382
return 0;
383
384
nomem:
385
sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
386
return -ENOMEM;
387
}
388
389
390
/* Public interface to creat the association shared key.
391
* See code above for the algorithm.
392
*/
393
int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
394
{
395
struct sctp_auth_bytes *secret;
396
struct sctp_shared_key *ep_key;
397
398
/* If we don't support AUTH, or peer is not capable
399
* we don't need to do anything.
400
*/
401
if (!sctp_auth_enable || !asoc->peer.auth_capable)
402
return 0;
403
404
/* If the key_id is non-zero and we couldn't find an
405
* endpoint pair shared key, we can't compute the
406
* secret.
407
* For key_id 0, endpoint pair shared key is a NULL key.
408
*/
409
ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
410
BUG_ON(!ep_key);
411
412
secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
413
if (!secret)
414
return -ENOMEM;
415
416
sctp_auth_key_put(asoc->asoc_shared_key);
417
asoc->asoc_shared_key = secret;
418
419
return 0;
420
}
421
422
423
/* Find the endpoint pair shared key based on the key_id */
424
struct sctp_shared_key *sctp_auth_get_shkey(
425
const struct sctp_association *asoc,
426
__u16 key_id)
427
{
428
struct sctp_shared_key *key;
429
430
/* First search associations set of endpoint pair shared keys */
431
key_for_each(key, &asoc->endpoint_shared_keys) {
432
if (key->key_id == key_id)
433
return key;
434
}
435
436
return NULL;
437
}
438
439
/*
440
* Initialize all the possible digest transforms that we can use. Right now
441
* now, the supported digests are SHA1 and SHA256. We do this here once
442
* because of the restrictiong that transforms may only be allocated in
443
* user context. This forces us to pre-allocated all possible transforms
444
* at the endpoint init time.
445
*/
446
int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
447
{
448
struct crypto_hash *tfm = NULL;
449
__u16 id;
450
451
/* if the transforms are already allocted, we are done */
452
if (!sctp_auth_enable) {
453
ep->auth_hmacs = NULL;
454
return 0;
455
}
456
457
if (ep->auth_hmacs)
458
return 0;
459
460
/* Allocated the array of pointers to transorms */
461
ep->auth_hmacs = kzalloc(
462
sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
463
gfp);
464
if (!ep->auth_hmacs)
465
return -ENOMEM;
466
467
for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
468
469
/* See is we support the id. Supported IDs have name and
470
* length fields set, so that we can allocated and use
471
* them. We can safely just check for name, for without the
472
* name, we can't allocate the TFM.
473
*/
474
if (!sctp_hmac_list[id].hmac_name)
475
continue;
476
477
/* If this TFM has been allocated, we are all set */
478
if (ep->auth_hmacs[id])
479
continue;
480
481
/* Allocate the ID */
482
tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
483
CRYPTO_ALG_ASYNC);
484
if (IS_ERR(tfm))
485
goto out_err;
486
487
ep->auth_hmacs[id] = tfm;
488
}
489
490
return 0;
491
492
out_err:
493
/* Clean up any successful allocations */
494
sctp_auth_destroy_hmacs(ep->auth_hmacs);
495
return -ENOMEM;
496
}
497
498
/* Destroy the hmac tfm array */
499
void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
500
{
501
int i;
502
503
if (!auth_hmacs)
504
return;
505
506
for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
507
{
508
if (auth_hmacs[i])
509
crypto_free_hash(auth_hmacs[i]);
510
}
511
kfree(auth_hmacs);
512
}
513
514
515
struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
516
{
517
return &sctp_hmac_list[hmac_id];
518
}
519
520
/* Get an hmac description information that we can use to build
521
* the AUTH chunk
522
*/
523
struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
524
{
525
struct sctp_hmac_algo_param *hmacs;
526
__u16 n_elt;
527
__u16 id = 0;
528
int i;
529
530
/* If we have a default entry, use it */
531
if (asoc->default_hmac_id)
532
return &sctp_hmac_list[asoc->default_hmac_id];
533
534
/* Since we do not have a default entry, find the first entry
535
* we support and return that. Do not cache that id.
536
*/
537
hmacs = asoc->peer.peer_hmacs;
538
if (!hmacs)
539
return NULL;
540
541
n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
542
for (i = 0; i < n_elt; i++) {
543
id = ntohs(hmacs->hmac_ids[i]);
544
545
/* Check the id is in the supported range */
546
if (id > SCTP_AUTH_HMAC_ID_MAX) {
547
id = 0;
548
continue;
549
}
550
551
/* See is we support the id. Supported IDs have name and
552
* length fields set, so that we can allocated and use
553
* them. We can safely just check for name, for without the
554
* name, we can't allocate the TFM.
555
*/
556
if (!sctp_hmac_list[id].hmac_name) {
557
id = 0;
558
continue;
559
}
560
561
break;
562
}
563
564
if (id == 0)
565
return NULL;
566
567
return &sctp_hmac_list[id];
568
}
569
570
static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
571
{
572
int found = 0;
573
int i;
574
575
for (i = 0; i < n_elts; i++) {
576
if (hmac_id == hmacs[i]) {
577
found = 1;
578
break;
579
}
580
}
581
582
return found;
583
}
584
585
/* See if the HMAC_ID is one that we claim as supported */
586
int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
587
__be16 hmac_id)
588
{
589
struct sctp_hmac_algo_param *hmacs;
590
__u16 n_elt;
591
592
if (!asoc)
593
return 0;
594
595
hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
596
n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
597
598
return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
599
}
600
601
602
/* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
603
* Section 6.1:
604
* The receiver of a HMAC-ALGO parameter SHOULD use the first listed
605
* algorithm it supports.
606
*/
607
void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
608
struct sctp_hmac_algo_param *hmacs)
609
{
610
struct sctp_endpoint *ep;
611
__u16 id;
612
int i;
613
int n_params;
614
615
/* if the default id is already set, use it */
616
if (asoc->default_hmac_id)
617
return;
618
619
n_params = (ntohs(hmacs->param_hdr.length)
620
- sizeof(sctp_paramhdr_t)) >> 1;
621
ep = asoc->ep;
622
for (i = 0; i < n_params; i++) {
623
id = ntohs(hmacs->hmac_ids[i]);
624
625
/* Check the id is in the supported range */
626
if (id > SCTP_AUTH_HMAC_ID_MAX)
627
continue;
628
629
/* If this TFM has been allocated, use this id */
630
if (ep->auth_hmacs[id]) {
631
asoc->default_hmac_id = id;
632
break;
633
}
634
}
635
}
636
637
638
/* Check to see if the given chunk is supposed to be authenticated */
639
static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
640
{
641
unsigned short len;
642
int found = 0;
643
int i;
644
645
if (!param || param->param_hdr.length == 0)
646
return 0;
647
648
len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
649
650
/* SCTP-AUTH, Section 3.2
651
* The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
652
* chunks MUST NOT be listed in the CHUNKS parameter. However, if
653
* a CHUNKS parameter is received then the types for INIT, INIT-ACK,
654
* SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
655
*/
656
for (i = 0; !found && i < len; i++) {
657
switch (param->chunks[i]) {
658
case SCTP_CID_INIT:
659
case SCTP_CID_INIT_ACK:
660
case SCTP_CID_SHUTDOWN_COMPLETE:
661
case SCTP_CID_AUTH:
662
break;
663
664
default:
665
if (param->chunks[i] == chunk)
666
found = 1;
667
break;
668
}
669
}
670
671
return found;
672
}
673
674
/* Check if peer requested that this chunk is authenticated */
675
int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
676
{
677
if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
678
return 0;
679
680
return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
681
}
682
683
/* Check if we requested that peer authenticate this chunk. */
684
int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
685
{
686
if (!sctp_auth_enable || !asoc)
687
return 0;
688
689
return __sctp_auth_cid(chunk,
690
(struct sctp_chunks_param *)asoc->c.auth_chunks);
691
}
692
693
/* SCTP-AUTH: Section 6.2:
694
* The sender MUST calculate the MAC as described in RFC2104 [2] using
695
* the hash function H as described by the MAC Identifier and the shared
696
* association key K based on the endpoint pair shared key described by
697
* the shared key identifier. The 'data' used for the computation of
698
* the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
699
* zero (as shown in Figure 6) followed by all chunks that are placed
700
* after the AUTH chunk in the SCTP packet.
701
*/
702
void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
703
struct sk_buff *skb,
704
struct sctp_auth_chunk *auth,
705
gfp_t gfp)
706
{
707
struct scatterlist sg;
708
struct hash_desc desc;
709
struct sctp_auth_bytes *asoc_key;
710
__u16 key_id, hmac_id;
711
__u8 *digest;
712
unsigned char *end;
713
int free_key = 0;
714
715
/* Extract the info we need:
716
* - hmac id
717
* - key id
718
*/
719
key_id = ntohs(auth->auth_hdr.shkey_id);
720
hmac_id = ntohs(auth->auth_hdr.hmac_id);
721
722
if (key_id == asoc->active_key_id)
723
asoc_key = asoc->asoc_shared_key;
724
else {
725
struct sctp_shared_key *ep_key;
726
727
ep_key = sctp_auth_get_shkey(asoc, key_id);
728
if (!ep_key)
729
return;
730
731
asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
732
if (!asoc_key)
733
return;
734
735
free_key = 1;
736
}
737
738
/* set up scatter list */
739
end = skb_tail_pointer(skb);
740
sg_init_one(&sg, auth, end - (unsigned char *)auth);
741
742
desc.tfm = asoc->ep->auth_hmacs[hmac_id];
743
desc.flags = 0;
744
745
digest = auth->auth_hdr.hmac;
746
if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
747
goto free;
748
749
crypto_hash_digest(&desc, &sg, sg.length, digest);
750
751
free:
752
if (free_key)
753
sctp_auth_key_put(asoc_key);
754
}
755
756
/* API Helpers */
757
758
/* Add a chunk to the endpoint authenticated chunk list */
759
int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
760
{
761
struct sctp_chunks_param *p = ep->auth_chunk_list;
762
__u16 nchunks;
763
__u16 param_len;
764
765
/* If this chunk is already specified, we are done */
766
if (__sctp_auth_cid(chunk_id, p))
767
return 0;
768
769
/* Check if we can add this chunk to the array */
770
param_len = ntohs(p->param_hdr.length);
771
nchunks = param_len - sizeof(sctp_paramhdr_t);
772
if (nchunks == SCTP_NUM_CHUNK_TYPES)
773
return -EINVAL;
774
775
p->chunks[nchunks] = chunk_id;
776
p->param_hdr.length = htons(param_len + 1);
777
return 0;
778
}
779
780
/* Add hmac identifires to the endpoint list of supported hmac ids */
781
int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
782
struct sctp_hmacalgo *hmacs)
783
{
784
int has_sha1 = 0;
785
__u16 id;
786
int i;
787
788
/* Scan the list looking for unsupported id. Also make sure that
789
* SHA1 is specified.
790
*/
791
for (i = 0; i < hmacs->shmac_num_idents; i++) {
792
id = hmacs->shmac_idents[i];
793
794
if (id > SCTP_AUTH_HMAC_ID_MAX)
795
return -EOPNOTSUPP;
796
797
if (SCTP_AUTH_HMAC_ID_SHA1 == id)
798
has_sha1 = 1;
799
800
if (!sctp_hmac_list[id].hmac_name)
801
return -EOPNOTSUPP;
802
}
803
804
if (!has_sha1)
805
return -EINVAL;
806
807
memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
808
hmacs->shmac_num_idents * sizeof(__u16));
809
ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
810
hmacs->shmac_num_idents * sizeof(__u16));
811
return 0;
812
}
813
814
/* Set a new shared key on either endpoint or association. If the
815
* the key with a same ID already exists, replace the key (remove the
816
* old key and add a new one).
817
*/
818
int sctp_auth_set_key(struct sctp_endpoint *ep,
819
struct sctp_association *asoc,
820
struct sctp_authkey *auth_key)
821
{
822
struct sctp_shared_key *cur_key = NULL;
823
struct sctp_auth_bytes *key;
824
struct list_head *sh_keys;
825
int replace = 0;
826
827
/* Try to find the given key id to see if
828
* we are doing a replace, or adding a new key
829
*/
830
if (asoc)
831
sh_keys = &asoc->endpoint_shared_keys;
832
else
833
sh_keys = &ep->endpoint_shared_keys;
834
835
key_for_each(cur_key, sh_keys) {
836
if (cur_key->key_id == auth_key->sca_keynumber) {
837
replace = 1;
838
break;
839
}
840
}
841
842
/* If we are not replacing a key id, we need to allocate
843
* a shared key.
844
*/
845
if (!replace) {
846
cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
847
GFP_KERNEL);
848
if (!cur_key)
849
return -ENOMEM;
850
}
851
852
/* Create a new key data based on the info passed in */
853
key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
854
if (!key)
855
goto nomem;
856
857
memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
858
859
/* If we are replacing, remove the old keys data from the
860
* key id. If we are adding new key id, add it to the
861
* list.
862
*/
863
if (replace)
864
sctp_auth_key_put(cur_key->key);
865
else
866
list_add(&cur_key->key_list, sh_keys);
867
868
cur_key->key = key;
869
sctp_auth_key_hold(key);
870
871
return 0;
872
nomem:
873
if (!replace)
874
sctp_auth_shkey_free(cur_key);
875
876
return -ENOMEM;
877
}
878
879
int sctp_auth_set_active_key(struct sctp_endpoint *ep,
880
struct sctp_association *asoc,
881
__u16 key_id)
882
{
883
struct sctp_shared_key *key;
884
struct list_head *sh_keys;
885
int found = 0;
886
887
/* The key identifier MUST correst to an existing key */
888
if (asoc)
889
sh_keys = &asoc->endpoint_shared_keys;
890
else
891
sh_keys = &ep->endpoint_shared_keys;
892
893
key_for_each(key, sh_keys) {
894
if (key->key_id == key_id) {
895
found = 1;
896
break;
897
}
898
}
899
900
if (!found)
901
return -EINVAL;
902
903
if (asoc) {
904
asoc->active_key_id = key_id;
905
sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
906
} else
907
ep->active_key_id = key_id;
908
909
return 0;
910
}
911
912
int sctp_auth_del_key_id(struct sctp_endpoint *ep,
913
struct sctp_association *asoc,
914
__u16 key_id)
915
{
916
struct sctp_shared_key *key;
917
struct list_head *sh_keys;
918
int found = 0;
919
920
/* The key identifier MUST NOT be the current active key
921
* The key identifier MUST correst to an existing key
922
*/
923
if (asoc) {
924
if (asoc->active_key_id == key_id)
925
return -EINVAL;
926
927
sh_keys = &asoc->endpoint_shared_keys;
928
} else {
929
if (ep->active_key_id == key_id)
930
return -EINVAL;
931
932
sh_keys = &ep->endpoint_shared_keys;
933
}
934
935
key_for_each(key, sh_keys) {
936
if (key->key_id == key_id) {
937
found = 1;
938
break;
939
}
940
}
941
942
if (!found)
943
return -EINVAL;
944
945
/* Delete the shared key */
946
list_del_init(&key->key_list);
947
sctp_auth_shkey_free(key);
948
949
return 0;
950
}
951
952