Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/sctp/socket.c
15109 views
1
/* SCTP kernel implementation
2
* (C) Copyright IBM Corp. 2001, 2004
3
* Copyright (c) 1999-2000 Cisco, Inc.
4
* Copyright (c) 1999-2001 Motorola, Inc.
5
* Copyright (c) 2001-2003 Intel Corp.
6
* Copyright (c) 2001-2002 Nokia, Inc.
7
* Copyright (c) 2001 La Monte H.P. Yarroll
8
*
9
* This file is part of the SCTP kernel implementation
10
*
11
* These functions interface with the sockets layer to implement the
12
* SCTP Extensions for the Sockets API.
13
*
14
* Note that the descriptions from the specification are USER level
15
* functions--this file is the functions which populate the struct proto
16
* for SCTP which is the BOTTOM of the sockets interface.
17
*
18
* This SCTP implementation is free software;
19
* you can redistribute it and/or modify it under the terms of
20
* the GNU General Public License as published by
21
* the Free Software Foundation; either version 2, or (at your option)
22
* any later version.
23
*
24
* This SCTP implementation is distributed in the hope that it
25
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
26
* ************************
27
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28
* See the GNU General Public License for more details.
29
*
30
* You should have received a copy of the GNU General Public License
31
* along with GNU CC; see the file COPYING. If not, write to
32
* the Free Software Foundation, 59 Temple Place - Suite 330,
33
* Boston, MA 02111-1307, USA.
34
*
35
* Please send any bug reports or fixes you make to the
36
* email address(es):
37
* lksctp developers <[email protected]>
38
*
39
* Or submit a bug report through the following website:
40
* http://www.sf.net/projects/lksctp
41
*
42
* Written or modified by:
43
* La Monte H.P. Yarroll <[email protected]>
44
* Narasimha Budihal <[email protected]>
45
* Karl Knutson <[email protected]>
46
* Jon Grimm <[email protected]>
47
* Xingang Guo <[email protected]>
48
* Daisy Chang <[email protected]>
49
* Sridhar Samudrala <[email protected]>
50
* Inaky Perez-Gonzalez <[email protected]>
51
* Ardelle Fan <[email protected]>
52
* Ryan Layer <[email protected]>
53
* Anup Pemmaiah <[email protected]>
54
* Kevin Gao <[email protected]>
55
*
56
* Any bugs reported given to us we will try to fix... any fixes shared will
57
* be incorporated into the next SCTP release.
58
*/
59
60
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62
#include <linux/types.h>
63
#include <linux/kernel.h>
64
#include <linux/wait.h>
65
#include <linux/time.h>
66
#include <linux/ip.h>
67
#include <linux/capability.h>
68
#include <linux/fcntl.h>
69
#include <linux/poll.h>
70
#include <linux/init.h>
71
#include <linux/crypto.h>
72
#include <linux/slab.h>
73
74
#include <net/ip.h>
75
#include <net/icmp.h>
76
#include <net/route.h>
77
#include <net/ipv6.h>
78
#include <net/inet_common.h>
79
80
#include <linux/socket.h> /* for sa_family_t */
81
#include <net/sock.h>
82
#include <net/sctp/sctp.h>
83
#include <net/sctp/sm.h>
84
85
/* WARNING: Please do not remove the SCTP_STATIC attribute to
86
* any of the functions below as they are used to export functions
87
* used by a project regression testsuite.
88
*/
89
90
/* Forward declarations for internal helper functions. */
91
static int sctp_writeable(struct sock *sk);
92
static void sctp_wfree(struct sk_buff *skb);
93
static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
94
size_t msg_len);
95
static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
96
static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
97
static int sctp_wait_for_accept(struct sock *sk, long timeo);
98
static void sctp_wait_for_close(struct sock *sk, long timeo);
99
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
100
union sctp_addr *addr, int len);
101
static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
102
static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
103
static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
104
static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
105
static int sctp_send_asconf(struct sctp_association *asoc,
106
struct sctp_chunk *chunk);
107
static int sctp_do_bind(struct sock *, union sctp_addr *, int);
108
static int sctp_autobind(struct sock *sk);
109
static void sctp_sock_migrate(struct sock *, struct sock *,
110
struct sctp_association *, sctp_socket_type_t);
111
static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
112
113
extern struct kmem_cache *sctp_bucket_cachep;
114
extern long sysctl_sctp_mem[3];
115
extern int sysctl_sctp_rmem[3];
116
extern int sysctl_sctp_wmem[3];
117
118
static int sctp_memory_pressure;
119
static atomic_long_t sctp_memory_allocated;
120
struct percpu_counter sctp_sockets_allocated;
121
122
static void sctp_enter_memory_pressure(struct sock *sk)
123
{
124
sctp_memory_pressure = 1;
125
}
126
127
128
/* Get the sndbuf space available at the time on the association. */
129
static inline int sctp_wspace(struct sctp_association *asoc)
130
{
131
int amt;
132
133
if (asoc->ep->sndbuf_policy)
134
amt = asoc->sndbuf_used;
135
else
136
amt = sk_wmem_alloc_get(asoc->base.sk);
137
138
if (amt >= asoc->base.sk->sk_sndbuf) {
139
if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
140
amt = 0;
141
else {
142
amt = sk_stream_wspace(asoc->base.sk);
143
if (amt < 0)
144
amt = 0;
145
}
146
} else {
147
amt = asoc->base.sk->sk_sndbuf - amt;
148
}
149
return amt;
150
}
151
152
/* Increment the used sndbuf space count of the corresponding association by
153
* the size of the outgoing data chunk.
154
* Also, set the skb destructor for sndbuf accounting later.
155
*
156
* Since it is always 1-1 between chunk and skb, and also a new skb is always
157
* allocated for chunk bundling in sctp_packet_transmit(), we can use the
158
* destructor in the data chunk skb for the purpose of the sndbuf space
159
* tracking.
160
*/
161
static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
162
{
163
struct sctp_association *asoc = chunk->asoc;
164
struct sock *sk = asoc->base.sk;
165
166
/* The sndbuf space is tracked per association. */
167
sctp_association_hold(asoc);
168
169
skb_set_owner_w(chunk->skb, sk);
170
171
chunk->skb->destructor = sctp_wfree;
172
/* Save the chunk pointer in skb for sctp_wfree to use later. */
173
*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
174
175
asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
176
sizeof(struct sk_buff) +
177
sizeof(struct sctp_chunk);
178
179
atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
180
sk->sk_wmem_queued += chunk->skb->truesize;
181
sk_mem_charge(sk, chunk->skb->truesize);
182
}
183
184
/* Verify that this is a valid address. */
185
static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
186
int len)
187
{
188
struct sctp_af *af;
189
190
/* Verify basic sockaddr. */
191
af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
192
if (!af)
193
return -EINVAL;
194
195
/* Is this a valid SCTP address? */
196
if (!af->addr_valid(addr, sctp_sk(sk), NULL))
197
return -EINVAL;
198
199
if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
200
return -EINVAL;
201
202
return 0;
203
}
204
205
/* Look up the association by its id. If this is not a UDP-style
206
* socket, the ID field is always ignored.
207
*/
208
struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
209
{
210
struct sctp_association *asoc = NULL;
211
212
/* If this is not a UDP-style socket, assoc id should be ignored. */
213
if (!sctp_style(sk, UDP)) {
214
/* Return NULL if the socket state is not ESTABLISHED. It
215
* could be a TCP-style listening socket or a socket which
216
* hasn't yet called connect() to establish an association.
217
*/
218
if (!sctp_sstate(sk, ESTABLISHED))
219
return NULL;
220
221
/* Get the first and the only association from the list. */
222
if (!list_empty(&sctp_sk(sk)->ep->asocs))
223
asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
224
struct sctp_association, asocs);
225
return asoc;
226
}
227
228
/* Otherwise this is a UDP-style socket. */
229
if (!id || (id == (sctp_assoc_t)-1))
230
return NULL;
231
232
spin_lock_bh(&sctp_assocs_id_lock);
233
asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
234
spin_unlock_bh(&sctp_assocs_id_lock);
235
236
if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
237
return NULL;
238
239
return asoc;
240
}
241
242
/* Look up the transport from an address and an assoc id. If both address and
243
* id are specified, the associations matching the address and the id should be
244
* the same.
245
*/
246
static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
247
struct sockaddr_storage *addr,
248
sctp_assoc_t id)
249
{
250
struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
251
struct sctp_transport *transport;
252
union sctp_addr *laddr = (union sctp_addr *)addr;
253
254
addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
255
laddr,
256
&transport);
257
258
if (!addr_asoc)
259
return NULL;
260
261
id_asoc = sctp_id2assoc(sk, id);
262
if (id_asoc && (id_asoc != addr_asoc))
263
return NULL;
264
265
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
266
(union sctp_addr *)addr);
267
268
return transport;
269
}
270
271
/* API 3.1.2 bind() - UDP Style Syntax
272
* The syntax of bind() is,
273
*
274
* ret = bind(int sd, struct sockaddr *addr, int addrlen);
275
*
276
* sd - the socket descriptor returned by socket().
277
* addr - the address structure (struct sockaddr_in or struct
278
* sockaddr_in6 [RFC 2553]),
279
* addr_len - the size of the address structure.
280
*/
281
SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
282
{
283
int retval = 0;
284
285
sctp_lock_sock(sk);
286
287
SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
288
sk, addr, addr_len);
289
290
/* Disallow binding twice. */
291
if (!sctp_sk(sk)->ep->base.bind_addr.port)
292
retval = sctp_do_bind(sk, (union sctp_addr *)addr,
293
addr_len);
294
else
295
retval = -EINVAL;
296
297
sctp_release_sock(sk);
298
299
return retval;
300
}
301
302
static long sctp_get_port_local(struct sock *, union sctp_addr *);
303
304
/* Verify this is a valid sockaddr. */
305
static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
306
union sctp_addr *addr, int len)
307
{
308
struct sctp_af *af;
309
310
/* Check minimum size. */
311
if (len < sizeof (struct sockaddr))
312
return NULL;
313
314
/* V4 mapped address are really of AF_INET family */
315
if (addr->sa.sa_family == AF_INET6 &&
316
ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
317
if (!opt->pf->af_supported(AF_INET, opt))
318
return NULL;
319
} else {
320
/* Does this PF support this AF? */
321
if (!opt->pf->af_supported(addr->sa.sa_family, opt))
322
return NULL;
323
}
324
325
/* If we get this far, af is valid. */
326
af = sctp_get_af_specific(addr->sa.sa_family);
327
328
if (len < af->sockaddr_len)
329
return NULL;
330
331
return af;
332
}
333
334
/* Bind a local address either to an endpoint or to an association. */
335
SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
336
{
337
struct sctp_sock *sp = sctp_sk(sk);
338
struct sctp_endpoint *ep = sp->ep;
339
struct sctp_bind_addr *bp = &ep->base.bind_addr;
340
struct sctp_af *af;
341
unsigned short snum;
342
int ret = 0;
343
344
/* Common sockaddr verification. */
345
af = sctp_sockaddr_af(sp, addr, len);
346
if (!af) {
347
SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
348
sk, addr, len);
349
return -EINVAL;
350
}
351
352
snum = ntohs(addr->v4.sin_port);
353
354
SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
355
", port: %d, new port: %d, len: %d)\n",
356
sk,
357
addr,
358
bp->port, snum,
359
len);
360
361
/* PF specific bind() address verification. */
362
if (!sp->pf->bind_verify(sp, addr))
363
return -EADDRNOTAVAIL;
364
365
/* We must either be unbound, or bind to the same port.
366
* It's OK to allow 0 ports if we are already bound.
367
* We'll just inhert an already bound port in this case
368
*/
369
if (bp->port) {
370
if (!snum)
371
snum = bp->port;
372
else if (snum != bp->port) {
373
SCTP_DEBUG_PRINTK("sctp_do_bind:"
374
" New port %d does not match existing port "
375
"%d.\n", snum, bp->port);
376
return -EINVAL;
377
}
378
}
379
380
if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
381
return -EACCES;
382
383
/* See if the address matches any of the addresses we may have
384
* already bound before checking against other endpoints.
385
*/
386
if (sctp_bind_addr_match(bp, addr, sp))
387
return -EINVAL;
388
389
/* Make sure we are allowed to bind here.
390
* The function sctp_get_port_local() does duplicate address
391
* detection.
392
*/
393
addr->v4.sin_port = htons(snum);
394
if ((ret = sctp_get_port_local(sk, addr))) {
395
return -EADDRINUSE;
396
}
397
398
/* Refresh ephemeral port. */
399
if (!bp->port)
400
bp->port = inet_sk(sk)->inet_num;
401
402
/* Add the address to the bind address list.
403
* Use GFP_ATOMIC since BHs will be disabled.
404
*/
405
ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
406
407
/* Copy back into socket for getsockname() use. */
408
if (!ret) {
409
inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
410
af->to_sk_saddr(addr, sk);
411
}
412
413
return ret;
414
}
415
416
/* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
417
*
418
* R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
419
* at any one time. If a sender, after sending an ASCONF chunk, decides
420
* it needs to transfer another ASCONF Chunk, it MUST wait until the
421
* ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
422
* subsequent ASCONF. Note this restriction binds each side, so at any
423
* time two ASCONF may be in-transit on any given association (one sent
424
* from each endpoint).
425
*/
426
static int sctp_send_asconf(struct sctp_association *asoc,
427
struct sctp_chunk *chunk)
428
{
429
int retval = 0;
430
431
/* If there is an outstanding ASCONF chunk, queue it for later
432
* transmission.
433
*/
434
if (asoc->addip_last_asconf) {
435
list_add_tail(&chunk->list, &asoc->addip_chunk_list);
436
goto out;
437
}
438
439
/* Hold the chunk until an ASCONF_ACK is received. */
440
sctp_chunk_hold(chunk);
441
retval = sctp_primitive_ASCONF(asoc, chunk);
442
if (retval)
443
sctp_chunk_free(chunk);
444
else
445
asoc->addip_last_asconf = chunk;
446
447
out:
448
return retval;
449
}
450
451
/* Add a list of addresses as bind addresses to local endpoint or
452
* association.
453
*
454
* Basically run through each address specified in the addrs/addrcnt
455
* array/length pair, determine if it is IPv6 or IPv4 and call
456
* sctp_do_bind() on it.
457
*
458
* If any of them fails, then the operation will be reversed and the
459
* ones that were added will be removed.
460
*
461
* Only sctp_setsockopt_bindx() is supposed to call this function.
462
*/
463
static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
464
{
465
int cnt;
466
int retval = 0;
467
void *addr_buf;
468
struct sockaddr *sa_addr;
469
struct sctp_af *af;
470
471
SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
472
sk, addrs, addrcnt);
473
474
addr_buf = addrs;
475
for (cnt = 0; cnt < addrcnt; cnt++) {
476
/* The list may contain either IPv4 or IPv6 address;
477
* determine the address length for walking thru the list.
478
*/
479
sa_addr = (struct sockaddr *)addr_buf;
480
af = sctp_get_af_specific(sa_addr->sa_family);
481
if (!af) {
482
retval = -EINVAL;
483
goto err_bindx_add;
484
}
485
486
retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
487
af->sockaddr_len);
488
489
addr_buf += af->sockaddr_len;
490
491
err_bindx_add:
492
if (retval < 0) {
493
/* Failed. Cleanup the ones that have been added */
494
if (cnt > 0)
495
sctp_bindx_rem(sk, addrs, cnt);
496
return retval;
497
}
498
}
499
500
return retval;
501
}
502
503
/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
504
* associations that are part of the endpoint indicating that a list of local
505
* addresses are added to the endpoint.
506
*
507
* If any of the addresses is already in the bind address list of the
508
* association, we do not send the chunk for that association. But it will not
509
* affect other associations.
510
*
511
* Only sctp_setsockopt_bindx() is supposed to call this function.
512
*/
513
static int sctp_send_asconf_add_ip(struct sock *sk,
514
struct sockaddr *addrs,
515
int addrcnt)
516
{
517
struct sctp_sock *sp;
518
struct sctp_endpoint *ep;
519
struct sctp_association *asoc;
520
struct sctp_bind_addr *bp;
521
struct sctp_chunk *chunk;
522
struct sctp_sockaddr_entry *laddr;
523
union sctp_addr *addr;
524
union sctp_addr saveaddr;
525
void *addr_buf;
526
struct sctp_af *af;
527
struct list_head *p;
528
int i;
529
int retval = 0;
530
531
if (!sctp_addip_enable)
532
return retval;
533
534
sp = sctp_sk(sk);
535
ep = sp->ep;
536
537
SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
538
__func__, sk, addrs, addrcnt);
539
540
list_for_each_entry(asoc, &ep->asocs, asocs) {
541
542
if (!asoc->peer.asconf_capable)
543
continue;
544
545
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
546
continue;
547
548
if (!sctp_state(asoc, ESTABLISHED))
549
continue;
550
551
/* Check if any address in the packed array of addresses is
552
* in the bind address list of the association. If so,
553
* do not send the asconf chunk to its peer, but continue with
554
* other associations.
555
*/
556
addr_buf = addrs;
557
for (i = 0; i < addrcnt; i++) {
558
addr = (union sctp_addr *)addr_buf;
559
af = sctp_get_af_specific(addr->v4.sin_family);
560
if (!af) {
561
retval = -EINVAL;
562
goto out;
563
}
564
565
if (sctp_assoc_lookup_laddr(asoc, addr))
566
break;
567
568
addr_buf += af->sockaddr_len;
569
}
570
if (i < addrcnt)
571
continue;
572
573
/* Use the first valid address in bind addr list of
574
* association as Address Parameter of ASCONF CHUNK.
575
*/
576
bp = &asoc->base.bind_addr;
577
p = bp->address_list.next;
578
laddr = list_entry(p, struct sctp_sockaddr_entry, list);
579
chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
580
addrcnt, SCTP_PARAM_ADD_IP);
581
if (!chunk) {
582
retval = -ENOMEM;
583
goto out;
584
}
585
586
retval = sctp_send_asconf(asoc, chunk);
587
if (retval)
588
goto out;
589
590
/* Add the new addresses to the bind address list with
591
* use_as_src set to 0.
592
*/
593
addr_buf = addrs;
594
for (i = 0; i < addrcnt; i++) {
595
addr = (union sctp_addr *)addr_buf;
596
af = sctp_get_af_specific(addr->v4.sin_family);
597
memcpy(&saveaddr, addr, af->sockaddr_len);
598
retval = sctp_add_bind_addr(bp, &saveaddr,
599
SCTP_ADDR_NEW, GFP_ATOMIC);
600
addr_buf += af->sockaddr_len;
601
}
602
}
603
604
out:
605
return retval;
606
}
607
608
/* Remove a list of addresses from bind addresses list. Do not remove the
609
* last address.
610
*
611
* Basically run through each address specified in the addrs/addrcnt
612
* array/length pair, determine if it is IPv6 or IPv4 and call
613
* sctp_del_bind() on it.
614
*
615
* If any of them fails, then the operation will be reversed and the
616
* ones that were removed will be added back.
617
*
618
* At least one address has to be left; if only one address is
619
* available, the operation will return -EBUSY.
620
*
621
* Only sctp_setsockopt_bindx() is supposed to call this function.
622
*/
623
static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
624
{
625
struct sctp_sock *sp = sctp_sk(sk);
626
struct sctp_endpoint *ep = sp->ep;
627
int cnt;
628
struct sctp_bind_addr *bp = &ep->base.bind_addr;
629
int retval = 0;
630
void *addr_buf;
631
union sctp_addr *sa_addr;
632
struct sctp_af *af;
633
634
SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
635
sk, addrs, addrcnt);
636
637
addr_buf = addrs;
638
for (cnt = 0; cnt < addrcnt; cnt++) {
639
/* If the bind address list is empty or if there is only one
640
* bind address, there is nothing more to be removed (we need
641
* at least one address here).
642
*/
643
if (list_empty(&bp->address_list) ||
644
(sctp_list_single_entry(&bp->address_list))) {
645
retval = -EBUSY;
646
goto err_bindx_rem;
647
}
648
649
sa_addr = (union sctp_addr *)addr_buf;
650
af = sctp_get_af_specific(sa_addr->sa.sa_family);
651
if (!af) {
652
retval = -EINVAL;
653
goto err_bindx_rem;
654
}
655
656
if (!af->addr_valid(sa_addr, sp, NULL)) {
657
retval = -EADDRNOTAVAIL;
658
goto err_bindx_rem;
659
}
660
661
if (sa_addr->v4.sin_port &&
662
sa_addr->v4.sin_port != htons(bp->port)) {
663
retval = -EINVAL;
664
goto err_bindx_rem;
665
}
666
667
if (!sa_addr->v4.sin_port)
668
sa_addr->v4.sin_port = htons(bp->port);
669
670
/* FIXME - There is probably a need to check if sk->sk_saddr and
671
* sk->sk_rcv_addr are currently set to one of the addresses to
672
* be removed. This is something which needs to be looked into
673
* when we are fixing the outstanding issues with multi-homing
674
* socket routing and failover schemes. Refer to comments in
675
* sctp_do_bind(). -daisy
676
*/
677
retval = sctp_del_bind_addr(bp, sa_addr);
678
679
addr_buf += af->sockaddr_len;
680
err_bindx_rem:
681
if (retval < 0) {
682
/* Failed. Add the ones that has been removed back */
683
if (cnt > 0)
684
sctp_bindx_add(sk, addrs, cnt);
685
return retval;
686
}
687
}
688
689
return retval;
690
}
691
692
/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
693
* the associations that are part of the endpoint indicating that a list of
694
* local addresses are removed from the endpoint.
695
*
696
* If any of the addresses is already in the bind address list of the
697
* association, we do not send the chunk for that association. But it will not
698
* affect other associations.
699
*
700
* Only sctp_setsockopt_bindx() is supposed to call this function.
701
*/
702
static int sctp_send_asconf_del_ip(struct sock *sk,
703
struct sockaddr *addrs,
704
int addrcnt)
705
{
706
struct sctp_sock *sp;
707
struct sctp_endpoint *ep;
708
struct sctp_association *asoc;
709
struct sctp_transport *transport;
710
struct sctp_bind_addr *bp;
711
struct sctp_chunk *chunk;
712
union sctp_addr *laddr;
713
void *addr_buf;
714
struct sctp_af *af;
715
struct sctp_sockaddr_entry *saddr;
716
int i;
717
int retval = 0;
718
719
if (!sctp_addip_enable)
720
return retval;
721
722
sp = sctp_sk(sk);
723
ep = sp->ep;
724
725
SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
726
__func__, sk, addrs, addrcnt);
727
728
list_for_each_entry(asoc, &ep->asocs, asocs) {
729
730
if (!asoc->peer.asconf_capable)
731
continue;
732
733
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
734
continue;
735
736
if (!sctp_state(asoc, ESTABLISHED))
737
continue;
738
739
/* Check if any address in the packed array of addresses is
740
* not present in the bind address list of the association.
741
* If so, do not send the asconf chunk to its peer, but
742
* continue with other associations.
743
*/
744
addr_buf = addrs;
745
for (i = 0; i < addrcnt; i++) {
746
laddr = (union sctp_addr *)addr_buf;
747
af = sctp_get_af_specific(laddr->v4.sin_family);
748
if (!af) {
749
retval = -EINVAL;
750
goto out;
751
}
752
753
if (!sctp_assoc_lookup_laddr(asoc, laddr))
754
break;
755
756
addr_buf += af->sockaddr_len;
757
}
758
if (i < addrcnt)
759
continue;
760
761
/* Find one address in the association's bind address list
762
* that is not in the packed array of addresses. This is to
763
* make sure that we do not delete all the addresses in the
764
* association.
765
*/
766
bp = &asoc->base.bind_addr;
767
laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
768
addrcnt, sp);
769
if (!laddr)
770
continue;
771
772
/* We do not need RCU protection throughout this loop
773
* because this is done under a socket lock from the
774
* setsockopt call.
775
*/
776
chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
777
SCTP_PARAM_DEL_IP);
778
if (!chunk) {
779
retval = -ENOMEM;
780
goto out;
781
}
782
783
/* Reset use_as_src flag for the addresses in the bind address
784
* list that are to be deleted.
785
*/
786
addr_buf = addrs;
787
for (i = 0; i < addrcnt; i++) {
788
laddr = (union sctp_addr *)addr_buf;
789
af = sctp_get_af_specific(laddr->v4.sin_family);
790
list_for_each_entry(saddr, &bp->address_list, list) {
791
if (sctp_cmp_addr_exact(&saddr->a, laddr))
792
saddr->state = SCTP_ADDR_DEL;
793
}
794
addr_buf += af->sockaddr_len;
795
}
796
797
/* Update the route and saddr entries for all the transports
798
* as some of the addresses in the bind address list are
799
* about to be deleted and cannot be used as source addresses.
800
*/
801
list_for_each_entry(transport, &asoc->peer.transport_addr_list,
802
transports) {
803
dst_release(transport->dst);
804
sctp_transport_route(transport, NULL,
805
sctp_sk(asoc->base.sk));
806
}
807
808
retval = sctp_send_asconf(asoc, chunk);
809
}
810
out:
811
return retval;
812
}
813
814
/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
815
*
816
* API 8.1
817
* int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
818
* int flags);
819
*
820
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
821
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
822
* or IPv6 addresses.
823
*
824
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
825
* Section 3.1.2 for this usage.
826
*
827
* addrs is a pointer to an array of one or more socket addresses. Each
828
* address is contained in its appropriate structure (i.e. struct
829
* sockaddr_in or struct sockaddr_in6) the family of the address type
830
* must be used to distinguish the address length (note that this
831
* representation is termed a "packed array" of addresses). The caller
832
* specifies the number of addresses in the array with addrcnt.
833
*
834
* On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
835
* -1, and sets errno to the appropriate error code.
836
*
837
* For SCTP, the port given in each socket address must be the same, or
838
* sctp_bindx() will fail, setting errno to EINVAL.
839
*
840
* The flags parameter is formed from the bitwise OR of zero or more of
841
* the following currently defined flags:
842
*
843
* SCTP_BINDX_ADD_ADDR
844
*
845
* SCTP_BINDX_REM_ADDR
846
*
847
* SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
848
* association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
849
* addresses from the association. The two flags are mutually exclusive;
850
* if both are given, sctp_bindx() will fail with EINVAL. A caller may
851
* not remove all addresses from an association; sctp_bindx() will
852
* reject such an attempt with EINVAL.
853
*
854
* An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
855
* additional addresses with an endpoint after calling bind(). Or use
856
* sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
857
* socket is associated with so that no new association accepted will be
858
* associated with those addresses. If the endpoint supports dynamic
859
* address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
860
* endpoint to send the appropriate message to the peer to change the
861
* peers address lists.
862
*
863
* Adding and removing addresses from a connected association is
864
* optional functionality. Implementations that do not support this
865
* functionality should return EOPNOTSUPP.
866
*
867
* Basically do nothing but copying the addresses from user to kernel
868
* land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
869
* This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
870
* from userspace.
871
*
872
* We don't use copy_from_user() for optimization: we first do the
873
* sanity checks (buffer size -fast- and access check-healthy
874
* pointer); if all of those succeed, then we can alloc the memory
875
* (expensive operation) needed to copy the data to kernel. Then we do
876
* the copying without checking the user space area
877
* (__copy_from_user()).
878
*
879
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
880
* it.
881
*
882
* sk The sk of the socket
883
* addrs The pointer to the addresses in user land
884
* addrssize Size of the addrs buffer
885
* op Operation to perform (add or remove, see the flags of
886
* sctp_bindx)
887
*
888
* Returns 0 if ok, <0 errno code on error.
889
*/
890
SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
891
struct sockaddr __user *addrs,
892
int addrs_size, int op)
893
{
894
struct sockaddr *kaddrs;
895
int err;
896
int addrcnt = 0;
897
int walk_size = 0;
898
struct sockaddr *sa_addr;
899
void *addr_buf;
900
struct sctp_af *af;
901
902
SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
903
" addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
904
905
if (unlikely(addrs_size <= 0))
906
return -EINVAL;
907
908
/* Check the user passed a healthy pointer. */
909
if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
910
return -EFAULT;
911
912
/* Alloc space for the address array in kernel memory. */
913
kaddrs = kmalloc(addrs_size, GFP_KERNEL);
914
if (unlikely(!kaddrs))
915
return -ENOMEM;
916
917
if (__copy_from_user(kaddrs, addrs, addrs_size)) {
918
kfree(kaddrs);
919
return -EFAULT;
920
}
921
922
/* Walk through the addrs buffer and count the number of addresses. */
923
addr_buf = kaddrs;
924
while (walk_size < addrs_size) {
925
if (walk_size + sizeof(sa_family_t) > addrs_size) {
926
kfree(kaddrs);
927
return -EINVAL;
928
}
929
930
sa_addr = (struct sockaddr *)addr_buf;
931
af = sctp_get_af_specific(sa_addr->sa_family);
932
933
/* If the address family is not supported or if this address
934
* causes the address buffer to overflow return EINVAL.
935
*/
936
if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
937
kfree(kaddrs);
938
return -EINVAL;
939
}
940
addrcnt++;
941
addr_buf += af->sockaddr_len;
942
walk_size += af->sockaddr_len;
943
}
944
945
/* Do the work. */
946
switch (op) {
947
case SCTP_BINDX_ADD_ADDR:
948
err = sctp_bindx_add(sk, kaddrs, addrcnt);
949
if (err)
950
goto out;
951
err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
952
break;
953
954
case SCTP_BINDX_REM_ADDR:
955
err = sctp_bindx_rem(sk, kaddrs, addrcnt);
956
if (err)
957
goto out;
958
err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
959
break;
960
961
default:
962
err = -EINVAL;
963
break;
964
}
965
966
out:
967
kfree(kaddrs);
968
969
return err;
970
}
971
972
/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
973
*
974
* Common routine for handling connect() and sctp_connectx().
975
* Connect will come in with just a single address.
976
*/
977
static int __sctp_connect(struct sock* sk,
978
struct sockaddr *kaddrs,
979
int addrs_size,
980
sctp_assoc_t *assoc_id)
981
{
982
struct sctp_sock *sp;
983
struct sctp_endpoint *ep;
984
struct sctp_association *asoc = NULL;
985
struct sctp_association *asoc2;
986
struct sctp_transport *transport;
987
union sctp_addr to;
988
struct sctp_af *af;
989
sctp_scope_t scope;
990
long timeo;
991
int err = 0;
992
int addrcnt = 0;
993
int walk_size = 0;
994
union sctp_addr *sa_addr = NULL;
995
void *addr_buf;
996
unsigned short port;
997
unsigned int f_flags = 0;
998
999
sp = sctp_sk(sk);
1000
ep = sp->ep;
1001
1002
/* connect() cannot be done on a socket that is already in ESTABLISHED
1003
* state - UDP-style peeled off socket or a TCP-style socket that
1004
* is already connected.
1005
* It cannot be done even on a TCP-style listening socket.
1006
*/
1007
if (sctp_sstate(sk, ESTABLISHED) ||
1008
(sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1009
err = -EISCONN;
1010
goto out_free;
1011
}
1012
1013
/* Walk through the addrs buffer and count the number of addresses. */
1014
addr_buf = kaddrs;
1015
while (walk_size < addrs_size) {
1016
if (walk_size + sizeof(sa_family_t) > addrs_size) {
1017
err = -EINVAL;
1018
goto out_free;
1019
}
1020
1021
sa_addr = (union sctp_addr *)addr_buf;
1022
af = sctp_get_af_specific(sa_addr->sa.sa_family);
1023
1024
/* If the address family is not supported or if this address
1025
* causes the address buffer to overflow return EINVAL.
1026
*/
1027
if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1028
err = -EINVAL;
1029
goto out_free;
1030
}
1031
1032
port = ntohs(sa_addr->v4.sin_port);
1033
1034
/* Save current address so we can work with it */
1035
memcpy(&to, sa_addr, af->sockaddr_len);
1036
1037
err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1038
if (err)
1039
goto out_free;
1040
1041
/* Make sure the destination port is correctly set
1042
* in all addresses.
1043
*/
1044
if (asoc && asoc->peer.port && asoc->peer.port != port)
1045
goto out_free;
1046
1047
1048
/* Check if there already is a matching association on the
1049
* endpoint (other than the one created here).
1050
*/
1051
asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1052
if (asoc2 && asoc2 != asoc) {
1053
if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1054
err = -EISCONN;
1055
else
1056
err = -EALREADY;
1057
goto out_free;
1058
}
1059
1060
/* If we could not find a matching association on the endpoint,
1061
* make sure that there is no peeled-off association matching
1062
* the peer address even on another socket.
1063
*/
1064
if (sctp_endpoint_is_peeled_off(ep, &to)) {
1065
err = -EADDRNOTAVAIL;
1066
goto out_free;
1067
}
1068
1069
if (!asoc) {
1070
/* If a bind() or sctp_bindx() is not called prior to
1071
* an sctp_connectx() call, the system picks an
1072
* ephemeral port and will choose an address set
1073
* equivalent to binding with a wildcard address.
1074
*/
1075
if (!ep->base.bind_addr.port) {
1076
if (sctp_autobind(sk)) {
1077
err = -EAGAIN;
1078
goto out_free;
1079
}
1080
} else {
1081
/*
1082
* If an unprivileged user inherits a 1-many
1083
* style socket with open associations on a
1084
* privileged port, it MAY be permitted to
1085
* accept new associations, but it SHOULD NOT
1086
* be permitted to open new associations.
1087
*/
1088
if (ep->base.bind_addr.port < PROT_SOCK &&
1089
!capable(CAP_NET_BIND_SERVICE)) {
1090
err = -EACCES;
1091
goto out_free;
1092
}
1093
}
1094
1095
scope = sctp_scope(&to);
1096
asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1097
if (!asoc) {
1098
err = -ENOMEM;
1099
goto out_free;
1100
}
1101
1102
err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1103
GFP_KERNEL);
1104
if (err < 0) {
1105
goto out_free;
1106
}
1107
1108
}
1109
1110
/* Prime the peer's transport structures. */
1111
transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1112
SCTP_UNKNOWN);
1113
if (!transport) {
1114
err = -ENOMEM;
1115
goto out_free;
1116
}
1117
1118
addrcnt++;
1119
addr_buf += af->sockaddr_len;
1120
walk_size += af->sockaddr_len;
1121
}
1122
1123
/* In case the user of sctp_connectx() wants an association
1124
* id back, assign one now.
1125
*/
1126
if (assoc_id) {
1127
err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1128
if (err < 0)
1129
goto out_free;
1130
}
1131
1132
err = sctp_primitive_ASSOCIATE(asoc, NULL);
1133
if (err < 0) {
1134
goto out_free;
1135
}
1136
1137
/* Initialize sk's dport and daddr for getpeername() */
1138
inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1139
af = sctp_get_af_specific(sa_addr->sa.sa_family);
1140
af->to_sk_daddr(sa_addr, sk);
1141
sk->sk_err = 0;
1142
1143
/* in-kernel sockets don't generally have a file allocated to them
1144
* if all they do is call sock_create_kern().
1145
*/
1146
if (sk->sk_socket->file)
1147
f_flags = sk->sk_socket->file->f_flags;
1148
1149
timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1150
1151
err = sctp_wait_for_connect(asoc, &timeo);
1152
if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1153
*assoc_id = asoc->assoc_id;
1154
1155
/* Don't free association on exit. */
1156
asoc = NULL;
1157
1158
out_free:
1159
1160
SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1161
" kaddrs: %p err: %d\n",
1162
asoc, kaddrs, err);
1163
if (asoc)
1164
sctp_association_free(asoc);
1165
return err;
1166
}
1167
1168
/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1169
*
1170
* API 8.9
1171
* int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1172
* sctp_assoc_t *asoc);
1173
*
1174
* If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1175
* If the sd is an IPv6 socket, the addresses passed can either be IPv4
1176
* or IPv6 addresses.
1177
*
1178
* A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1179
* Section 3.1.2 for this usage.
1180
*
1181
* addrs is a pointer to an array of one or more socket addresses. Each
1182
* address is contained in its appropriate structure (i.e. struct
1183
* sockaddr_in or struct sockaddr_in6) the family of the address type
1184
* must be used to distengish the address length (note that this
1185
* representation is termed a "packed array" of addresses). The caller
1186
* specifies the number of addresses in the array with addrcnt.
1187
*
1188
* On success, sctp_connectx() returns 0. It also sets the assoc_id to
1189
* the association id of the new association. On failure, sctp_connectx()
1190
* returns -1, and sets errno to the appropriate error code. The assoc_id
1191
* is not touched by the kernel.
1192
*
1193
* For SCTP, the port given in each socket address must be the same, or
1194
* sctp_connectx() will fail, setting errno to EINVAL.
1195
*
1196
* An application can use sctp_connectx to initiate an association with
1197
* an endpoint that is multi-homed. Much like sctp_bindx() this call
1198
* allows a caller to specify multiple addresses at which a peer can be
1199
* reached. The way the SCTP stack uses the list of addresses to set up
1200
* the association is implementation dependent. This function only
1201
* specifies that the stack will try to make use of all the addresses in
1202
* the list when needed.
1203
*
1204
* Note that the list of addresses passed in is only used for setting up
1205
* the association. It does not necessarily equal the set of addresses
1206
* the peer uses for the resulting association. If the caller wants to
1207
* find out the set of peer addresses, it must use sctp_getpaddrs() to
1208
* retrieve them after the association has been set up.
1209
*
1210
* Basically do nothing but copying the addresses from user to kernel
1211
* land and invoking either sctp_connectx(). This is used for tunneling
1212
* the sctp_connectx() request through sctp_setsockopt() from userspace.
1213
*
1214
* We don't use copy_from_user() for optimization: we first do the
1215
* sanity checks (buffer size -fast- and access check-healthy
1216
* pointer); if all of those succeed, then we can alloc the memory
1217
* (expensive operation) needed to copy the data to kernel. Then we do
1218
* the copying without checking the user space area
1219
* (__copy_from_user()).
1220
*
1221
* On exit there is no need to do sockfd_put(), sys_setsockopt() does
1222
* it.
1223
*
1224
* sk The sk of the socket
1225
* addrs The pointer to the addresses in user land
1226
* addrssize Size of the addrs buffer
1227
*
1228
* Returns >=0 if ok, <0 errno code on error.
1229
*/
1230
SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1231
struct sockaddr __user *addrs,
1232
int addrs_size,
1233
sctp_assoc_t *assoc_id)
1234
{
1235
int err = 0;
1236
struct sockaddr *kaddrs;
1237
1238
SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1239
__func__, sk, addrs, addrs_size);
1240
1241
if (unlikely(addrs_size <= 0))
1242
return -EINVAL;
1243
1244
/* Check the user passed a healthy pointer. */
1245
if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1246
return -EFAULT;
1247
1248
/* Alloc space for the address array in kernel memory. */
1249
kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1250
if (unlikely(!kaddrs))
1251
return -ENOMEM;
1252
1253
if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1254
err = -EFAULT;
1255
} else {
1256
err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1257
}
1258
1259
kfree(kaddrs);
1260
1261
return err;
1262
}
1263
1264
/*
1265
* This is an older interface. It's kept for backward compatibility
1266
* to the option that doesn't provide association id.
1267
*/
1268
SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1269
struct sockaddr __user *addrs,
1270
int addrs_size)
1271
{
1272
return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1273
}
1274
1275
/*
1276
* New interface for the API. The since the API is done with a socket
1277
* option, to make it simple we feed back the association id is as a return
1278
* indication to the call. Error is always negative and association id is
1279
* always positive.
1280
*/
1281
SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1282
struct sockaddr __user *addrs,
1283
int addrs_size)
1284
{
1285
sctp_assoc_t assoc_id = 0;
1286
int err = 0;
1287
1288
err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1289
1290
if (err)
1291
return err;
1292
else
1293
return assoc_id;
1294
}
1295
1296
/*
1297
* New (hopefully final) interface for the API.
1298
* We use the sctp_getaddrs_old structure so that use-space library
1299
* can avoid any unnecessary allocations. The only defferent part
1300
* is that we store the actual length of the address buffer into the
1301
* addrs_num structure member. That way we can re-use the existing
1302
* code.
1303
*/
1304
SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1305
char __user *optval,
1306
int __user *optlen)
1307
{
1308
struct sctp_getaddrs_old param;
1309
sctp_assoc_t assoc_id = 0;
1310
int err = 0;
1311
1312
if (len < sizeof(param))
1313
return -EINVAL;
1314
1315
if (copy_from_user(&param, optval, sizeof(param)))
1316
return -EFAULT;
1317
1318
err = __sctp_setsockopt_connectx(sk,
1319
(struct sockaddr __user *)param.addrs,
1320
param.addr_num, &assoc_id);
1321
1322
if (err == 0 || err == -EINPROGRESS) {
1323
if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1324
return -EFAULT;
1325
if (put_user(sizeof(assoc_id), optlen))
1326
return -EFAULT;
1327
}
1328
1329
return err;
1330
}
1331
1332
/* API 3.1.4 close() - UDP Style Syntax
1333
* Applications use close() to perform graceful shutdown (as described in
1334
* Section 10.1 of [SCTP]) on ALL the associations currently represented
1335
* by a UDP-style socket.
1336
*
1337
* The syntax is
1338
*
1339
* ret = close(int sd);
1340
*
1341
* sd - the socket descriptor of the associations to be closed.
1342
*
1343
* To gracefully shutdown a specific association represented by the
1344
* UDP-style socket, an application should use the sendmsg() call,
1345
* passing no user data, but including the appropriate flag in the
1346
* ancillary data (see Section xxxx).
1347
*
1348
* If sd in the close() call is a branched-off socket representing only
1349
* one association, the shutdown is performed on that association only.
1350
*
1351
* 4.1.6 close() - TCP Style Syntax
1352
*
1353
* Applications use close() to gracefully close down an association.
1354
*
1355
* The syntax is:
1356
*
1357
* int close(int sd);
1358
*
1359
* sd - the socket descriptor of the association to be closed.
1360
*
1361
* After an application calls close() on a socket descriptor, no further
1362
* socket operations will succeed on that descriptor.
1363
*
1364
* API 7.1.4 SO_LINGER
1365
*
1366
* An application using the TCP-style socket can use this option to
1367
* perform the SCTP ABORT primitive. The linger option structure is:
1368
*
1369
* struct linger {
1370
* int l_onoff; // option on/off
1371
* int l_linger; // linger time
1372
* };
1373
*
1374
* To enable the option, set l_onoff to 1. If the l_linger value is set
1375
* to 0, calling close() is the same as the ABORT primitive. If the
1376
* value is set to a negative value, the setsockopt() call will return
1377
* an error. If the value is set to a positive value linger_time, the
1378
* close() can be blocked for at most linger_time ms. If the graceful
1379
* shutdown phase does not finish during this period, close() will
1380
* return but the graceful shutdown phase continues in the system.
1381
*/
1382
SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1383
{
1384
struct sctp_endpoint *ep;
1385
struct sctp_association *asoc;
1386
struct list_head *pos, *temp;
1387
unsigned int data_was_unread;
1388
1389
SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1390
1391
sctp_lock_sock(sk);
1392
sk->sk_shutdown = SHUTDOWN_MASK;
1393
sk->sk_state = SCTP_SS_CLOSING;
1394
1395
ep = sctp_sk(sk)->ep;
1396
1397
/* Clean up any skbs sitting on the receive queue. */
1398
data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1399
data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1400
1401
/* Walk all associations on an endpoint. */
1402
list_for_each_safe(pos, temp, &ep->asocs) {
1403
asoc = list_entry(pos, struct sctp_association, asocs);
1404
1405
if (sctp_style(sk, TCP)) {
1406
/* A closed association can still be in the list if
1407
* it belongs to a TCP-style listening socket that is
1408
* not yet accepted. If so, free it. If not, send an
1409
* ABORT or SHUTDOWN based on the linger options.
1410
*/
1411
if (sctp_state(asoc, CLOSED)) {
1412
sctp_unhash_established(asoc);
1413
sctp_association_free(asoc);
1414
continue;
1415
}
1416
}
1417
1418
if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1419
!skb_queue_empty(&asoc->ulpq.reasm) ||
1420
(sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1421
struct sctp_chunk *chunk;
1422
1423
chunk = sctp_make_abort_user(asoc, NULL, 0);
1424
if (chunk)
1425
sctp_primitive_ABORT(asoc, chunk);
1426
} else
1427
sctp_primitive_SHUTDOWN(asoc, NULL);
1428
}
1429
1430
/* On a TCP-style socket, block for at most linger_time if set. */
1431
if (sctp_style(sk, TCP) && timeout)
1432
sctp_wait_for_close(sk, timeout);
1433
1434
/* This will run the backlog queue. */
1435
sctp_release_sock(sk);
1436
1437
/* Supposedly, no process has access to the socket, but
1438
* the net layers still may.
1439
*/
1440
sctp_local_bh_disable();
1441
sctp_bh_lock_sock(sk);
1442
1443
/* Hold the sock, since sk_common_release() will put sock_put()
1444
* and we have just a little more cleanup.
1445
*/
1446
sock_hold(sk);
1447
sk_common_release(sk);
1448
1449
sctp_bh_unlock_sock(sk);
1450
sctp_local_bh_enable();
1451
1452
sock_put(sk);
1453
1454
SCTP_DBG_OBJCNT_DEC(sock);
1455
}
1456
1457
/* Handle EPIPE error. */
1458
static int sctp_error(struct sock *sk, int flags, int err)
1459
{
1460
if (err == -EPIPE)
1461
err = sock_error(sk) ? : -EPIPE;
1462
if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1463
send_sig(SIGPIPE, current, 0);
1464
return err;
1465
}
1466
1467
/* API 3.1.3 sendmsg() - UDP Style Syntax
1468
*
1469
* An application uses sendmsg() and recvmsg() calls to transmit data to
1470
* and receive data from its peer.
1471
*
1472
* ssize_t sendmsg(int socket, const struct msghdr *message,
1473
* int flags);
1474
*
1475
* socket - the socket descriptor of the endpoint.
1476
* message - pointer to the msghdr structure which contains a single
1477
* user message and possibly some ancillary data.
1478
*
1479
* See Section 5 for complete description of the data
1480
* structures.
1481
*
1482
* flags - flags sent or received with the user message, see Section
1483
* 5 for complete description of the flags.
1484
*
1485
* Note: This function could use a rewrite especially when explicit
1486
* connect support comes in.
1487
*/
1488
/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1489
1490
SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1491
1492
SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1493
struct msghdr *msg, size_t msg_len)
1494
{
1495
struct sctp_sock *sp;
1496
struct sctp_endpoint *ep;
1497
struct sctp_association *new_asoc=NULL, *asoc=NULL;
1498
struct sctp_transport *transport, *chunk_tp;
1499
struct sctp_chunk *chunk;
1500
union sctp_addr to;
1501
struct sockaddr *msg_name = NULL;
1502
struct sctp_sndrcvinfo default_sinfo;
1503
struct sctp_sndrcvinfo *sinfo;
1504
struct sctp_initmsg *sinit;
1505
sctp_assoc_t associd = 0;
1506
sctp_cmsgs_t cmsgs = { NULL };
1507
int err;
1508
sctp_scope_t scope;
1509
long timeo;
1510
__u16 sinfo_flags = 0;
1511
struct sctp_datamsg *datamsg;
1512
int msg_flags = msg->msg_flags;
1513
1514
SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1515
sk, msg, msg_len);
1516
1517
err = 0;
1518
sp = sctp_sk(sk);
1519
ep = sp->ep;
1520
1521
SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1522
1523
/* We cannot send a message over a TCP-style listening socket. */
1524
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1525
err = -EPIPE;
1526
goto out_nounlock;
1527
}
1528
1529
/* Parse out the SCTP CMSGs. */
1530
err = sctp_msghdr_parse(msg, &cmsgs);
1531
1532
if (err) {
1533
SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1534
goto out_nounlock;
1535
}
1536
1537
/* Fetch the destination address for this packet. This
1538
* address only selects the association--it is not necessarily
1539
* the address we will send to.
1540
* For a peeled-off socket, msg_name is ignored.
1541
*/
1542
if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1543
int msg_namelen = msg->msg_namelen;
1544
1545
err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1546
msg_namelen);
1547
if (err)
1548
return err;
1549
1550
if (msg_namelen > sizeof(to))
1551
msg_namelen = sizeof(to);
1552
memcpy(&to, msg->msg_name, msg_namelen);
1553
msg_name = msg->msg_name;
1554
}
1555
1556
sinfo = cmsgs.info;
1557
sinit = cmsgs.init;
1558
1559
/* Did the user specify SNDRCVINFO? */
1560
if (sinfo) {
1561
sinfo_flags = sinfo->sinfo_flags;
1562
associd = sinfo->sinfo_assoc_id;
1563
}
1564
1565
SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1566
msg_len, sinfo_flags);
1567
1568
/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1569
if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1570
err = -EINVAL;
1571
goto out_nounlock;
1572
}
1573
1574
/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1575
* length messages when SCTP_EOF|SCTP_ABORT is not set.
1576
* If SCTP_ABORT is set, the message length could be non zero with
1577
* the msg_iov set to the user abort reason.
1578
*/
1579
if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1580
(!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1581
err = -EINVAL;
1582
goto out_nounlock;
1583
}
1584
1585
/* If SCTP_ADDR_OVER is set, there must be an address
1586
* specified in msg_name.
1587
*/
1588
if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1589
err = -EINVAL;
1590
goto out_nounlock;
1591
}
1592
1593
transport = NULL;
1594
1595
SCTP_DEBUG_PRINTK("About to look up association.\n");
1596
1597
sctp_lock_sock(sk);
1598
1599
/* If a msg_name has been specified, assume this is to be used. */
1600
if (msg_name) {
1601
/* Look for a matching association on the endpoint. */
1602
asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1603
if (!asoc) {
1604
/* If we could not find a matching association on the
1605
* endpoint, make sure that it is not a TCP-style
1606
* socket that already has an association or there is
1607
* no peeled-off association on another socket.
1608
*/
1609
if ((sctp_style(sk, TCP) &&
1610
sctp_sstate(sk, ESTABLISHED)) ||
1611
sctp_endpoint_is_peeled_off(ep, &to)) {
1612
err = -EADDRNOTAVAIL;
1613
goto out_unlock;
1614
}
1615
}
1616
} else {
1617
asoc = sctp_id2assoc(sk, associd);
1618
if (!asoc) {
1619
err = -EPIPE;
1620
goto out_unlock;
1621
}
1622
}
1623
1624
if (asoc) {
1625
SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1626
1627
/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1628
* socket that has an association in CLOSED state. This can
1629
* happen when an accepted socket has an association that is
1630
* already CLOSED.
1631
*/
1632
if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1633
err = -EPIPE;
1634
goto out_unlock;
1635
}
1636
1637
if (sinfo_flags & SCTP_EOF) {
1638
SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1639
asoc);
1640
sctp_primitive_SHUTDOWN(asoc, NULL);
1641
err = 0;
1642
goto out_unlock;
1643
}
1644
if (sinfo_flags & SCTP_ABORT) {
1645
1646
chunk = sctp_make_abort_user(asoc, msg, msg_len);
1647
if (!chunk) {
1648
err = -ENOMEM;
1649
goto out_unlock;
1650
}
1651
1652
SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1653
sctp_primitive_ABORT(asoc, chunk);
1654
err = 0;
1655
goto out_unlock;
1656
}
1657
}
1658
1659
/* Do we need to create the association? */
1660
if (!asoc) {
1661
SCTP_DEBUG_PRINTK("There is no association yet.\n");
1662
1663
if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1664
err = -EINVAL;
1665
goto out_unlock;
1666
}
1667
1668
/* Check for invalid stream against the stream counts,
1669
* either the default or the user specified stream counts.
1670
*/
1671
if (sinfo) {
1672
if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1673
/* Check against the defaults. */
1674
if (sinfo->sinfo_stream >=
1675
sp->initmsg.sinit_num_ostreams) {
1676
err = -EINVAL;
1677
goto out_unlock;
1678
}
1679
} else {
1680
/* Check against the requested. */
1681
if (sinfo->sinfo_stream >=
1682
sinit->sinit_num_ostreams) {
1683
err = -EINVAL;
1684
goto out_unlock;
1685
}
1686
}
1687
}
1688
1689
/*
1690
* API 3.1.2 bind() - UDP Style Syntax
1691
* If a bind() or sctp_bindx() is not called prior to a
1692
* sendmsg() call that initiates a new association, the
1693
* system picks an ephemeral port and will choose an address
1694
* set equivalent to binding with a wildcard address.
1695
*/
1696
if (!ep->base.bind_addr.port) {
1697
if (sctp_autobind(sk)) {
1698
err = -EAGAIN;
1699
goto out_unlock;
1700
}
1701
} else {
1702
/*
1703
* If an unprivileged user inherits a one-to-many
1704
* style socket with open associations on a privileged
1705
* port, it MAY be permitted to accept new associations,
1706
* but it SHOULD NOT be permitted to open new
1707
* associations.
1708
*/
1709
if (ep->base.bind_addr.port < PROT_SOCK &&
1710
!capable(CAP_NET_BIND_SERVICE)) {
1711
err = -EACCES;
1712
goto out_unlock;
1713
}
1714
}
1715
1716
scope = sctp_scope(&to);
1717
new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1718
if (!new_asoc) {
1719
err = -ENOMEM;
1720
goto out_unlock;
1721
}
1722
asoc = new_asoc;
1723
err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1724
if (err < 0) {
1725
err = -ENOMEM;
1726
goto out_free;
1727
}
1728
1729
/* If the SCTP_INIT ancillary data is specified, set all
1730
* the association init values accordingly.
1731
*/
1732
if (sinit) {
1733
if (sinit->sinit_num_ostreams) {
1734
asoc->c.sinit_num_ostreams =
1735
sinit->sinit_num_ostreams;
1736
}
1737
if (sinit->sinit_max_instreams) {
1738
asoc->c.sinit_max_instreams =
1739
sinit->sinit_max_instreams;
1740
}
1741
if (sinit->sinit_max_attempts) {
1742
asoc->max_init_attempts
1743
= sinit->sinit_max_attempts;
1744
}
1745
if (sinit->sinit_max_init_timeo) {
1746
asoc->max_init_timeo =
1747
msecs_to_jiffies(sinit->sinit_max_init_timeo);
1748
}
1749
}
1750
1751
/* Prime the peer's transport structures. */
1752
transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1753
if (!transport) {
1754
err = -ENOMEM;
1755
goto out_free;
1756
}
1757
}
1758
1759
/* ASSERT: we have a valid association at this point. */
1760
SCTP_DEBUG_PRINTK("We have a valid association.\n");
1761
1762
if (!sinfo) {
1763
/* If the user didn't specify SNDRCVINFO, make up one with
1764
* some defaults.
1765
*/
1766
memset(&default_sinfo, 0, sizeof(default_sinfo));
1767
default_sinfo.sinfo_stream = asoc->default_stream;
1768
default_sinfo.sinfo_flags = asoc->default_flags;
1769
default_sinfo.sinfo_ppid = asoc->default_ppid;
1770
default_sinfo.sinfo_context = asoc->default_context;
1771
default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1772
default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1773
sinfo = &default_sinfo;
1774
}
1775
1776
/* API 7.1.7, the sndbuf size per association bounds the
1777
* maximum size of data that can be sent in a single send call.
1778
*/
1779
if (msg_len > sk->sk_sndbuf) {
1780
err = -EMSGSIZE;
1781
goto out_free;
1782
}
1783
1784
if (asoc->pmtu_pending)
1785
sctp_assoc_pending_pmtu(asoc);
1786
1787
/* If fragmentation is disabled and the message length exceeds the
1788
* association fragmentation point, return EMSGSIZE. The I-D
1789
* does not specify what this error is, but this looks like
1790
* a great fit.
1791
*/
1792
if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1793
err = -EMSGSIZE;
1794
goto out_free;
1795
}
1796
1797
/* Check for invalid stream. */
1798
if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1799
err = -EINVAL;
1800
goto out_free;
1801
}
1802
1803
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1804
if (!sctp_wspace(asoc)) {
1805
err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1806
if (err)
1807
goto out_free;
1808
}
1809
1810
/* If an address is passed with the sendto/sendmsg call, it is used
1811
* to override the primary destination address in the TCP model, or
1812
* when SCTP_ADDR_OVER flag is set in the UDP model.
1813
*/
1814
if ((sctp_style(sk, TCP) && msg_name) ||
1815
(sinfo_flags & SCTP_ADDR_OVER)) {
1816
chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1817
if (!chunk_tp) {
1818
err = -EINVAL;
1819
goto out_free;
1820
}
1821
} else
1822
chunk_tp = NULL;
1823
1824
/* Auto-connect, if we aren't connected already. */
1825
if (sctp_state(asoc, CLOSED)) {
1826
err = sctp_primitive_ASSOCIATE(asoc, NULL);
1827
if (err < 0)
1828
goto out_free;
1829
SCTP_DEBUG_PRINTK("We associated primitively.\n");
1830
}
1831
1832
/* Break the message into multiple chunks of maximum size. */
1833
datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1834
if (!datamsg) {
1835
err = -ENOMEM;
1836
goto out_free;
1837
}
1838
1839
/* Now send the (possibly) fragmented message. */
1840
list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1841
sctp_chunk_hold(chunk);
1842
1843
/* Do accounting for the write space. */
1844
sctp_set_owner_w(chunk);
1845
1846
chunk->transport = chunk_tp;
1847
}
1848
1849
/* Send it to the lower layers. Note: all chunks
1850
* must either fail or succeed. The lower layer
1851
* works that way today. Keep it that way or this
1852
* breaks.
1853
*/
1854
err = sctp_primitive_SEND(asoc, datamsg);
1855
/* Did the lower layer accept the chunk? */
1856
if (err)
1857
sctp_datamsg_free(datamsg);
1858
else
1859
sctp_datamsg_put(datamsg);
1860
1861
SCTP_DEBUG_PRINTK("We sent primitively.\n");
1862
1863
if (err)
1864
goto out_free;
1865
else
1866
err = msg_len;
1867
1868
/* If we are already past ASSOCIATE, the lower
1869
* layers are responsible for association cleanup.
1870
*/
1871
goto out_unlock;
1872
1873
out_free:
1874
if (new_asoc)
1875
sctp_association_free(asoc);
1876
out_unlock:
1877
sctp_release_sock(sk);
1878
1879
out_nounlock:
1880
return sctp_error(sk, msg_flags, err);
1881
1882
#if 0
1883
do_sock_err:
1884
if (msg_len)
1885
err = msg_len;
1886
else
1887
err = sock_error(sk);
1888
goto out;
1889
1890
do_interrupted:
1891
if (msg_len)
1892
err = msg_len;
1893
goto out;
1894
#endif /* 0 */
1895
}
1896
1897
/* This is an extended version of skb_pull() that removes the data from the
1898
* start of a skb even when data is spread across the list of skb's in the
1899
* frag_list. len specifies the total amount of data that needs to be removed.
1900
* when 'len' bytes could be removed from the skb, it returns 0.
1901
* If 'len' exceeds the total skb length, it returns the no. of bytes that
1902
* could not be removed.
1903
*/
1904
static int sctp_skb_pull(struct sk_buff *skb, int len)
1905
{
1906
struct sk_buff *list;
1907
int skb_len = skb_headlen(skb);
1908
int rlen;
1909
1910
if (len <= skb_len) {
1911
__skb_pull(skb, len);
1912
return 0;
1913
}
1914
len -= skb_len;
1915
__skb_pull(skb, skb_len);
1916
1917
skb_walk_frags(skb, list) {
1918
rlen = sctp_skb_pull(list, len);
1919
skb->len -= (len-rlen);
1920
skb->data_len -= (len-rlen);
1921
1922
if (!rlen)
1923
return 0;
1924
1925
len = rlen;
1926
}
1927
1928
return len;
1929
}
1930
1931
/* API 3.1.3 recvmsg() - UDP Style Syntax
1932
*
1933
* ssize_t recvmsg(int socket, struct msghdr *message,
1934
* int flags);
1935
*
1936
* socket - the socket descriptor of the endpoint.
1937
* message - pointer to the msghdr structure which contains a single
1938
* user message and possibly some ancillary data.
1939
*
1940
* See Section 5 for complete description of the data
1941
* structures.
1942
*
1943
* flags - flags sent or received with the user message, see Section
1944
* 5 for complete description of the flags.
1945
*/
1946
static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1947
1948
SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1949
struct msghdr *msg, size_t len, int noblock,
1950
int flags, int *addr_len)
1951
{
1952
struct sctp_ulpevent *event = NULL;
1953
struct sctp_sock *sp = sctp_sk(sk);
1954
struct sk_buff *skb;
1955
int copied;
1956
int err = 0;
1957
int skb_len;
1958
1959
SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1960
"0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1961
"len", len, "knoblauch", noblock,
1962
"flags", flags, "addr_len", addr_len);
1963
1964
sctp_lock_sock(sk);
1965
1966
if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1967
err = -ENOTCONN;
1968
goto out;
1969
}
1970
1971
skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1972
if (!skb)
1973
goto out;
1974
1975
/* Get the total length of the skb including any skb's in the
1976
* frag_list.
1977
*/
1978
skb_len = skb->len;
1979
1980
copied = skb_len;
1981
if (copied > len)
1982
copied = len;
1983
1984
err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1985
1986
event = sctp_skb2event(skb);
1987
1988
if (err)
1989
goto out_free;
1990
1991
sock_recv_ts_and_drops(msg, sk, skb);
1992
if (sctp_ulpevent_is_notification(event)) {
1993
msg->msg_flags |= MSG_NOTIFICATION;
1994
sp->pf->event_msgname(event, msg->msg_name, addr_len);
1995
} else {
1996
sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1997
}
1998
1999
/* Check if we allow SCTP_SNDRCVINFO. */
2000
if (sp->subscribe.sctp_data_io_event)
2001
sctp_ulpevent_read_sndrcvinfo(event, msg);
2002
#if 0
2003
/* FIXME: we should be calling IP/IPv6 layers. */
2004
if (sk->sk_protinfo.af_inet.cmsg_flags)
2005
ip_cmsg_recv(msg, skb);
2006
#endif
2007
2008
err = copied;
2009
2010
/* If skb's length exceeds the user's buffer, update the skb and
2011
* push it back to the receive_queue so that the next call to
2012
* recvmsg() will return the remaining data. Don't set MSG_EOR.
2013
*/
2014
if (skb_len > copied) {
2015
msg->msg_flags &= ~MSG_EOR;
2016
if (flags & MSG_PEEK)
2017
goto out_free;
2018
sctp_skb_pull(skb, copied);
2019
skb_queue_head(&sk->sk_receive_queue, skb);
2020
2021
/* When only partial message is copied to the user, increase
2022
* rwnd by that amount. If all the data in the skb is read,
2023
* rwnd is updated when the event is freed.
2024
*/
2025
if (!sctp_ulpevent_is_notification(event))
2026
sctp_assoc_rwnd_increase(event->asoc, copied);
2027
goto out;
2028
} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2029
(event->msg_flags & MSG_EOR))
2030
msg->msg_flags |= MSG_EOR;
2031
else
2032
msg->msg_flags &= ~MSG_EOR;
2033
2034
out_free:
2035
if (flags & MSG_PEEK) {
2036
/* Release the skb reference acquired after peeking the skb in
2037
* sctp_skb_recv_datagram().
2038
*/
2039
kfree_skb(skb);
2040
} else {
2041
/* Free the event which includes releasing the reference to
2042
* the owner of the skb, freeing the skb and updating the
2043
* rwnd.
2044
*/
2045
sctp_ulpevent_free(event);
2046
}
2047
out:
2048
sctp_release_sock(sk);
2049
return err;
2050
}
2051
2052
/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2053
*
2054
* This option is a on/off flag. If enabled no SCTP message
2055
* fragmentation will be performed. Instead if a message being sent
2056
* exceeds the current PMTU size, the message will NOT be sent and
2057
* instead a error will be indicated to the user.
2058
*/
2059
static int sctp_setsockopt_disable_fragments(struct sock *sk,
2060
char __user *optval,
2061
unsigned int optlen)
2062
{
2063
int val;
2064
2065
if (optlen < sizeof(int))
2066
return -EINVAL;
2067
2068
if (get_user(val, (int __user *)optval))
2069
return -EFAULT;
2070
2071
sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2072
2073
return 0;
2074
}
2075
2076
static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2077
unsigned int optlen)
2078
{
2079
struct sctp_association *asoc;
2080
struct sctp_ulpevent *event;
2081
2082
if (optlen > sizeof(struct sctp_event_subscribe))
2083
return -EINVAL;
2084
if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2085
return -EFAULT;
2086
2087
/*
2088
* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2089
* if there is no data to be sent or retransmit, the stack will
2090
* immediately send up this notification.
2091
*/
2092
if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2093
&sctp_sk(sk)->subscribe)) {
2094
asoc = sctp_id2assoc(sk, 0);
2095
2096
if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2097
event = sctp_ulpevent_make_sender_dry_event(asoc,
2098
GFP_ATOMIC);
2099
if (!event)
2100
return -ENOMEM;
2101
2102
sctp_ulpq_tail_event(&asoc->ulpq, event);
2103
}
2104
}
2105
2106
return 0;
2107
}
2108
2109
/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2110
*
2111
* This socket option is applicable to the UDP-style socket only. When
2112
* set it will cause associations that are idle for more than the
2113
* specified number of seconds to automatically close. An association
2114
* being idle is defined an association that has NOT sent or received
2115
* user data. The special value of '0' indicates that no automatic
2116
* close of any associations should be performed. The option expects an
2117
* integer defining the number of seconds of idle time before an
2118
* association is closed.
2119
*/
2120
static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2121
unsigned int optlen)
2122
{
2123
struct sctp_sock *sp = sctp_sk(sk);
2124
2125
/* Applicable to UDP-style socket only */
2126
if (sctp_style(sk, TCP))
2127
return -EOPNOTSUPP;
2128
if (optlen != sizeof(int))
2129
return -EINVAL;
2130
if (copy_from_user(&sp->autoclose, optval, optlen))
2131
return -EFAULT;
2132
/* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */
2133
sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ);
2134
2135
return 0;
2136
}
2137
2138
/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2139
*
2140
* Applications can enable or disable heartbeats for any peer address of
2141
* an association, modify an address's heartbeat interval, force a
2142
* heartbeat to be sent immediately, and adjust the address's maximum
2143
* number of retransmissions sent before an address is considered
2144
* unreachable. The following structure is used to access and modify an
2145
* address's parameters:
2146
*
2147
* struct sctp_paddrparams {
2148
* sctp_assoc_t spp_assoc_id;
2149
* struct sockaddr_storage spp_address;
2150
* uint32_t spp_hbinterval;
2151
* uint16_t spp_pathmaxrxt;
2152
* uint32_t spp_pathmtu;
2153
* uint32_t spp_sackdelay;
2154
* uint32_t spp_flags;
2155
* };
2156
*
2157
* spp_assoc_id - (one-to-many style socket) This is filled in the
2158
* application, and identifies the association for
2159
* this query.
2160
* spp_address - This specifies which address is of interest.
2161
* spp_hbinterval - This contains the value of the heartbeat interval,
2162
* in milliseconds. If a value of zero
2163
* is present in this field then no changes are to
2164
* be made to this parameter.
2165
* spp_pathmaxrxt - This contains the maximum number of
2166
* retransmissions before this address shall be
2167
* considered unreachable. If a value of zero
2168
* is present in this field then no changes are to
2169
* be made to this parameter.
2170
* spp_pathmtu - When Path MTU discovery is disabled the value
2171
* specified here will be the "fixed" path mtu.
2172
* Note that if the spp_address field is empty
2173
* then all associations on this address will
2174
* have this fixed path mtu set upon them.
2175
*
2176
* spp_sackdelay - When delayed sack is enabled, this value specifies
2177
* the number of milliseconds that sacks will be delayed
2178
* for. This value will apply to all addresses of an
2179
* association if the spp_address field is empty. Note
2180
* also, that if delayed sack is enabled and this
2181
* value is set to 0, no change is made to the last
2182
* recorded delayed sack timer value.
2183
*
2184
* spp_flags - These flags are used to control various features
2185
* on an association. The flag field may contain
2186
* zero or more of the following options.
2187
*
2188
* SPP_HB_ENABLE - Enable heartbeats on the
2189
* specified address. Note that if the address
2190
* field is empty all addresses for the association
2191
* have heartbeats enabled upon them.
2192
*
2193
* SPP_HB_DISABLE - Disable heartbeats on the
2194
* speicifed address. Note that if the address
2195
* field is empty all addresses for the association
2196
* will have their heartbeats disabled. Note also
2197
* that SPP_HB_ENABLE and SPP_HB_DISABLE are
2198
* mutually exclusive, only one of these two should
2199
* be specified. Enabling both fields will have
2200
* undetermined results.
2201
*
2202
* SPP_HB_DEMAND - Request a user initiated heartbeat
2203
* to be made immediately.
2204
*
2205
* SPP_HB_TIME_IS_ZERO - Specify's that the time for
2206
* heartbeat delayis to be set to the value of 0
2207
* milliseconds.
2208
*
2209
* SPP_PMTUD_ENABLE - This field will enable PMTU
2210
* discovery upon the specified address. Note that
2211
* if the address feild is empty then all addresses
2212
* on the association are effected.
2213
*
2214
* SPP_PMTUD_DISABLE - This field will disable PMTU
2215
* discovery upon the specified address. Note that
2216
* if the address feild is empty then all addresses
2217
* on the association are effected. Not also that
2218
* SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2219
* exclusive. Enabling both will have undetermined
2220
* results.
2221
*
2222
* SPP_SACKDELAY_ENABLE - Setting this flag turns
2223
* on delayed sack. The time specified in spp_sackdelay
2224
* is used to specify the sack delay for this address. Note
2225
* that if spp_address is empty then all addresses will
2226
* enable delayed sack and take on the sack delay
2227
* value specified in spp_sackdelay.
2228
* SPP_SACKDELAY_DISABLE - Setting this flag turns
2229
* off delayed sack. If the spp_address field is blank then
2230
* delayed sack is disabled for the entire association. Note
2231
* also that this field is mutually exclusive to
2232
* SPP_SACKDELAY_ENABLE, setting both will have undefined
2233
* results.
2234
*/
2235
static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2236
struct sctp_transport *trans,
2237
struct sctp_association *asoc,
2238
struct sctp_sock *sp,
2239
int hb_change,
2240
int pmtud_change,
2241
int sackdelay_change)
2242
{
2243
int error;
2244
2245
if (params->spp_flags & SPP_HB_DEMAND && trans) {
2246
error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2247
if (error)
2248
return error;
2249
}
2250
2251
/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2252
* this field is ignored. Note also that a value of zero indicates
2253
* the current setting should be left unchanged.
2254
*/
2255
if (params->spp_flags & SPP_HB_ENABLE) {
2256
2257
/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2258
* set. This lets us use 0 value when this flag
2259
* is set.
2260
*/
2261
if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2262
params->spp_hbinterval = 0;
2263
2264
if (params->spp_hbinterval ||
2265
(params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2266
if (trans) {
2267
trans->hbinterval =
2268
msecs_to_jiffies(params->spp_hbinterval);
2269
} else if (asoc) {
2270
asoc->hbinterval =
2271
msecs_to_jiffies(params->spp_hbinterval);
2272
} else {
2273
sp->hbinterval = params->spp_hbinterval;
2274
}
2275
}
2276
}
2277
2278
if (hb_change) {
2279
if (trans) {
2280
trans->param_flags =
2281
(trans->param_flags & ~SPP_HB) | hb_change;
2282
} else if (asoc) {
2283
asoc->param_flags =
2284
(asoc->param_flags & ~SPP_HB) | hb_change;
2285
} else {
2286
sp->param_flags =
2287
(sp->param_flags & ~SPP_HB) | hb_change;
2288
}
2289
}
2290
2291
/* When Path MTU discovery is disabled the value specified here will
2292
* be the "fixed" path mtu (i.e. the value of the spp_flags field must
2293
* include the flag SPP_PMTUD_DISABLE for this field to have any
2294
* effect).
2295
*/
2296
if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2297
if (trans) {
2298
trans->pathmtu = params->spp_pathmtu;
2299
sctp_assoc_sync_pmtu(asoc);
2300
} else if (asoc) {
2301
asoc->pathmtu = params->spp_pathmtu;
2302
sctp_frag_point(asoc, params->spp_pathmtu);
2303
} else {
2304
sp->pathmtu = params->spp_pathmtu;
2305
}
2306
}
2307
2308
if (pmtud_change) {
2309
if (trans) {
2310
int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2311
(params->spp_flags & SPP_PMTUD_ENABLE);
2312
trans->param_flags =
2313
(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2314
if (update) {
2315
sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2316
sctp_assoc_sync_pmtu(asoc);
2317
}
2318
} else if (asoc) {
2319
asoc->param_flags =
2320
(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2321
} else {
2322
sp->param_flags =
2323
(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2324
}
2325
}
2326
2327
/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2328
* value of this field is ignored. Note also that a value of zero
2329
* indicates the current setting should be left unchanged.
2330
*/
2331
if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2332
if (trans) {
2333
trans->sackdelay =
2334
msecs_to_jiffies(params->spp_sackdelay);
2335
} else if (asoc) {
2336
asoc->sackdelay =
2337
msecs_to_jiffies(params->spp_sackdelay);
2338
} else {
2339
sp->sackdelay = params->spp_sackdelay;
2340
}
2341
}
2342
2343
if (sackdelay_change) {
2344
if (trans) {
2345
trans->param_flags =
2346
(trans->param_flags & ~SPP_SACKDELAY) |
2347
sackdelay_change;
2348
} else if (asoc) {
2349
asoc->param_flags =
2350
(asoc->param_flags & ~SPP_SACKDELAY) |
2351
sackdelay_change;
2352
} else {
2353
sp->param_flags =
2354
(sp->param_flags & ~SPP_SACKDELAY) |
2355
sackdelay_change;
2356
}
2357
}
2358
2359
/* Note that a value of zero indicates the current setting should be
2360
left unchanged.
2361
*/
2362
if (params->spp_pathmaxrxt) {
2363
if (trans) {
2364
trans->pathmaxrxt = params->spp_pathmaxrxt;
2365
} else if (asoc) {
2366
asoc->pathmaxrxt = params->spp_pathmaxrxt;
2367
} else {
2368
sp->pathmaxrxt = params->spp_pathmaxrxt;
2369
}
2370
}
2371
2372
return 0;
2373
}
2374
2375
static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2376
char __user *optval,
2377
unsigned int optlen)
2378
{
2379
struct sctp_paddrparams params;
2380
struct sctp_transport *trans = NULL;
2381
struct sctp_association *asoc = NULL;
2382
struct sctp_sock *sp = sctp_sk(sk);
2383
int error;
2384
int hb_change, pmtud_change, sackdelay_change;
2385
2386
if (optlen != sizeof(struct sctp_paddrparams))
2387
return - EINVAL;
2388
2389
if (copy_from_user(&params, optval, optlen))
2390
return -EFAULT;
2391
2392
/* Validate flags and value parameters. */
2393
hb_change = params.spp_flags & SPP_HB;
2394
pmtud_change = params.spp_flags & SPP_PMTUD;
2395
sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2396
2397
if (hb_change == SPP_HB ||
2398
pmtud_change == SPP_PMTUD ||
2399
sackdelay_change == SPP_SACKDELAY ||
2400
params.spp_sackdelay > 500 ||
2401
(params.spp_pathmtu &&
2402
params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2403
return -EINVAL;
2404
2405
/* If an address other than INADDR_ANY is specified, and
2406
* no transport is found, then the request is invalid.
2407
*/
2408
if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2409
trans = sctp_addr_id2transport(sk, &params.spp_address,
2410
params.spp_assoc_id);
2411
if (!trans)
2412
return -EINVAL;
2413
}
2414
2415
/* Get association, if assoc_id != 0 and the socket is a one
2416
* to many style socket, and an association was not found, then
2417
* the id was invalid.
2418
*/
2419
asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2420
if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2421
return -EINVAL;
2422
2423
/* Heartbeat demand can only be sent on a transport or
2424
* association, but not a socket.
2425
*/
2426
if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2427
return -EINVAL;
2428
2429
/* Process parameters. */
2430
error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2431
hb_change, pmtud_change,
2432
sackdelay_change);
2433
2434
if (error)
2435
return error;
2436
2437
/* If changes are for association, also apply parameters to each
2438
* transport.
2439
*/
2440
if (!trans && asoc) {
2441
list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2442
transports) {
2443
sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2444
hb_change, pmtud_change,
2445
sackdelay_change);
2446
}
2447
}
2448
2449
return 0;
2450
}
2451
2452
/*
2453
* 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2454
*
2455
* This option will effect the way delayed acks are performed. This
2456
* option allows you to get or set the delayed ack time, in
2457
* milliseconds. It also allows changing the delayed ack frequency.
2458
* Changing the frequency to 1 disables the delayed sack algorithm. If
2459
* the assoc_id is 0, then this sets or gets the endpoints default
2460
* values. If the assoc_id field is non-zero, then the set or get
2461
* effects the specified association for the one to many model (the
2462
* assoc_id field is ignored by the one to one model). Note that if
2463
* sack_delay or sack_freq are 0 when setting this option, then the
2464
* current values will remain unchanged.
2465
*
2466
* struct sctp_sack_info {
2467
* sctp_assoc_t sack_assoc_id;
2468
* uint32_t sack_delay;
2469
* uint32_t sack_freq;
2470
* };
2471
*
2472
* sack_assoc_id - This parameter, indicates which association the user
2473
* is performing an action upon. Note that if this field's value is
2474
* zero then the endpoints default value is changed (effecting future
2475
* associations only).
2476
*
2477
* sack_delay - This parameter contains the number of milliseconds that
2478
* the user is requesting the delayed ACK timer be set to. Note that
2479
* this value is defined in the standard to be between 200 and 500
2480
* milliseconds.
2481
*
2482
* sack_freq - This parameter contains the number of packets that must
2483
* be received before a sack is sent without waiting for the delay
2484
* timer to expire. The default value for this is 2, setting this
2485
* value to 1 will disable the delayed sack algorithm.
2486
*/
2487
2488
static int sctp_setsockopt_delayed_ack(struct sock *sk,
2489
char __user *optval, unsigned int optlen)
2490
{
2491
struct sctp_sack_info params;
2492
struct sctp_transport *trans = NULL;
2493
struct sctp_association *asoc = NULL;
2494
struct sctp_sock *sp = sctp_sk(sk);
2495
2496
if (optlen == sizeof(struct sctp_sack_info)) {
2497
if (copy_from_user(&params, optval, optlen))
2498
return -EFAULT;
2499
2500
if (params.sack_delay == 0 && params.sack_freq == 0)
2501
return 0;
2502
} else if (optlen == sizeof(struct sctp_assoc_value)) {
2503
pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2504
pr_warn("Use struct sctp_sack_info instead\n");
2505
if (copy_from_user(&params, optval, optlen))
2506
return -EFAULT;
2507
2508
if (params.sack_delay == 0)
2509
params.sack_freq = 1;
2510
else
2511
params.sack_freq = 0;
2512
} else
2513
return - EINVAL;
2514
2515
/* Validate value parameter. */
2516
if (params.sack_delay > 500)
2517
return -EINVAL;
2518
2519
/* Get association, if sack_assoc_id != 0 and the socket is a one
2520
* to many style socket, and an association was not found, then
2521
* the id was invalid.
2522
*/
2523
asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2524
if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2525
return -EINVAL;
2526
2527
if (params.sack_delay) {
2528
if (asoc) {
2529
asoc->sackdelay =
2530
msecs_to_jiffies(params.sack_delay);
2531
asoc->param_flags =
2532
(asoc->param_flags & ~SPP_SACKDELAY) |
2533
SPP_SACKDELAY_ENABLE;
2534
} else {
2535
sp->sackdelay = params.sack_delay;
2536
sp->param_flags =
2537
(sp->param_flags & ~SPP_SACKDELAY) |
2538
SPP_SACKDELAY_ENABLE;
2539
}
2540
}
2541
2542
if (params.sack_freq == 1) {
2543
if (asoc) {
2544
asoc->param_flags =
2545
(asoc->param_flags & ~SPP_SACKDELAY) |
2546
SPP_SACKDELAY_DISABLE;
2547
} else {
2548
sp->param_flags =
2549
(sp->param_flags & ~SPP_SACKDELAY) |
2550
SPP_SACKDELAY_DISABLE;
2551
}
2552
} else if (params.sack_freq > 1) {
2553
if (asoc) {
2554
asoc->sackfreq = params.sack_freq;
2555
asoc->param_flags =
2556
(asoc->param_flags & ~SPP_SACKDELAY) |
2557
SPP_SACKDELAY_ENABLE;
2558
} else {
2559
sp->sackfreq = params.sack_freq;
2560
sp->param_flags =
2561
(sp->param_flags & ~SPP_SACKDELAY) |
2562
SPP_SACKDELAY_ENABLE;
2563
}
2564
}
2565
2566
/* If change is for association, also apply to each transport. */
2567
if (asoc) {
2568
list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2569
transports) {
2570
if (params.sack_delay) {
2571
trans->sackdelay =
2572
msecs_to_jiffies(params.sack_delay);
2573
trans->param_flags =
2574
(trans->param_flags & ~SPP_SACKDELAY) |
2575
SPP_SACKDELAY_ENABLE;
2576
}
2577
if (params.sack_freq == 1) {
2578
trans->param_flags =
2579
(trans->param_flags & ~SPP_SACKDELAY) |
2580
SPP_SACKDELAY_DISABLE;
2581
} else if (params.sack_freq > 1) {
2582
trans->sackfreq = params.sack_freq;
2583
trans->param_flags =
2584
(trans->param_flags & ~SPP_SACKDELAY) |
2585
SPP_SACKDELAY_ENABLE;
2586
}
2587
}
2588
}
2589
2590
return 0;
2591
}
2592
2593
/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2594
*
2595
* Applications can specify protocol parameters for the default association
2596
* initialization. The option name argument to setsockopt() and getsockopt()
2597
* is SCTP_INITMSG.
2598
*
2599
* Setting initialization parameters is effective only on an unconnected
2600
* socket (for UDP-style sockets only future associations are effected
2601
* by the change). With TCP-style sockets, this option is inherited by
2602
* sockets derived from a listener socket.
2603
*/
2604
static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2605
{
2606
struct sctp_initmsg sinit;
2607
struct sctp_sock *sp = sctp_sk(sk);
2608
2609
if (optlen != sizeof(struct sctp_initmsg))
2610
return -EINVAL;
2611
if (copy_from_user(&sinit, optval, optlen))
2612
return -EFAULT;
2613
2614
if (sinit.sinit_num_ostreams)
2615
sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2616
if (sinit.sinit_max_instreams)
2617
sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2618
if (sinit.sinit_max_attempts)
2619
sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2620
if (sinit.sinit_max_init_timeo)
2621
sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2622
2623
return 0;
2624
}
2625
2626
/*
2627
* 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2628
*
2629
* Applications that wish to use the sendto() system call may wish to
2630
* specify a default set of parameters that would normally be supplied
2631
* through the inclusion of ancillary data. This socket option allows
2632
* such an application to set the default sctp_sndrcvinfo structure.
2633
* The application that wishes to use this socket option simply passes
2634
* in to this call the sctp_sndrcvinfo structure defined in Section
2635
* 5.2.2) The input parameters accepted by this call include
2636
* sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2637
* sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2638
* to this call if the caller is using the UDP model.
2639
*/
2640
static int sctp_setsockopt_default_send_param(struct sock *sk,
2641
char __user *optval,
2642
unsigned int optlen)
2643
{
2644
struct sctp_sndrcvinfo info;
2645
struct sctp_association *asoc;
2646
struct sctp_sock *sp = sctp_sk(sk);
2647
2648
if (optlen != sizeof(struct sctp_sndrcvinfo))
2649
return -EINVAL;
2650
if (copy_from_user(&info, optval, optlen))
2651
return -EFAULT;
2652
2653
asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2654
if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2655
return -EINVAL;
2656
2657
if (asoc) {
2658
asoc->default_stream = info.sinfo_stream;
2659
asoc->default_flags = info.sinfo_flags;
2660
asoc->default_ppid = info.sinfo_ppid;
2661
asoc->default_context = info.sinfo_context;
2662
asoc->default_timetolive = info.sinfo_timetolive;
2663
} else {
2664
sp->default_stream = info.sinfo_stream;
2665
sp->default_flags = info.sinfo_flags;
2666
sp->default_ppid = info.sinfo_ppid;
2667
sp->default_context = info.sinfo_context;
2668
sp->default_timetolive = info.sinfo_timetolive;
2669
}
2670
2671
return 0;
2672
}
2673
2674
/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2675
*
2676
* Requests that the local SCTP stack use the enclosed peer address as
2677
* the association primary. The enclosed address must be one of the
2678
* association peer's addresses.
2679
*/
2680
static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2681
unsigned int optlen)
2682
{
2683
struct sctp_prim prim;
2684
struct sctp_transport *trans;
2685
2686
if (optlen != sizeof(struct sctp_prim))
2687
return -EINVAL;
2688
2689
if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2690
return -EFAULT;
2691
2692
trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2693
if (!trans)
2694
return -EINVAL;
2695
2696
sctp_assoc_set_primary(trans->asoc, trans);
2697
2698
return 0;
2699
}
2700
2701
/*
2702
* 7.1.5 SCTP_NODELAY
2703
*
2704
* Turn on/off any Nagle-like algorithm. This means that packets are
2705
* generally sent as soon as possible and no unnecessary delays are
2706
* introduced, at the cost of more packets in the network. Expects an
2707
* integer boolean flag.
2708
*/
2709
static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2710
unsigned int optlen)
2711
{
2712
int val;
2713
2714
if (optlen < sizeof(int))
2715
return -EINVAL;
2716
if (get_user(val, (int __user *)optval))
2717
return -EFAULT;
2718
2719
sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2720
return 0;
2721
}
2722
2723
/*
2724
*
2725
* 7.1.1 SCTP_RTOINFO
2726
*
2727
* The protocol parameters used to initialize and bound retransmission
2728
* timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2729
* and modify these parameters.
2730
* All parameters are time values, in milliseconds. A value of 0, when
2731
* modifying the parameters, indicates that the current value should not
2732
* be changed.
2733
*
2734
*/
2735
static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2736
{
2737
struct sctp_rtoinfo rtoinfo;
2738
struct sctp_association *asoc;
2739
2740
if (optlen != sizeof (struct sctp_rtoinfo))
2741
return -EINVAL;
2742
2743
if (copy_from_user(&rtoinfo, optval, optlen))
2744
return -EFAULT;
2745
2746
asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2747
2748
/* Set the values to the specific association */
2749
if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2750
return -EINVAL;
2751
2752
if (asoc) {
2753
if (rtoinfo.srto_initial != 0)
2754
asoc->rto_initial =
2755
msecs_to_jiffies(rtoinfo.srto_initial);
2756
if (rtoinfo.srto_max != 0)
2757
asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2758
if (rtoinfo.srto_min != 0)
2759
asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2760
} else {
2761
/* If there is no association or the association-id = 0
2762
* set the values to the endpoint.
2763
*/
2764
struct sctp_sock *sp = sctp_sk(sk);
2765
2766
if (rtoinfo.srto_initial != 0)
2767
sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2768
if (rtoinfo.srto_max != 0)
2769
sp->rtoinfo.srto_max = rtoinfo.srto_max;
2770
if (rtoinfo.srto_min != 0)
2771
sp->rtoinfo.srto_min = rtoinfo.srto_min;
2772
}
2773
2774
return 0;
2775
}
2776
2777
/*
2778
*
2779
* 7.1.2 SCTP_ASSOCINFO
2780
*
2781
* This option is used to tune the maximum retransmission attempts
2782
* of the association.
2783
* Returns an error if the new association retransmission value is
2784
* greater than the sum of the retransmission value of the peer.
2785
* See [SCTP] for more information.
2786
*
2787
*/
2788
static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2789
{
2790
2791
struct sctp_assocparams assocparams;
2792
struct sctp_association *asoc;
2793
2794
if (optlen != sizeof(struct sctp_assocparams))
2795
return -EINVAL;
2796
if (copy_from_user(&assocparams, optval, optlen))
2797
return -EFAULT;
2798
2799
asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2800
2801
if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2802
return -EINVAL;
2803
2804
/* Set the values to the specific association */
2805
if (asoc) {
2806
if (assocparams.sasoc_asocmaxrxt != 0) {
2807
__u32 path_sum = 0;
2808
int paths = 0;
2809
struct sctp_transport *peer_addr;
2810
2811
list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2812
transports) {
2813
path_sum += peer_addr->pathmaxrxt;
2814
paths++;
2815
}
2816
2817
/* Only validate asocmaxrxt if we have more than
2818
* one path/transport. We do this because path
2819
* retransmissions are only counted when we have more
2820
* then one path.
2821
*/
2822
if (paths > 1 &&
2823
assocparams.sasoc_asocmaxrxt > path_sum)
2824
return -EINVAL;
2825
2826
asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2827
}
2828
2829
if (assocparams.sasoc_cookie_life != 0) {
2830
asoc->cookie_life.tv_sec =
2831
assocparams.sasoc_cookie_life / 1000;
2832
asoc->cookie_life.tv_usec =
2833
(assocparams.sasoc_cookie_life % 1000)
2834
* 1000;
2835
}
2836
} else {
2837
/* Set the values to the endpoint */
2838
struct sctp_sock *sp = sctp_sk(sk);
2839
2840
if (assocparams.sasoc_asocmaxrxt != 0)
2841
sp->assocparams.sasoc_asocmaxrxt =
2842
assocparams.sasoc_asocmaxrxt;
2843
if (assocparams.sasoc_cookie_life != 0)
2844
sp->assocparams.sasoc_cookie_life =
2845
assocparams.sasoc_cookie_life;
2846
}
2847
return 0;
2848
}
2849
2850
/*
2851
* 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2852
*
2853
* This socket option is a boolean flag which turns on or off mapped V4
2854
* addresses. If this option is turned on and the socket is type
2855
* PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2856
* If this option is turned off, then no mapping will be done of V4
2857
* addresses and a user will receive both PF_INET6 and PF_INET type
2858
* addresses on the socket.
2859
*/
2860
static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2861
{
2862
int val;
2863
struct sctp_sock *sp = sctp_sk(sk);
2864
2865
if (optlen < sizeof(int))
2866
return -EINVAL;
2867
if (get_user(val, (int __user *)optval))
2868
return -EFAULT;
2869
if (val)
2870
sp->v4mapped = 1;
2871
else
2872
sp->v4mapped = 0;
2873
2874
return 0;
2875
}
2876
2877
/*
2878
* 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2879
* This option will get or set the maximum size to put in any outgoing
2880
* SCTP DATA chunk. If a message is larger than this size it will be
2881
* fragmented by SCTP into the specified size. Note that the underlying
2882
* SCTP implementation may fragment into smaller sized chunks when the
2883
* PMTU of the underlying association is smaller than the value set by
2884
* the user. The default value for this option is '0' which indicates
2885
* the user is NOT limiting fragmentation and only the PMTU will effect
2886
* SCTP's choice of DATA chunk size. Note also that values set larger
2887
* than the maximum size of an IP datagram will effectively let SCTP
2888
* control fragmentation (i.e. the same as setting this option to 0).
2889
*
2890
* The following structure is used to access and modify this parameter:
2891
*
2892
* struct sctp_assoc_value {
2893
* sctp_assoc_t assoc_id;
2894
* uint32_t assoc_value;
2895
* };
2896
*
2897
* assoc_id: This parameter is ignored for one-to-one style sockets.
2898
* For one-to-many style sockets this parameter indicates which
2899
* association the user is performing an action upon. Note that if
2900
* this field's value is zero then the endpoints default value is
2901
* changed (effecting future associations only).
2902
* assoc_value: This parameter specifies the maximum size in bytes.
2903
*/
2904
static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2905
{
2906
struct sctp_assoc_value params;
2907
struct sctp_association *asoc;
2908
struct sctp_sock *sp = sctp_sk(sk);
2909
int val;
2910
2911
if (optlen == sizeof(int)) {
2912
pr_warn("Use of int in maxseg socket option deprecated\n");
2913
pr_warn("Use struct sctp_assoc_value instead\n");
2914
if (copy_from_user(&val, optval, optlen))
2915
return -EFAULT;
2916
params.assoc_id = 0;
2917
} else if (optlen == sizeof(struct sctp_assoc_value)) {
2918
if (copy_from_user(&params, optval, optlen))
2919
return -EFAULT;
2920
val = params.assoc_value;
2921
} else
2922
return -EINVAL;
2923
2924
if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2925
return -EINVAL;
2926
2927
asoc = sctp_id2assoc(sk, params.assoc_id);
2928
if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2929
return -EINVAL;
2930
2931
if (asoc) {
2932
if (val == 0) {
2933
val = asoc->pathmtu;
2934
val -= sp->pf->af->net_header_len;
2935
val -= sizeof(struct sctphdr) +
2936
sizeof(struct sctp_data_chunk);
2937
}
2938
asoc->user_frag = val;
2939
asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
2940
} else {
2941
sp->user_frag = val;
2942
}
2943
2944
return 0;
2945
}
2946
2947
2948
/*
2949
* 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2950
*
2951
* Requests that the peer mark the enclosed address as the association
2952
* primary. The enclosed address must be one of the association's
2953
* locally bound addresses. The following structure is used to make a
2954
* set primary request:
2955
*/
2956
static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2957
unsigned int optlen)
2958
{
2959
struct sctp_sock *sp;
2960
struct sctp_association *asoc = NULL;
2961
struct sctp_setpeerprim prim;
2962
struct sctp_chunk *chunk;
2963
struct sctp_af *af;
2964
int err;
2965
2966
sp = sctp_sk(sk);
2967
2968
if (!sctp_addip_enable)
2969
return -EPERM;
2970
2971
if (optlen != sizeof(struct sctp_setpeerprim))
2972
return -EINVAL;
2973
2974
if (copy_from_user(&prim, optval, optlen))
2975
return -EFAULT;
2976
2977
asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2978
if (!asoc)
2979
return -EINVAL;
2980
2981
if (!asoc->peer.asconf_capable)
2982
return -EPERM;
2983
2984
if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2985
return -EPERM;
2986
2987
if (!sctp_state(asoc, ESTABLISHED))
2988
return -ENOTCONN;
2989
2990
af = sctp_get_af_specific(prim.sspp_addr.ss_family);
2991
if (!af)
2992
return -EINVAL;
2993
2994
if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
2995
return -EADDRNOTAVAIL;
2996
2997
if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2998
return -EADDRNOTAVAIL;
2999
3000
/* Create an ASCONF chunk with SET_PRIMARY parameter */
3001
chunk = sctp_make_asconf_set_prim(asoc,
3002
(union sctp_addr *)&prim.sspp_addr);
3003
if (!chunk)
3004
return -ENOMEM;
3005
3006
err = sctp_send_asconf(asoc, chunk);
3007
3008
SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3009
3010
return err;
3011
}
3012
3013
static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3014
unsigned int optlen)
3015
{
3016
struct sctp_setadaptation adaptation;
3017
3018
if (optlen != sizeof(struct sctp_setadaptation))
3019
return -EINVAL;
3020
if (copy_from_user(&adaptation, optval, optlen))
3021
return -EFAULT;
3022
3023
sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3024
3025
return 0;
3026
}
3027
3028
/*
3029
* 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3030
*
3031
* The context field in the sctp_sndrcvinfo structure is normally only
3032
* used when a failed message is retrieved holding the value that was
3033
* sent down on the actual send call. This option allows the setting of
3034
* a default context on an association basis that will be received on
3035
* reading messages from the peer. This is especially helpful in the
3036
* one-2-many model for an application to keep some reference to an
3037
* internal state machine that is processing messages on the
3038
* association. Note that the setting of this value only effects
3039
* received messages from the peer and does not effect the value that is
3040
* saved with outbound messages.
3041
*/
3042
static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3043
unsigned int optlen)
3044
{
3045
struct sctp_assoc_value params;
3046
struct sctp_sock *sp;
3047
struct sctp_association *asoc;
3048
3049
if (optlen != sizeof(struct sctp_assoc_value))
3050
return -EINVAL;
3051
if (copy_from_user(&params, optval, optlen))
3052
return -EFAULT;
3053
3054
sp = sctp_sk(sk);
3055
3056
if (params.assoc_id != 0) {
3057
asoc = sctp_id2assoc(sk, params.assoc_id);
3058
if (!asoc)
3059
return -EINVAL;
3060
asoc->default_rcv_context = params.assoc_value;
3061
} else {
3062
sp->default_rcv_context = params.assoc_value;
3063
}
3064
3065
return 0;
3066
}
3067
3068
/*
3069
* 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3070
*
3071
* This options will at a minimum specify if the implementation is doing
3072
* fragmented interleave. Fragmented interleave, for a one to many
3073
* socket, is when subsequent calls to receive a message may return
3074
* parts of messages from different associations. Some implementations
3075
* may allow you to turn this value on or off. If so, when turned off,
3076
* no fragment interleave will occur (which will cause a head of line
3077
* blocking amongst multiple associations sharing the same one to many
3078
* socket). When this option is turned on, then each receive call may
3079
* come from a different association (thus the user must receive data
3080
* with the extended calls (e.g. sctp_recvmsg) to keep track of which
3081
* association each receive belongs to.
3082
*
3083
* This option takes a boolean value. A non-zero value indicates that
3084
* fragmented interleave is on. A value of zero indicates that
3085
* fragmented interleave is off.
3086
*
3087
* Note that it is important that an implementation that allows this
3088
* option to be turned on, have it off by default. Otherwise an unaware
3089
* application using the one to many model may become confused and act
3090
* incorrectly.
3091
*/
3092
static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3093
char __user *optval,
3094
unsigned int optlen)
3095
{
3096
int val;
3097
3098
if (optlen != sizeof(int))
3099
return -EINVAL;
3100
if (get_user(val, (int __user *)optval))
3101
return -EFAULT;
3102
3103
sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3104
3105
return 0;
3106
}
3107
3108
/*
3109
* 8.1.21. Set or Get the SCTP Partial Delivery Point
3110
* (SCTP_PARTIAL_DELIVERY_POINT)
3111
*
3112
* This option will set or get the SCTP partial delivery point. This
3113
* point is the size of a message where the partial delivery API will be
3114
* invoked to help free up rwnd space for the peer. Setting this to a
3115
* lower value will cause partial deliveries to happen more often. The
3116
* calls argument is an integer that sets or gets the partial delivery
3117
* point. Note also that the call will fail if the user attempts to set
3118
* this value larger than the socket receive buffer size.
3119
*
3120
* Note that any single message having a length smaller than or equal to
3121
* the SCTP partial delivery point will be delivered in one single read
3122
* call as long as the user provided buffer is large enough to hold the
3123
* message.
3124
*/
3125
static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3126
char __user *optval,
3127
unsigned int optlen)
3128
{
3129
u32 val;
3130
3131
if (optlen != sizeof(u32))
3132
return -EINVAL;
3133
if (get_user(val, (int __user *)optval))
3134
return -EFAULT;
3135
3136
/* Note: We double the receive buffer from what the user sets
3137
* it to be, also initial rwnd is based on rcvbuf/2.
3138
*/
3139
if (val > (sk->sk_rcvbuf >> 1))
3140
return -EINVAL;
3141
3142
sctp_sk(sk)->pd_point = val;
3143
3144
return 0; /* is this the right error code? */
3145
}
3146
3147
/*
3148
* 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3149
*
3150
* This option will allow a user to change the maximum burst of packets
3151
* that can be emitted by this association. Note that the default value
3152
* is 4, and some implementations may restrict this setting so that it
3153
* can only be lowered.
3154
*
3155
* NOTE: This text doesn't seem right. Do this on a socket basis with
3156
* future associations inheriting the socket value.
3157
*/
3158
static int sctp_setsockopt_maxburst(struct sock *sk,
3159
char __user *optval,
3160
unsigned int optlen)
3161
{
3162
struct sctp_assoc_value params;
3163
struct sctp_sock *sp;
3164
struct sctp_association *asoc;
3165
int val;
3166
int assoc_id = 0;
3167
3168
if (optlen == sizeof(int)) {
3169
pr_warn("Use of int in max_burst socket option deprecated\n");
3170
pr_warn("Use struct sctp_assoc_value instead\n");
3171
if (copy_from_user(&val, optval, optlen))
3172
return -EFAULT;
3173
} else if (optlen == sizeof(struct sctp_assoc_value)) {
3174
if (copy_from_user(&params, optval, optlen))
3175
return -EFAULT;
3176
val = params.assoc_value;
3177
assoc_id = params.assoc_id;
3178
} else
3179
return -EINVAL;
3180
3181
sp = sctp_sk(sk);
3182
3183
if (assoc_id != 0) {
3184
asoc = sctp_id2assoc(sk, assoc_id);
3185
if (!asoc)
3186
return -EINVAL;
3187
asoc->max_burst = val;
3188
} else
3189
sp->max_burst = val;
3190
3191
return 0;
3192
}
3193
3194
/*
3195
* 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3196
*
3197
* This set option adds a chunk type that the user is requesting to be
3198
* received only in an authenticated way. Changes to the list of chunks
3199
* will only effect future associations on the socket.
3200
*/
3201
static int sctp_setsockopt_auth_chunk(struct sock *sk,
3202
char __user *optval,
3203
unsigned int optlen)
3204
{
3205
struct sctp_authchunk val;
3206
3207
if (!sctp_auth_enable)
3208
return -EACCES;
3209
3210
if (optlen != sizeof(struct sctp_authchunk))
3211
return -EINVAL;
3212
if (copy_from_user(&val, optval, optlen))
3213
return -EFAULT;
3214
3215
switch (val.sauth_chunk) {
3216
case SCTP_CID_INIT:
3217
case SCTP_CID_INIT_ACK:
3218
case SCTP_CID_SHUTDOWN_COMPLETE:
3219
case SCTP_CID_AUTH:
3220
return -EINVAL;
3221
}
3222
3223
/* add this chunk id to the endpoint */
3224
return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3225
}
3226
3227
/*
3228
* 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3229
*
3230
* This option gets or sets the list of HMAC algorithms that the local
3231
* endpoint requires the peer to use.
3232
*/
3233
static int sctp_setsockopt_hmac_ident(struct sock *sk,
3234
char __user *optval,
3235
unsigned int optlen)
3236
{
3237
struct sctp_hmacalgo *hmacs;
3238
u32 idents;
3239
int err;
3240
3241
if (!sctp_auth_enable)
3242
return -EACCES;
3243
3244
if (optlen < sizeof(struct sctp_hmacalgo))
3245
return -EINVAL;
3246
3247
hmacs= memdup_user(optval, optlen);
3248
if (IS_ERR(hmacs))
3249
return PTR_ERR(hmacs);
3250
3251
idents = hmacs->shmac_num_idents;
3252
if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3253
(idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3254
err = -EINVAL;
3255
goto out;
3256
}
3257
3258
err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3259
out:
3260
kfree(hmacs);
3261
return err;
3262
}
3263
3264
/*
3265
* 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3266
*
3267
* This option will set a shared secret key which is used to build an
3268
* association shared key.
3269
*/
3270
static int sctp_setsockopt_auth_key(struct sock *sk,
3271
char __user *optval,
3272
unsigned int optlen)
3273
{
3274
struct sctp_authkey *authkey;
3275
struct sctp_association *asoc;
3276
int ret;
3277
3278
if (!sctp_auth_enable)
3279
return -EACCES;
3280
3281
if (optlen <= sizeof(struct sctp_authkey))
3282
return -EINVAL;
3283
3284
authkey= memdup_user(optval, optlen);
3285
if (IS_ERR(authkey))
3286
return PTR_ERR(authkey);
3287
3288
if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3289
ret = -EINVAL;
3290
goto out;
3291
}
3292
3293
asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3294
if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3295
ret = -EINVAL;
3296
goto out;
3297
}
3298
3299
ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3300
out:
3301
kfree(authkey);
3302
return ret;
3303
}
3304
3305
/*
3306
* 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3307
*
3308
* This option will get or set the active shared key to be used to build
3309
* the association shared key.
3310
*/
3311
static int sctp_setsockopt_active_key(struct sock *sk,
3312
char __user *optval,
3313
unsigned int optlen)
3314
{
3315
struct sctp_authkeyid val;
3316
struct sctp_association *asoc;
3317
3318
if (!sctp_auth_enable)
3319
return -EACCES;
3320
3321
if (optlen != sizeof(struct sctp_authkeyid))
3322
return -EINVAL;
3323
if (copy_from_user(&val, optval, optlen))
3324
return -EFAULT;
3325
3326
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3327
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3328
return -EINVAL;
3329
3330
return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3331
val.scact_keynumber);
3332
}
3333
3334
/*
3335
* 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3336
*
3337
* This set option will delete a shared secret key from use.
3338
*/
3339
static int sctp_setsockopt_del_key(struct sock *sk,
3340
char __user *optval,
3341
unsigned int optlen)
3342
{
3343
struct sctp_authkeyid val;
3344
struct sctp_association *asoc;
3345
3346
if (!sctp_auth_enable)
3347
return -EACCES;
3348
3349
if (optlen != sizeof(struct sctp_authkeyid))
3350
return -EINVAL;
3351
if (copy_from_user(&val, optval, optlen))
3352
return -EFAULT;
3353
3354
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3355
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3356
return -EINVAL;
3357
3358
return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3359
val.scact_keynumber);
3360
3361
}
3362
3363
3364
/* API 6.2 setsockopt(), getsockopt()
3365
*
3366
* Applications use setsockopt() and getsockopt() to set or retrieve
3367
* socket options. Socket options are used to change the default
3368
* behavior of sockets calls. They are described in Section 7.
3369
*
3370
* The syntax is:
3371
*
3372
* ret = getsockopt(int sd, int level, int optname, void __user *optval,
3373
* int __user *optlen);
3374
* ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3375
* int optlen);
3376
*
3377
* sd - the socket descript.
3378
* level - set to IPPROTO_SCTP for all SCTP options.
3379
* optname - the option name.
3380
* optval - the buffer to store the value of the option.
3381
* optlen - the size of the buffer.
3382
*/
3383
SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3384
char __user *optval, unsigned int optlen)
3385
{
3386
int retval = 0;
3387
3388
SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3389
sk, optname);
3390
3391
/* I can hardly begin to describe how wrong this is. This is
3392
* so broken as to be worse than useless. The API draft
3393
* REALLY is NOT helpful here... I am not convinced that the
3394
* semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3395
* are at all well-founded.
3396
*/
3397
if (level != SOL_SCTP) {
3398
struct sctp_af *af = sctp_sk(sk)->pf->af;
3399
retval = af->setsockopt(sk, level, optname, optval, optlen);
3400
goto out_nounlock;
3401
}
3402
3403
sctp_lock_sock(sk);
3404
3405
switch (optname) {
3406
case SCTP_SOCKOPT_BINDX_ADD:
3407
/* 'optlen' is the size of the addresses buffer. */
3408
retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3409
optlen, SCTP_BINDX_ADD_ADDR);
3410
break;
3411
3412
case SCTP_SOCKOPT_BINDX_REM:
3413
/* 'optlen' is the size of the addresses buffer. */
3414
retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3415
optlen, SCTP_BINDX_REM_ADDR);
3416
break;
3417
3418
case SCTP_SOCKOPT_CONNECTX_OLD:
3419
/* 'optlen' is the size of the addresses buffer. */
3420
retval = sctp_setsockopt_connectx_old(sk,
3421
(struct sockaddr __user *)optval,
3422
optlen);
3423
break;
3424
3425
case SCTP_SOCKOPT_CONNECTX:
3426
/* 'optlen' is the size of the addresses buffer. */
3427
retval = sctp_setsockopt_connectx(sk,
3428
(struct sockaddr __user *)optval,
3429
optlen);
3430
break;
3431
3432
case SCTP_DISABLE_FRAGMENTS:
3433
retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3434
break;
3435
3436
case SCTP_EVENTS:
3437
retval = sctp_setsockopt_events(sk, optval, optlen);
3438
break;
3439
3440
case SCTP_AUTOCLOSE:
3441
retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3442
break;
3443
3444
case SCTP_PEER_ADDR_PARAMS:
3445
retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3446
break;
3447
3448
case SCTP_DELAYED_SACK:
3449
retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3450
break;
3451
case SCTP_PARTIAL_DELIVERY_POINT:
3452
retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3453
break;
3454
3455
case SCTP_INITMSG:
3456
retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3457
break;
3458
case SCTP_DEFAULT_SEND_PARAM:
3459
retval = sctp_setsockopt_default_send_param(sk, optval,
3460
optlen);
3461
break;
3462
case SCTP_PRIMARY_ADDR:
3463
retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3464
break;
3465
case SCTP_SET_PEER_PRIMARY_ADDR:
3466
retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3467
break;
3468
case SCTP_NODELAY:
3469
retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3470
break;
3471
case SCTP_RTOINFO:
3472
retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3473
break;
3474
case SCTP_ASSOCINFO:
3475
retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3476
break;
3477
case SCTP_I_WANT_MAPPED_V4_ADDR:
3478
retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3479
break;
3480
case SCTP_MAXSEG:
3481
retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3482
break;
3483
case SCTP_ADAPTATION_LAYER:
3484
retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3485
break;
3486
case SCTP_CONTEXT:
3487
retval = sctp_setsockopt_context(sk, optval, optlen);
3488
break;
3489
case SCTP_FRAGMENT_INTERLEAVE:
3490
retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3491
break;
3492
case SCTP_MAX_BURST:
3493
retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3494
break;
3495
case SCTP_AUTH_CHUNK:
3496
retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3497
break;
3498
case SCTP_HMAC_IDENT:
3499
retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3500
break;
3501
case SCTP_AUTH_KEY:
3502
retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3503
break;
3504
case SCTP_AUTH_ACTIVE_KEY:
3505
retval = sctp_setsockopt_active_key(sk, optval, optlen);
3506
break;
3507
case SCTP_AUTH_DELETE_KEY:
3508
retval = sctp_setsockopt_del_key(sk, optval, optlen);
3509
break;
3510
default:
3511
retval = -ENOPROTOOPT;
3512
break;
3513
}
3514
3515
sctp_release_sock(sk);
3516
3517
out_nounlock:
3518
return retval;
3519
}
3520
3521
/* API 3.1.6 connect() - UDP Style Syntax
3522
*
3523
* An application may use the connect() call in the UDP model to initiate an
3524
* association without sending data.
3525
*
3526
* The syntax is:
3527
*
3528
* ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3529
*
3530
* sd: the socket descriptor to have a new association added to.
3531
*
3532
* nam: the address structure (either struct sockaddr_in or struct
3533
* sockaddr_in6 defined in RFC2553 [7]).
3534
*
3535
* len: the size of the address.
3536
*/
3537
SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3538
int addr_len)
3539
{
3540
int err = 0;
3541
struct sctp_af *af;
3542
3543
sctp_lock_sock(sk);
3544
3545
SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3546
__func__, sk, addr, addr_len);
3547
3548
/* Validate addr_len before calling common connect/connectx routine. */
3549
af = sctp_get_af_specific(addr->sa_family);
3550
if (!af || addr_len < af->sockaddr_len) {
3551
err = -EINVAL;
3552
} else {
3553
/* Pass correct addr len to common routine (so it knows there
3554
* is only one address being passed.
3555
*/
3556
err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3557
}
3558
3559
sctp_release_sock(sk);
3560
return err;
3561
}
3562
3563
/* FIXME: Write comments. */
3564
SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3565
{
3566
return -EOPNOTSUPP; /* STUB */
3567
}
3568
3569
/* 4.1.4 accept() - TCP Style Syntax
3570
*
3571
* Applications use accept() call to remove an established SCTP
3572
* association from the accept queue of the endpoint. A new socket
3573
* descriptor will be returned from accept() to represent the newly
3574
* formed association.
3575
*/
3576
SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3577
{
3578
struct sctp_sock *sp;
3579
struct sctp_endpoint *ep;
3580
struct sock *newsk = NULL;
3581
struct sctp_association *asoc;
3582
long timeo;
3583
int error = 0;
3584
3585
sctp_lock_sock(sk);
3586
3587
sp = sctp_sk(sk);
3588
ep = sp->ep;
3589
3590
if (!sctp_style(sk, TCP)) {
3591
error = -EOPNOTSUPP;
3592
goto out;
3593
}
3594
3595
if (!sctp_sstate(sk, LISTENING)) {
3596
error = -EINVAL;
3597
goto out;
3598
}
3599
3600
timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3601
3602
error = sctp_wait_for_accept(sk, timeo);
3603
if (error)
3604
goto out;
3605
3606
/* We treat the list of associations on the endpoint as the accept
3607
* queue and pick the first association on the list.
3608
*/
3609
asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3610
3611
newsk = sp->pf->create_accept_sk(sk, asoc);
3612
if (!newsk) {
3613
error = -ENOMEM;
3614
goto out;
3615
}
3616
3617
/* Populate the fields of the newsk from the oldsk and migrate the
3618
* asoc to the newsk.
3619
*/
3620
sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3621
3622
out:
3623
sctp_release_sock(sk);
3624
*err = error;
3625
return newsk;
3626
}
3627
3628
/* The SCTP ioctl handler. */
3629
SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3630
{
3631
int rc = -ENOTCONN;
3632
3633
sctp_lock_sock(sk);
3634
3635
/*
3636
* SEQPACKET-style sockets in LISTENING state are valid, for
3637
* SCTP, so only discard TCP-style sockets in LISTENING state.
3638
*/
3639
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3640
goto out;
3641
3642
switch (cmd) {
3643
case SIOCINQ: {
3644
struct sk_buff *skb;
3645
unsigned int amount = 0;
3646
3647
skb = skb_peek(&sk->sk_receive_queue);
3648
if (skb != NULL) {
3649
/*
3650
* We will only return the amount of this packet since
3651
* that is all that will be read.
3652
*/
3653
amount = skb->len;
3654
}
3655
rc = put_user(amount, (int __user *)arg);
3656
break;
3657
}
3658
default:
3659
rc = -ENOIOCTLCMD;
3660
break;
3661
}
3662
out:
3663
sctp_release_sock(sk);
3664
return rc;
3665
}
3666
3667
/* This is the function which gets called during socket creation to
3668
* initialized the SCTP-specific portion of the sock.
3669
* The sock structure should already be zero-filled memory.
3670
*/
3671
SCTP_STATIC int sctp_init_sock(struct sock *sk)
3672
{
3673
struct sctp_endpoint *ep;
3674
struct sctp_sock *sp;
3675
3676
SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3677
3678
sp = sctp_sk(sk);
3679
3680
/* Initialize the SCTP per socket area. */
3681
switch (sk->sk_type) {
3682
case SOCK_SEQPACKET:
3683
sp->type = SCTP_SOCKET_UDP;
3684
break;
3685
case SOCK_STREAM:
3686
sp->type = SCTP_SOCKET_TCP;
3687
break;
3688
default:
3689
return -ESOCKTNOSUPPORT;
3690
}
3691
3692
/* Initialize default send parameters. These parameters can be
3693
* modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3694
*/
3695
sp->default_stream = 0;
3696
sp->default_ppid = 0;
3697
sp->default_flags = 0;
3698
sp->default_context = 0;
3699
sp->default_timetolive = 0;
3700
3701
sp->default_rcv_context = 0;
3702
sp->max_burst = sctp_max_burst;
3703
3704
/* Initialize default setup parameters. These parameters
3705
* can be modified with the SCTP_INITMSG socket option or
3706
* overridden by the SCTP_INIT CMSG.
3707
*/
3708
sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3709
sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3710
sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3711
sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3712
3713
/* Initialize default RTO related parameters. These parameters can
3714
* be modified for with the SCTP_RTOINFO socket option.
3715
*/
3716
sp->rtoinfo.srto_initial = sctp_rto_initial;
3717
sp->rtoinfo.srto_max = sctp_rto_max;
3718
sp->rtoinfo.srto_min = sctp_rto_min;
3719
3720
/* Initialize default association related parameters. These parameters
3721
* can be modified with the SCTP_ASSOCINFO socket option.
3722
*/
3723
sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3724
sp->assocparams.sasoc_number_peer_destinations = 0;
3725
sp->assocparams.sasoc_peer_rwnd = 0;
3726
sp->assocparams.sasoc_local_rwnd = 0;
3727
sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3728
3729
/* Initialize default event subscriptions. By default, all the
3730
* options are off.
3731
*/
3732
memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3733
3734
/* Default Peer Address Parameters. These defaults can
3735
* be modified via SCTP_PEER_ADDR_PARAMS
3736
*/
3737
sp->hbinterval = sctp_hb_interval;
3738
sp->pathmaxrxt = sctp_max_retrans_path;
3739
sp->pathmtu = 0; // allow default discovery
3740
sp->sackdelay = sctp_sack_timeout;
3741
sp->sackfreq = 2;
3742
sp->param_flags = SPP_HB_ENABLE |
3743
SPP_PMTUD_ENABLE |
3744
SPP_SACKDELAY_ENABLE;
3745
3746
/* If enabled no SCTP message fragmentation will be performed.
3747
* Configure through SCTP_DISABLE_FRAGMENTS socket option.
3748
*/
3749
sp->disable_fragments = 0;
3750
3751
/* Enable Nagle algorithm by default. */
3752
sp->nodelay = 0;
3753
3754
/* Enable by default. */
3755
sp->v4mapped = 1;
3756
3757
/* Auto-close idle associations after the configured
3758
* number of seconds. A value of 0 disables this
3759
* feature. Configure through the SCTP_AUTOCLOSE socket option,
3760
* for UDP-style sockets only.
3761
*/
3762
sp->autoclose = 0;
3763
3764
/* User specified fragmentation limit. */
3765
sp->user_frag = 0;
3766
3767
sp->adaptation_ind = 0;
3768
3769
sp->pf = sctp_get_pf_specific(sk->sk_family);
3770
3771
/* Control variables for partial data delivery. */
3772
atomic_set(&sp->pd_mode, 0);
3773
skb_queue_head_init(&sp->pd_lobby);
3774
sp->frag_interleave = 0;
3775
3776
/* Create a per socket endpoint structure. Even if we
3777
* change the data structure relationships, this may still
3778
* be useful for storing pre-connect address information.
3779
*/
3780
ep = sctp_endpoint_new(sk, GFP_KERNEL);
3781
if (!ep)
3782
return -ENOMEM;
3783
3784
sp->ep = ep;
3785
sp->hmac = NULL;
3786
3787
SCTP_DBG_OBJCNT_INC(sock);
3788
3789
local_bh_disable();
3790
percpu_counter_inc(&sctp_sockets_allocated);
3791
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3792
local_bh_enable();
3793
3794
return 0;
3795
}
3796
3797
/* Cleanup any SCTP per socket resources. */
3798
SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3799
{
3800
struct sctp_endpoint *ep;
3801
3802
SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3803
3804
/* Release our hold on the endpoint. */
3805
ep = sctp_sk(sk)->ep;
3806
sctp_endpoint_free(ep);
3807
local_bh_disable();
3808
percpu_counter_dec(&sctp_sockets_allocated);
3809
sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3810
local_bh_enable();
3811
}
3812
3813
/* API 4.1.7 shutdown() - TCP Style Syntax
3814
* int shutdown(int socket, int how);
3815
*
3816
* sd - the socket descriptor of the association to be closed.
3817
* how - Specifies the type of shutdown. The values are
3818
* as follows:
3819
* SHUT_RD
3820
* Disables further receive operations. No SCTP
3821
* protocol action is taken.
3822
* SHUT_WR
3823
* Disables further send operations, and initiates
3824
* the SCTP shutdown sequence.
3825
* SHUT_RDWR
3826
* Disables further send and receive operations
3827
* and initiates the SCTP shutdown sequence.
3828
*/
3829
SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3830
{
3831
struct sctp_endpoint *ep;
3832
struct sctp_association *asoc;
3833
3834
if (!sctp_style(sk, TCP))
3835
return;
3836
3837
if (how & SEND_SHUTDOWN) {
3838
ep = sctp_sk(sk)->ep;
3839
if (!list_empty(&ep->asocs)) {
3840
asoc = list_entry(ep->asocs.next,
3841
struct sctp_association, asocs);
3842
sctp_primitive_SHUTDOWN(asoc, NULL);
3843
}
3844
}
3845
}
3846
3847
/* 7.2.1 Association Status (SCTP_STATUS)
3848
3849
* Applications can retrieve current status information about an
3850
* association, including association state, peer receiver window size,
3851
* number of unacked data chunks, and number of data chunks pending
3852
* receipt. This information is read-only.
3853
*/
3854
static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3855
char __user *optval,
3856
int __user *optlen)
3857
{
3858
struct sctp_status status;
3859
struct sctp_association *asoc = NULL;
3860
struct sctp_transport *transport;
3861
sctp_assoc_t associd;
3862
int retval = 0;
3863
3864
if (len < sizeof(status)) {
3865
retval = -EINVAL;
3866
goto out;
3867
}
3868
3869
len = sizeof(status);
3870
if (copy_from_user(&status, optval, len)) {
3871
retval = -EFAULT;
3872
goto out;
3873
}
3874
3875
associd = status.sstat_assoc_id;
3876
asoc = sctp_id2assoc(sk, associd);
3877
if (!asoc) {
3878
retval = -EINVAL;
3879
goto out;
3880
}
3881
3882
transport = asoc->peer.primary_path;
3883
3884
status.sstat_assoc_id = sctp_assoc2id(asoc);
3885
status.sstat_state = asoc->state;
3886
status.sstat_rwnd = asoc->peer.rwnd;
3887
status.sstat_unackdata = asoc->unack_data;
3888
3889
status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3890
status.sstat_instrms = asoc->c.sinit_max_instreams;
3891
status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3892
status.sstat_fragmentation_point = asoc->frag_point;
3893
status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3894
memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3895
transport->af_specific->sockaddr_len);
3896
/* Map ipv4 address into v4-mapped-on-v6 address. */
3897
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3898
(union sctp_addr *)&status.sstat_primary.spinfo_address);
3899
status.sstat_primary.spinfo_state = transport->state;
3900
status.sstat_primary.spinfo_cwnd = transport->cwnd;
3901
status.sstat_primary.spinfo_srtt = transport->srtt;
3902
status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3903
status.sstat_primary.spinfo_mtu = transport->pathmtu;
3904
3905
if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3906
status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3907
3908
if (put_user(len, optlen)) {
3909
retval = -EFAULT;
3910
goto out;
3911
}
3912
3913
SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3914
len, status.sstat_state, status.sstat_rwnd,
3915
status.sstat_assoc_id);
3916
3917
if (copy_to_user(optval, &status, len)) {
3918
retval = -EFAULT;
3919
goto out;
3920
}
3921
3922
out:
3923
return retval;
3924
}
3925
3926
3927
/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3928
*
3929
* Applications can retrieve information about a specific peer address
3930
* of an association, including its reachability state, congestion
3931
* window, and retransmission timer values. This information is
3932
* read-only.
3933
*/
3934
static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3935
char __user *optval,
3936
int __user *optlen)
3937
{
3938
struct sctp_paddrinfo pinfo;
3939
struct sctp_transport *transport;
3940
int retval = 0;
3941
3942
if (len < sizeof(pinfo)) {
3943
retval = -EINVAL;
3944
goto out;
3945
}
3946
3947
len = sizeof(pinfo);
3948
if (copy_from_user(&pinfo, optval, len)) {
3949
retval = -EFAULT;
3950
goto out;
3951
}
3952
3953
transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3954
pinfo.spinfo_assoc_id);
3955
if (!transport)
3956
return -EINVAL;
3957
3958
pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3959
pinfo.spinfo_state = transport->state;
3960
pinfo.spinfo_cwnd = transport->cwnd;
3961
pinfo.spinfo_srtt = transport->srtt;
3962
pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3963
pinfo.spinfo_mtu = transport->pathmtu;
3964
3965
if (pinfo.spinfo_state == SCTP_UNKNOWN)
3966
pinfo.spinfo_state = SCTP_ACTIVE;
3967
3968
if (put_user(len, optlen)) {
3969
retval = -EFAULT;
3970
goto out;
3971
}
3972
3973
if (copy_to_user(optval, &pinfo, len)) {
3974
retval = -EFAULT;
3975
goto out;
3976
}
3977
3978
out:
3979
return retval;
3980
}
3981
3982
/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3983
*
3984
* This option is a on/off flag. If enabled no SCTP message
3985
* fragmentation will be performed. Instead if a message being sent
3986
* exceeds the current PMTU size, the message will NOT be sent and
3987
* instead a error will be indicated to the user.
3988
*/
3989
static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3990
char __user *optval, int __user *optlen)
3991
{
3992
int val;
3993
3994
if (len < sizeof(int))
3995
return -EINVAL;
3996
3997
len = sizeof(int);
3998
val = (sctp_sk(sk)->disable_fragments == 1);
3999
if (put_user(len, optlen))
4000
return -EFAULT;
4001
if (copy_to_user(optval, &val, len))
4002
return -EFAULT;
4003
return 0;
4004
}
4005
4006
/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4007
*
4008
* This socket option is used to specify various notifications and
4009
* ancillary data the user wishes to receive.
4010
*/
4011
static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4012
int __user *optlen)
4013
{
4014
if (len < sizeof(struct sctp_event_subscribe))
4015
return -EINVAL;
4016
len = sizeof(struct sctp_event_subscribe);
4017
if (put_user(len, optlen))
4018
return -EFAULT;
4019
if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4020
return -EFAULT;
4021
return 0;
4022
}
4023
4024
/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4025
*
4026
* This socket option is applicable to the UDP-style socket only. When
4027
* set it will cause associations that are idle for more than the
4028
* specified number of seconds to automatically close. An association
4029
* being idle is defined an association that has NOT sent or received
4030
* user data. The special value of '0' indicates that no automatic
4031
* close of any associations should be performed. The option expects an
4032
* integer defining the number of seconds of idle time before an
4033
* association is closed.
4034
*/
4035
static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4036
{
4037
/* Applicable to UDP-style socket only */
4038
if (sctp_style(sk, TCP))
4039
return -EOPNOTSUPP;
4040
if (len < sizeof(int))
4041
return -EINVAL;
4042
len = sizeof(int);
4043
if (put_user(len, optlen))
4044
return -EFAULT;
4045
if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4046
return -EFAULT;
4047
return 0;
4048
}
4049
4050
/* Helper routine to branch off an association to a new socket. */
4051
SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
4052
struct socket **sockp)
4053
{
4054
struct sock *sk = asoc->base.sk;
4055
struct socket *sock;
4056
struct sctp_af *af;
4057
int err = 0;
4058
4059
/* An association cannot be branched off from an already peeled-off
4060
* socket, nor is this supported for tcp style sockets.
4061
*/
4062
if (!sctp_style(sk, UDP))
4063
return -EINVAL;
4064
4065
/* Create a new socket. */
4066
err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4067
if (err < 0)
4068
return err;
4069
4070
sctp_copy_sock(sock->sk, sk, asoc);
4071
4072
/* Make peeled-off sockets more like 1-1 accepted sockets.
4073
* Set the daddr and initialize id to something more random
4074
*/
4075
af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4076
af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4077
4078
/* Populate the fields of the newsk from the oldsk and migrate the
4079
* asoc to the newsk.
4080
*/
4081
sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4082
4083
*sockp = sock;
4084
4085
return err;
4086
}
4087
4088
static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4089
{
4090
sctp_peeloff_arg_t peeloff;
4091
struct socket *newsock;
4092
int retval = 0;
4093
struct sctp_association *asoc;
4094
4095
if (len < sizeof(sctp_peeloff_arg_t))
4096
return -EINVAL;
4097
len = sizeof(sctp_peeloff_arg_t);
4098
if (copy_from_user(&peeloff, optval, len))
4099
return -EFAULT;
4100
4101
asoc = sctp_id2assoc(sk, peeloff.associd);
4102
if (!asoc) {
4103
retval = -EINVAL;
4104
goto out;
4105
}
4106
4107
SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4108
4109
retval = sctp_do_peeloff(asoc, &newsock);
4110
if (retval < 0)
4111
goto out;
4112
4113
/* Map the socket to an unused fd that can be returned to the user. */
4114
retval = sock_map_fd(newsock, 0);
4115
if (retval < 0) {
4116
sock_release(newsock);
4117
goto out;
4118
}
4119
4120
SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4121
__func__, sk, asoc, newsock->sk, retval);
4122
4123
/* Return the fd mapped to the new socket. */
4124
peeloff.sd = retval;
4125
if (put_user(len, optlen))
4126
return -EFAULT;
4127
if (copy_to_user(optval, &peeloff, len))
4128
retval = -EFAULT;
4129
4130
out:
4131
return retval;
4132
}
4133
4134
/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4135
*
4136
* Applications can enable or disable heartbeats for any peer address of
4137
* an association, modify an address's heartbeat interval, force a
4138
* heartbeat to be sent immediately, and adjust the address's maximum
4139
* number of retransmissions sent before an address is considered
4140
* unreachable. The following structure is used to access and modify an
4141
* address's parameters:
4142
*
4143
* struct sctp_paddrparams {
4144
* sctp_assoc_t spp_assoc_id;
4145
* struct sockaddr_storage spp_address;
4146
* uint32_t spp_hbinterval;
4147
* uint16_t spp_pathmaxrxt;
4148
* uint32_t spp_pathmtu;
4149
* uint32_t spp_sackdelay;
4150
* uint32_t spp_flags;
4151
* };
4152
*
4153
* spp_assoc_id - (one-to-many style socket) This is filled in the
4154
* application, and identifies the association for
4155
* this query.
4156
* spp_address - This specifies which address is of interest.
4157
* spp_hbinterval - This contains the value of the heartbeat interval,
4158
* in milliseconds. If a value of zero
4159
* is present in this field then no changes are to
4160
* be made to this parameter.
4161
* spp_pathmaxrxt - This contains the maximum number of
4162
* retransmissions before this address shall be
4163
* considered unreachable. If a value of zero
4164
* is present in this field then no changes are to
4165
* be made to this parameter.
4166
* spp_pathmtu - When Path MTU discovery is disabled the value
4167
* specified here will be the "fixed" path mtu.
4168
* Note that if the spp_address field is empty
4169
* then all associations on this address will
4170
* have this fixed path mtu set upon them.
4171
*
4172
* spp_sackdelay - When delayed sack is enabled, this value specifies
4173
* the number of milliseconds that sacks will be delayed
4174
* for. This value will apply to all addresses of an
4175
* association if the spp_address field is empty. Note
4176
* also, that if delayed sack is enabled and this
4177
* value is set to 0, no change is made to the last
4178
* recorded delayed sack timer value.
4179
*
4180
* spp_flags - These flags are used to control various features
4181
* on an association. The flag field may contain
4182
* zero or more of the following options.
4183
*
4184
* SPP_HB_ENABLE - Enable heartbeats on the
4185
* specified address. Note that if the address
4186
* field is empty all addresses for the association
4187
* have heartbeats enabled upon them.
4188
*
4189
* SPP_HB_DISABLE - Disable heartbeats on the
4190
* speicifed address. Note that if the address
4191
* field is empty all addresses for the association
4192
* will have their heartbeats disabled. Note also
4193
* that SPP_HB_ENABLE and SPP_HB_DISABLE are
4194
* mutually exclusive, only one of these two should
4195
* be specified. Enabling both fields will have
4196
* undetermined results.
4197
*
4198
* SPP_HB_DEMAND - Request a user initiated heartbeat
4199
* to be made immediately.
4200
*
4201
* SPP_PMTUD_ENABLE - This field will enable PMTU
4202
* discovery upon the specified address. Note that
4203
* if the address feild is empty then all addresses
4204
* on the association are effected.
4205
*
4206
* SPP_PMTUD_DISABLE - This field will disable PMTU
4207
* discovery upon the specified address. Note that
4208
* if the address feild is empty then all addresses
4209
* on the association are effected. Not also that
4210
* SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4211
* exclusive. Enabling both will have undetermined
4212
* results.
4213
*
4214
* SPP_SACKDELAY_ENABLE - Setting this flag turns
4215
* on delayed sack. The time specified in spp_sackdelay
4216
* is used to specify the sack delay for this address. Note
4217
* that if spp_address is empty then all addresses will
4218
* enable delayed sack and take on the sack delay
4219
* value specified in spp_sackdelay.
4220
* SPP_SACKDELAY_DISABLE - Setting this flag turns
4221
* off delayed sack. If the spp_address field is blank then
4222
* delayed sack is disabled for the entire association. Note
4223
* also that this field is mutually exclusive to
4224
* SPP_SACKDELAY_ENABLE, setting both will have undefined
4225
* results.
4226
*/
4227
static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4228
char __user *optval, int __user *optlen)
4229
{
4230
struct sctp_paddrparams params;
4231
struct sctp_transport *trans = NULL;
4232
struct sctp_association *asoc = NULL;
4233
struct sctp_sock *sp = sctp_sk(sk);
4234
4235
if (len < sizeof(struct sctp_paddrparams))
4236
return -EINVAL;
4237
len = sizeof(struct sctp_paddrparams);
4238
if (copy_from_user(&params, optval, len))
4239
return -EFAULT;
4240
4241
/* If an address other than INADDR_ANY is specified, and
4242
* no transport is found, then the request is invalid.
4243
*/
4244
if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4245
trans = sctp_addr_id2transport(sk, &params.spp_address,
4246
params.spp_assoc_id);
4247
if (!trans) {
4248
SCTP_DEBUG_PRINTK("Failed no transport\n");
4249
return -EINVAL;
4250
}
4251
}
4252
4253
/* Get association, if assoc_id != 0 and the socket is a one
4254
* to many style socket, and an association was not found, then
4255
* the id was invalid.
4256
*/
4257
asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4258
if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4259
SCTP_DEBUG_PRINTK("Failed no association\n");
4260
return -EINVAL;
4261
}
4262
4263
if (trans) {
4264
/* Fetch transport values. */
4265
params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4266
params.spp_pathmtu = trans->pathmtu;
4267
params.spp_pathmaxrxt = trans->pathmaxrxt;
4268
params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4269
4270
/*draft-11 doesn't say what to return in spp_flags*/
4271
params.spp_flags = trans->param_flags;
4272
} else if (asoc) {
4273
/* Fetch association values. */
4274
params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4275
params.spp_pathmtu = asoc->pathmtu;
4276
params.spp_pathmaxrxt = asoc->pathmaxrxt;
4277
params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4278
4279
/*draft-11 doesn't say what to return in spp_flags*/
4280
params.spp_flags = asoc->param_flags;
4281
} else {
4282
/* Fetch socket values. */
4283
params.spp_hbinterval = sp->hbinterval;
4284
params.spp_pathmtu = sp->pathmtu;
4285
params.spp_sackdelay = sp->sackdelay;
4286
params.spp_pathmaxrxt = sp->pathmaxrxt;
4287
4288
/*draft-11 doesn't say what to return in spp_flags*/
4289
params.spp_flags = sp->param_flags;
4290
}
4291
4292
if (copy_to_user(optval, &params, len))
4293
return -EFAULT;
4294
4295
if (put_user(len, optlen))
4296
return -EFAULT;
4297
4298
return 0;
4299
}
4300
4301
/*
4302
* 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4303
*
4304
* This option will effect the way delayed acks are performed. This
4305
* option allows you to get or set the delayed ack time, in
4306
* milliseconds. It also allows changing the delayed ack frequency.
4307
* Changing the frequency to 1 disables the delayed sack algorithm. If
4308
* the assoc_id is 0, then this sets or gets the endpoints default
4309
* values. If the assoc_id field is non-zero, then the set or get
4310
* effects the specified association for the one to many model (the
4311
* assoc_id field is ignored by the one to one model). Note that if
4312
* sack_delay or sack_freq are 0 when setting this option, then the
4313
* current values will remain unchanged.
4314
*
4315
* struct sctp_sack_info {
4316
* sctp_assoc_t sack_assoc_id;
4317
* uint32_t sack_delay;
4318
* uint32_t sack_freq;
4319
* };
4320
*
4321
* sack_assoc_id - This parameter, indicates which association the user
4322
* is performing an action upon. Note that if this field's value is
4323
* zero then the endpoints default value is changed (effecting future
4324
* associations only).
4325
*
4326
* sack_delay - This parameter contains the number of milliseconds that
4327
* the user is requesting the delayed ACK timer be set to. Note that
4328
* this value is defined in the standard to be between 200 and 500
4329
* milliseconds.
4330
*
4331
* sack_freq - This parameter contains the number of packets that must
4332
* be received before a sack is sent without waiting for the delay
4333
* timer to expire. The default value for this is 2, setting this
4334
* value to 1 will disable the delayed sack algorithm.
4335
*/
4336
static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4337
char __user *optval,
4338
int __user *optlen)
4339
{
4340
struct sctp_sack_info params;
4341
struct sctp_association *asoc = NULL;
4342
struct sctp_sock *sp = sctp_sk(sk);
4343
4344
if (len >= sizeof(struct sctp_sack_info)) {
4345
len = sizeof(struct sctp_sack_info);
4346
4347
if (copy_from_user(&params, optval, len))
4348
return -EFAULT;
4349
} else if (len == sizeof(struct sctp_assoc_value)) {
4350
pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4351
pr_warn("Use struct sctp_sack_info instead\n");
4352
if (copy_from_user(&params, optval, len))
4353
return -EFAULT;
4354
} else
4355
return - EINVAL;
4356
4357
/* Get association, if sack_assoc_id != 0 and the socket is a one
4358
* to many style socket, and an association was not found, then
4359
* the id was invalid.
4360
*/
4361
asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4362
if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4363
return -EINVAL;
4364
4365
if (asoc) {
4366
/* Fetch association values. */
4367
if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4368
params.sack_delay = jiffies_to_msecs(
4369
asoc->sackdelay);
4370
params.sack_freq = asoc->sackfreq;
4371
4372
} else {
4373
params.sack_delay = 0;
4374
params.sack_freq = 1;
4375
}
4376
} else {
4377
/* Fetch socket values. */
4378
if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4379
params.sack_delay = sp->sackdelay;
4380
params.sack_freq = sp->sackfreq;
4381
} else {
4382
params.sack_delay = 0;
4383
params.sack_freq = 1;
4384
}
4385
}
4386
4387
if (copy_to_user(optval, &params, len))
4388
return -EFAULT;
4389
4390
if (put_user(len, optlen))
4391
return -EFAULT;
4392
4393
return 0;
4394
}
4395
4396
/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4397
*
4398
* Applications can specify protocol parameters for the default association
4399
* initialization. The option name argument to setsockopt() and getsockopt()
4400
* is SCTP_INITMSG.
4401
*
4402
* Setting initialization parameters is effective only on an unconnected
4403
* socket (for UDP-style sockets only future associations are effected
4404
* by the change). With TCP-style sockets, this option is inherited by
4405
* sockets derived from a listener socket.
4406
*/
4407
static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4408
{
4409
if (len < sizeof(struct sctp_initmsg))
4410
return -EINVAL;
4411
len = sizeof(struct sctp_initmsg);
4412
if (put_user(len, optlen))
4413
return -EFAULT;
4414
if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4415
return -EFAULT;
4416
return 0;
4417
}
4418
4419
4420
static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4421
char __user *optval, int __user *optlen)
4422
{
4423
struct sctp_association *asoc;
4424
int cnt = 0;
4425
struct sctp_getaddrs getaddrs;
4426
struct sctp_transport *from;
4427
void __user *to;
4428
union sctp_addr temp;
4429
struct sctp_sock *sp = sctp_sk(sk);
4430
int addrlen;
4431
size_t space_left;
4432
int bytes_copied;
4433
4434
if (len < sizeof(struct sctp_getaddrs))
4435
return -EINVAL;
4436
4437
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4438
return -EFAULT;
4439
4440
/* For UDP-style sockets, id specifies the association to query. */
4441
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4442
if (!asoc)
4443
return -EINVAL;
4444
4445
to = optval + offsetof(struct sctp_getaddrs,addrs);
4446
space_left = len - offsetof(struct sctp_getaddrs,addrs);
4447
4448
list_for_each_entry(from, &asoc->peer.transport_addr_list,
4449
transports) {
4450
memcpy(&temp, &from->ipaddr, sizeof(temp));
4451
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4452
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4453
if (space_left < addrlen)
4454
return -ENOMEM;
4455
if (copy_to_user(to, &temp, addrlen))
4456
return -EFAULT;
4457
to += addrlen;
4458
cnt++;
4459
space_left -= addrlen;
4460
}
4461
4462
if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4463
return -EFAULT;
4464
bytes_copied = ((char __user *)to) - optval;
4465
if (put_user(bytes_copied, optlen))
4466
return -EFAULT;
4467
4468
return 0;
4469
}
4470
4471
static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4472
size_t space_left, int *bytes_copied)
4473
{
4474
struct sctp_sockaddr_entry *addr;
4475
union sctp_addr temp;
4476
int cnt = 0;
4477
int addrlen;
4478
4479
rcu_read_lock();
4480
list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4481
if (!addr->valid)
4482
continue;
4483
4484
if ((PF_INET == sk->sk_family) &&
4485
(AF_INET6 == addr->a.sa.sa_family))
4486
continue;
4487
if ((PF_INET6 == sk->sk_family) &&
4488
inet_v6_ipv6only(sk) &&
4489
(AF_INET == addr->a.sa.sa_family))
4490
continue;
4491
memcpy(&temp, &addr->a, sizeof(temp));
4492
if (!temp.v4.sin_port)
4493
temp.v4.sin_port = htons(port);
4494
4495
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4496
&temp);
4497
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4498
if (space_left < addrlen) {
4499
cnt = -ENOMEM;
4500
break;
4501
}
4502
memcpy(to, &temp, addrlen);
4503
4504
to += addrlen;
4505
cnt ++;
4506
space_left -= addrlen;
4507
*bytes_copied += addrlen;
4508
}
4509
rcu_read_unlock();
4510
4511
return cnt;
4512
}
4513
4514
4515
static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4516
char __user *optval, int __user *optlen)
4517
{
4518
struct sctp_bind_addr *bp;
4519
struct sctp_association *asoc;
4520
int cnt = 0;
4521
struct sctp_getaddrs getaddrs;
4522
struct sctp_sockaddr_entry *addr;
4523
void __user *to;
4524
union sctp_addr temp;
4525
struct sctp_sock *sp = sctp_sk(sk);
4526
int addrlen;
4527
int err = 0;
4528
size_t space_left;
4529
int bytes_copied = 0;
4530
void *addrs;
4531
void *buf;
4532
4533
if (len < sizeof(struct sctp_getaddrs))
4534
return -EINVAL;
4535
4536
if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4537
return -EFAULT;
4538
4539
/*
4540
* For UDP-style sockets, id specifies the association to query.
4541
* If the id field is set to the value '0' then the locally bound
4542
* addresses are returned without regard to any particular
4543
* association.
4544
*/
4545
if (0 == getaddrs.assoc_id) {
4546
bp = &sctp_sk(sk)->ep->base.bind_addr;
4547
} else {
4548
asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4549
if (!asoc)
4550
return -EINVAL;
4551
bp = &asoc->base.bind_addr;
4552
}
4553
4554
to = optval + offsetof(struct sctp_getaddrs,addrs);
4555
space_left = len - offsetof(struct sctp_getaddrs,addrs);
4556
4557
addrs = kmalloc(space_left, GFP_KERNEL);
4558
if (!addrs)
4559
return -ENOMEM;
4560
4561
/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4562
* addresses from the global local address list.
4563
*/
4564
if (sctp_list_single_entry(&bp->address_list)) {
4565
addr = list_entry(bp->address_list.next,
4566
struct sctp_sockaddr_entry, list);
4567
if (sctp_is_any(sk, &addr->a)) {
4568
cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4569
space_left, &bytes_copied);
4570
if (cnt < 0) {
4571
err = cnt;
4572
goto out;
4573
}
4574
goto copy_getaddrs;
4575
}
4576
}
4577
4578
buf = addrs;
4579
/* Protection on the bound address list is not needed since
4580
* in the socket option context we hold a socket lock and
4581
* thus the bound address list can't change.
4582
*/
4583
list_for_each_entry(addr, &bp->address_list, list) {
4584
memcpy(&temp, &addr->a, sizeof(temp));
4585
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4586
addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4587
if (space_left < addrlen) {
4588
err = -ENOMEM; /*fixme: right error?*/
4589
goto out;
4590
}
4591
memcpy(buf, &temp, addrlen);
4592
buf += addrlen;
4593
bytes_copied += addrlen;
4594
cnt ++;
4595
space_left -= addrlen;
4596
}
4597
4598
copy_getaddrs:
4599
if (copy_to_user(to, addrs, bytes_copied)) {
4600
err = -EFAULT;
4601
goto out;
4602
}
4603
if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4604
err = -EFAULT;
4605
goto out;
4606
}
4607
if (put_user(bytes_copied, optlen))
4608
err = -EFAULT;
4609
out:
4610
kfree(addrs);
4611
return err;
4612
}
4613
4614
/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4615
*
4616
* Requests that the local SCTP stack use the enclosed peer address as
4617
* the association primary. The enclosed address must be one of the
4618
* association peer's addresses.
4619
*/
4620
static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4621
char __user *optval, int __user *optlen)
4622
{
4623
struct sctp_prim prim;
4624
struct sctp_association *asoc;
4625
struct sctp_sock *sp = sctp_sk(sk);
4626
4627
if (len < sizeof(struct sctp_prim))
4628
return -EINVAL;
4629
4630
len = sizeof(struct sctp_prim);
4631
4632
if (copy_from_user(&prim, optval, len))
4633
return -EFAULT;
4634
4635
asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4636
if (!asoc)
4637
return -EINVAL;
4638
4639
if (!asoc->peer.primary_path)
4640
return -ENOTCONN;
4641
4642
memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4643
asoc->peer.primary_path->af_specific->sockaddr_len);
4644
4645
sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4646
(union sctp_addr *)&prim.ssp_addr);
4647
4648
if (put_user(len, optlen))
4649
return -EFAULT;
4650
if (copy_to_user(optval, &prim, len))
4651
return -EFAULT;
4652
4653
return 0;
4654
}
4655
4656
/*
4657
* 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4658
*
4659
* Requests that the local endpoint set the specified Adaptation Layer
4660
* Indication parameter for all future INIT and INIT-ACK exchanges.
4661
*/
4662
static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4663
char __user *optval, int __user *optlen)
4664
{
4665
struct sctp_setadaptation adaptation;
4666
4667
if (len < sizeof(struct sctp_setadaptation))
4668
return -EINVAL;
4669
4670
len = sizeof(struct sctp_setadaptation);
4671
4672
adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4673
4674
if (put_user(len, optlen))
4675
return -EFAULT;
4676
if (copy_to_user(optval, &adaptation, len))
4677
return -EFAULT;
4678
4679
return 0;
4680
}
4681
4682
/*
4683
*
4684
* 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4685
*
4686
* Applications that wish to use the sendto() system call may wish to
4687
* specify a default set of parameters that would normally be supplied
4688
* through the inclusion of ancillary data. This socket option allows
4689
* such an application to set the default sctp_sndrcvinfo structure.
4690
4691
4692
* The application that wishes to use this socket option simply passes
4693
* in to this call the sctp_sndrcvinfo structure defined in Section
4694
* 5.2.2) The input parameters accepted by this call include
4695
* sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4696
* sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4697
* to this call if the caller is using the UDP model.
4698
*
4699
* For getsockopt, it get the default sctp_sndrcvinfo structure.
4700
*/
4701
static int sctp_getsockopt_default_send_param(struct sock *sk,
4702
int len, char __user *optval,
4703
int __user *optlen)
4704
{
4705
struct sctp_sndrcvinfo info;
4706
struct sctp_association *asoc;
4707
struct sctp_sock *sp = sctp_sk(sk);
4708
4709
if (len < sizeof(struct sctp_sndrcvinfo))
4710
return -EINVAL;
4711
4712
len = sizeof(struct sctp_sndrcvinfo);
4713
4714
if (copy_from_user(&info, optval, len))
4715
return -EFAULT;
4716
4717
asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4718
if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4719
return -EINVAL;
4720
4721
if (asoc) {
4722
info.sinfo_stream = asoc->default_stream;
4723
info.sinfo_flags = asoc->default_flags;
4724
info.sinfo_ppid = asoc->default_ppid;
4725
info.sinfo_context = asoc->default_context;
4726
info.sinfo_timetolive = asoc->default_timetolive;
4727
} else {
4728
info.sinfo_stream = sp->default_stream;
4729
info.sinfo_flags = sp->default_flags;
4730
info.sinfo_ppid = sp->default_ppid;
4731
info.sinfo_context = sp->default_context;
4732
info.sinfo_timetolive = sp->default_timetolive;
4733
}
4734
4735
if (put_user(len, optlen))
4736
return -EFAULT;
4737
if (copy_to_user(optval, &info, len))
4738
return -EFAULT;
4739
4740
return 0;
4741
}
4742
4743
/*
4744
*
4745
* 7.1.5 SCTP_NODELAY
4746
*
4747
* Turn on/off any Nagle-like algorithm. This means that packets are
4748
* generally sent as soon as possible and no unnecessary delays are
4749
* introduced, at the cost of more packets in the network. Expects an
4750
* integer boolean flag.
4751
*/
4752
4753
static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4754
char __user *optval, int __user *optlen)
4755
{
4756
int val;
4757
4758
if (len < sizeof(int))
4759
return -EINVAL;
4760
4761
len = sizeof(int);
4762
val = (sctp_sk(sk)->nodelay == 1);
4763
if (put_user(len, optlen))
4764
return -EFAULT;
4765
if (copy_to_user(optval, &val, len))
4766
return -EFAULT;
4767
return 0;
4768
}
4769
4770
/*
4771
*
4772
* 7.1.1 SCTP_RTOINFO
4773
*
4774
* The protocol parameters used to initialize and bound retransmission
4775
* timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4776
* and modify these parameters.
4777
* All parameters are time values, in milliseconds. A value of 0, when
4778
* modifying the parameters, indicates that the current value should not
4779
* be changed.
4780
*
4781
*/
4782
static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4783
char __user *optval,
4784
int __user *optlen) {
4785
struct sctp_rtoinfo rtoinfo;
4786
struct sctp_association *asoc;
4787
4788
if (len < sizeof (struct sctp_rtoinfo))
4789
return -EINVAL;
4790
4791
len = sizeof(struct sctp_rtoinfo);
4792
4793
if (copy_from_user(&rtoinfo, optval, len))
4794
return -EFAULT;
4795
4796
asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4797
4798
if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4799
return -EINVAL;
4800
4801
/* Values corresponding to the specific association. */
4802
if (asoc) {
4803
rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4804
rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4805
rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4806
} else {
4807
/* Values corresponding to the endpoint. */
4808
struct sctp_sock *sp = sctp_sk(sk);
4809
4810
rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4811
rtoinfo.srto_max = sp->rtoinfo.srto_max;
4812
rtoinfo.srto_min = sp->rtoinfo.srto_min;
4813
}
4814
4815
if (put_user(len, optlen))
4816
return -EFAULT;
4817
4818
if (copy_to_user(optval, &rtoinfo, len))
4819
return -EFAULT;
4820
4821
return 0;
4822
}
4823
4824
/*
4825
*
4826
* 7.1.2 SCTP_ASSOCINFO
4827
*
4828
* This option is used to tune the maximum retransmission attempts
4829
* of the association.
4830
* Returns an error if the new association retransmission value is
4831
* greater than the sum of the retransmission value of the peer.
4832
* See [SCTP] for more information.
4833
*
4834
*/
4835
static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4836
char __user *optval,
4837
int __user *optlen)
4838
{
4839
4840
struct sctp_assocparams assocparams;
4841
struct sctp_association *asoc;
4842
struct list_head *pos;
4843
int cnt = 0;
4844
4845
if (len < sizeof (struct sctp_assocparams))
4846
return -EINVAL;
4847
4848
len = sizeof(struct sctp_assocparams);
4849
4850
if (copy_from_user(&assocparams, optval, len))
4851
return -EFAULT;
4852
4853
asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4854
4855
if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4856
return -EINVAL;
4857
4858
/* Values correspoinding to the specific association */
4859
if (asoc) {
4860
assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4861
assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4862
assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4863
assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4864
* 1000) +
4865
(asoc->cookie_life.tv_usec
4866
/ 1000);
4867
4868
list_for_each(pos, &asoc->peer.transport_addr_list) {
4869
cnt ++;
4870
}
4871
4872
assocparams.sasoc_number_peer_destinations = cnt;
4873
} else {
4874
/* Values corresponding to the endpoint */
4875
struct sctp_sock *sp = sctp_sk(sk);
4876
4877
assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4878
assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4879
assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4880
assocparams.sasoc_cookie_life =
4881
sp->assocparams.sasoc_cookie_life;
4882
assocparams.sasoc_number_peer_destinations =
4883
sp->assocparams.
4884
sasoc_number_peer_destinations;
4885
}
4886
4887
if (put_user(len, optlen))
4888
return -EFAULT;
4889
4890
if (copy_to_user(optval, &assocparams, len))
4891
return -EFAULT;
4892
4893
return 0;
4894
}
4895
4896
/*
4897
* 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4898
*
4899
* This socket option is a boolean flag which turns on or off mapped V4
4900
* addresses. If this option is turned on and the socket is type
4901
* PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4902
* If this option is turned off, then no mapping will be done of V4
4903
* addresses and a user will receive both PF_INET6 and PF_INET type
4904
* addresses on the socket.
4905
*/
4906
static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4907
char __user *optval, int __user *optlen)
4908
{
4909
int val;
4910
struct sctp_sock *sp = sctp_sk(sk);
4911
4912
if (len < sizeof(int))
4913
return -EINVAL;
4914
4915
len = sizeof(int);
4916
val = sp->v4mapped;
4917
if (put_user(len, optlen))
4918
return -EFAULT;
4919
if (copy_to_user(optval, &val, len))
4920
return -EFAULT;
4921
4922
return 0;
4923
}
4924
4925
/*
4926
* 7.1.29. Set or Get the default context (SCTP_CONTEXT)
4927
* (chapter and verse is quoted at sctp_setsockopt_context())
4928
*/
4929
static int sctp_getsockopt_context(struct sock *sk, int len,
4930
char __user *optval, int __user *optlen)
4931
{
4932
struct sctp_assoc_value params;
4933
struct sctp_sock *sp;
4934
struct sctp_association *asoc;
4935
4936
if (len < sizeof(struct sctp_assoc_value))
4937
return -EINVAL;
4938
4939
len = sizeof(struct sctp_assoc_value);
4940
4941
if (copy_from_user(&params, optval, len))
4942
return -EFAULT;
4943
4944
sp = sctp_sk(sk);
4945
4946
if (params.assoc_id != 0) {
4947
asoc = sctp_id2assoc(sk, params.assoc_id);
4948
if (!asoc)
4949
return -EINVAL;
4950
params.assoc_value = asoc->default_rcv_context;
4951
} else {
4952
params.assoc_value = sp->default_rcv_context;
4953
}
4954
4955
if (put_user(len, optlen))
4956
return -EFAULT;
4957
if (copy_to_user(optval, &params, len))
4958
return -EFAULT;
4959
4960
return 0;
4961
}
4962
4963
/*
4964
* 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
4965
* This option will get or set the maximum size to put in any outgoing
4966
* SCTP DATA chunk. If a message is larger than this size it will be
4967
* fragmented by SCTP into the specified size. Note that the underlying
4968
* SCTP implementation may fragment into smaller sized chunks when the
4969
* PMTU of the underlying association is smaller than the value set by
4970
* the user. The default value for this option is '0' which indicates
4971
* the user is NOT limiting fragmentation and only the PMTU will effect
4972
* SCTP's choice of DATA chunk size. Note also that values set larger
4973
* than the maximum size of an IP datagram will effectively let SCTP
4974
* control fragmentation (i.e. the same as setting this option to 0).
4975
*
4976
* The following structure is used to access and modify this parameter:
4977
*
4978
* struct sctp_assoc_value {
4979
* sctp_assoc_t assoc_id;
4980
* uint32_t assoc_value;
4981
* };
4982
*
4983
* assoc_id: This parameter is ignored for one-to-one style sockets.
4984
* For one-to-many style sockets this parameter indicates which
4985
* association the user is performing an action upon. Note that if
4986
* this field's value is zero then the endpoints default value is
4987
* changed (effecting future associations only).
4988
* assoc_value: This parameter specifies the maximum size in bytes.
4989
*/
4990
static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4991
char __user *optval, int __user *optlen)
4992
{
4993
struct sctp_assoc_value params;
4994
struct sctp_association *asoc;
4995
4996
if (len == sizeof(int)) {
4997
pr_warn("Use of int in maxseg socket option deprecated\n");
4998
pr_warn("Use struct sctp_assoc_value instead\n");
4999
params.assoc_id = 0;
5000
} else if (len >= sizeof(struct sctp_assoc_value)) {
5001
len = sizeof(struct sctp_assoc_value);
5002
if (copy_from_user(&params, optval, sizeof(params)))
5003
return -EFAULT;
5004
} else
5005
return -EINVAL;
5006
5007
asoc = sctp_id2assoc(sk, params.assoc_id);
5008
if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5009
return -EINVAL;
5010
5011
if (asoc)
5012
params.assoc_value = asoc->frag_point;
5013
else
5014
params.assoc_value = sctp_sk(sk)->user_frag;
5015
5016
if (put_user(len, optlen))
5017
return -EFAULT;
5018
if (len == sizeof(int)) {
5019
if (copy_to_user(optval, &params.assoc_value, len))
5020
return -EFAULT;
5021
} else {
5022
if (copy_to_user(optval, &params, len))
5023
return -EFAULT;
5024
}
5025
5026
return 0;
5027
}
5028
5029
/*
5030
* 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5031
* (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5032
*/
5033
static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5034
char __user *optval, int __user *optlen)
5035
{
5036
int val;
5037
5038
if (len < sizeof(int))
5039
return -EINVAL;
5040
5041
len = sizeof(int);
5042
5043
val = sctp_sk(sk)->frag_interleave;
5044
if (put_user(len, optlen))
5045
return -EFAULT;
5046
if (copy_to_user(optval, &val, len))
5047
return -EFAULT;
5048
5049
return 0;
5050
}
5051
5052
/*
5053
* 7.1.25. Set or Get the sctp partial delivery point
5054
* (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5055
*/
5056
static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5057
char __user *optval,
5058
int __user *optlen)
5059
{
5060
u32 val;
5061
5062
if (len < sizeof(u32))
5063
return -EINVAL;
5064
5065
len = sizeof(u32);
5066
5067
val = sctp_sk(sk)->pd_point;
5068
if (put_user(len, optlen))
5069
return -EFAULT;
5070
if (copy_to_user(optval, &val, len))
5071
return -EFAULT;
5072
5073
return 0;
5074
}
5075
5076
/*
5077
* 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5078
* (chapter and verse is quoted at sctp_setsockopt_maxburst())
5079
*/
5080
static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5081
char __user *optval,
5082
int __user *optlen)
5083
{
5084
struct sctp_assoc_value params;
5085
struct sctp_sock *sp;
5086
struct sctp_association *asoc;
5087
5088
if (len == sizeof(int)) {
5089
pr_warn("Use of int in max_burst socket option deprecated\n");
5090
pr_warn("Use struct sctp_assoc_value instead\n");
5091
params.assoc_id = 0;
5092
} else if (len >= sizeof(struct sctp_assoc_value)) {
5093
len = sizeof(struct sctp_assoc_value);
5094
if (copy_from_user(&params, optval, len))
5095
return -EFAULT;
5096
} else
5097
return -EINVAL;
5098
5099
sp = sctp_sk(sk);
5100
5101
if (params.assoc_id != 0) {
5102
asoc = sctp_id2assoc(sk, params.assoc_id);
5103
if (!asoc)
5104
return -EINVAL;
5105
params.assoc_value = asoc->max_burst;
5106
} else
5107
params.assoc_value = sp->max_burst;
5108
5109
if (len == sizeof(int)) {
5110
if (copy_to_user(optval, &params.assoc_value, len))
5111
return -EFAULT;
5112
} else {
5113
if (copy_to_user(optval, &params, len))
5114
return -EFAULT;
5115
}
5116
5117
return 0;
5118
5119
}
5120
5121
static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5122
char __user *optval, int __user *optlen)
5123
{
5124
struct sctp_hmacalgo __user *p = (void __user *)optval;
5125
struct sctp_hmac_algo_param *hmacs;
5126
__u16 data_len = 0;
5127
u32 num_idents;
5128
5129
if (!sctp_auth_enable)
5130
return -EACCES;
5131
5132
hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5133
data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5134
5135
if (len < sizeof(struct sctp_hmacalgo) + data_len)
5136
return -EINVAL;
5137
5138
len = sizeof(struct sctp_hmacalgo) + data_len;
5139
num_idents = data_len / sizeof(u16);
5140
5141
if (put_user(len, optlen))
5142
return -EFAULT;
5143
if (put_user(num_idents, &p->shmac_num_idents))
5144
return -EFAULT;
5145
if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5146
return -EFAULT;
5147
return 0;
5148
}
5149
5150
static int sctp_getsockopt_active_key(struct sock *sk, int len,
5151
char __user *optval, int __user *optlen)
5152
{
5153
struct sctp_authkeyid val;
5154
struct sctp_association *asoc;
5155
5156
if (!sctp_auth_enable)
5157
return -EACCES;
5158
5159
if (len < sizeof(struct sctp_authkeyid))
5160
return -EINVAL;
5161
if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5162
return -EFAULT;
5163
5164
asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5165
if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5166
return -EINVAL;
5167
5168
if (asoc)
5169
val.scact_keynumber = asoc->active_key_id;
5170
else
5171
val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5172
5173
len = sizeof(struct sctp_authkeyid);
5174
if (put_user(len, optlen))
5175
return -EFAULT;
5176
if (copy_to_user(optval, &val, len))
5177
return -EFAULT;
5178
5179
return 0;
5180
}
5181
5182
static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5183
char __user *optval, int __user *optlen)
5184
{
5185
struct sctp_authchunks __user *p = (void __user *)optval;
5186
struct sctp_authchunks val;
5187
struct sctp_association *asoc;
5188
struct sctp_chunks_param *ch;
5189
u32 num_chunks = 0;
5190
char __user *to;
5191
5192
if (!sctp_auth_enable)
5193
return -EACCES;
5194
5195
if (len < sizeof(struct sctp_authchunks))
5196
return -EINVAL;
5197
5198
if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5199
return -EFAULT;
5200
5201
to = p->gauth_chunks;
5202
asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5203
if (!asoc)
5204
return -EINVAL;
5205
5206
ch = asoc->peer.peer_chunks;
5207
if (!ch)
5208
goto num;
5209
5210
/* See if the user provided enough room for all the data */
5211
num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5212
if (len < num_chunks)
5213
return -EINVAL;
5214
5215
if (copy_to_user(to, ch->chunks, num_chunks))
5216
return -EFAULT;
5217
num:
5218
len = sizeof(struct sctp_authchunks) + num_chunks;
5219
if (put_user(len, optlen)) return -EFAULT;
5220
if (put_user(num_chunks, &p->gauth_number_of_chunks))
5221
return -EFAULT;
5222
return 0;
5223
}
5224
5225
static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5226
char __user *optval, int __user *optlen)
5227
{
5228
struct sctp_authchunks __user *p = (void __user *)optval;
5229
struct sctp_authchunks val;
5230
struct sctp_association *asoc;
5231
struct sctp_chunks_param *ch;
5232
u32 num_chunks = 0;
5233
char __user *to;
5234
5235
if (!sctp_auth_enable)
5236
return -EACCES;
5237
5238
if (len < sizeof(struct sctp_authchunks))
5239
return -EINVAL;
5240
5241
if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5242
return -EFAULT;
5243
5244
to = p->gauth_chunks;
5245
asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5246
if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5247
return -EINVAL;
5248
5249
if (asoc)
5250
ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5251
else
5252
ch = sctp_sk(sk)->ep->auth_chunk_list;
5253
5254
if (!ch)
5255
goto num;
5256
5257
num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5258
if (len < sizeof(struct sctp_authchunks) + num_chunks)
5259
return -EINVAL;
5260
5261
if (copy_to_user(to, ch->chunks, num_chunks))
5262
return -EFAULT;
5263
num:
5264
len = sizeof(struct sctp_authchunks) + num_chunks;
5265
if (put_user(len, optlen))
5266
return -EFAULT;
5267
if (put_user(num_chunks, &p->gauth_number_of_chunks))
5268
return -EFAULT;
5269
5270
return 0;
5271
}
5272
5273
/*
5274
* 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5275
* This option gets the current number of associations that are attached
5276
* to a one-to-many style socket. The option value is an uint32_t.
5277
*/
5278
static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5279
char __user *optval, int __user *optlen)
5280
{
5281
struct sctp_sock *sp = sctp_sk(sk);
5282
struct sctp_association *asoc;
5283
u32 val = 0;
5284
5285
if (sctp_style(sk, TCP))
5286
return -EOPNOTSUPP;
5287
5288
if (len < sizeof(u32))
5289
return -EINVAL;
5290
5291
len = sizeof(u32);
5292
5293
list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5294
val++;
5295
}
5296
5297
if (put_user(len, optlen))
5298
return -EFAULT;
5299
if (copy_to_user(optval, &val, len))
5300
return -EFAULT;
5301
5302
return 0;
5303
}
5304
5305
/*
5306
* 8.2.6. Get the Current Identifiers of Associations
5307
* (SCTP_GET_ASSOC_ID_LIST)
5308
*
5309
* This option gets the current list of SCTP association identifiers of
5310
* the SCTP associations handled by a one-to-many style socket.
5311
*/
5312
static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5313
char __user *optval, int __user *optlen)
5314
{
5315
struct sctp_sock *sp = sctp_sk(sk);
5316
struct sctp_association *asoc;
5317
struct sctp_assoc_ids *ids;
5318
u32 num = 0;
5319
5320
if (sctp_style(sk, TCP))
5321
return -EOPNOTSUPP;
5322
5323
if (len < sizeof(struct sctp_assoc_ids))
5324
return -EINVAL;
5325
5326
list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5327
num++;
5328
}
5329
5330
if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5331
return -EINVAL;
5332
5333
len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5334
5335
ids = kmalloc(len, GFP_KERNEL);
5336
if (unlikely(!ids))
5337
return -ENOMEM;
5338
5339
ids->gaids_number_of_ids = num;
5340
num = 0;
5341
list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5342
ids->gaids_assoc_id[num++] = asoc->assoc_id;
5343
}
5344
5345
if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5346
kfree(ids);
5347
return -EFAULT;
5348
}
5349
5350
kfree(ids);
5351
return 0;
5352
}
5353
5354
SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5355
char __user *optval, int __user *optlen)
5356
{
5357
int retval = 0;
5358
int len;
5359
5360
SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5361
sk, optname);
5362
5363
/* I can hardly begin to describe how wrong this is. This is
5364
* so broken as to be worse than useless. The API draft
5365
* REALLY is NOT helpful here... I am not convinced that the
5366
* semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5367
* are at all well-founded.
5368
*/
5369
if (level != SOL_SCTP) {
5370
struct sctp_af *af = sctp_sk(sk)->pf->af;
5371
5372
retval = af->getsockopt(sk, level, optname, optval, optlen);
5373
return retval;
5374
}
5375
5376
if (get_user(len, optlen))
5377
return -EFAULT;
5378
5379
sctp_lock_sock(sk);
5380
5381
switch (optname) {
5382
case SCTP_STATUS:
5383
retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5384
break;
5385
case SCTP_DISABLE_FRAGMENTS:
5386
retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5387
optlen);
5388
break;
5389
case SCTP_EVENTS:
5390
retval = sctp_getsockopt_events(sk, len, optval, optlen);
5391
break;
5392
case SCTP_AUTOCLOSE:
5393
retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5394
break;
5395
case SCTP_SOCKOPT_PEELOFF:
5396
retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5397
break;
5398
case SCTP_PEER_ADDR_PARAMS:
5399
retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5400
optlen);
5401
break;
5402
case SCTP_DELAYED_SACK:
5403
retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5404
optlen);
5405
break;
5406
case SCTP_INITMSG:
5407
retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5408
break;
5409
case SCTP_GET_PEER_ADDRS:
5410
retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5411
optlen);
5412
break;
5413
case SCTP_GET_LOCAL_ADDRS:
5414
retval = sctp_getsockopt_local_addrs(sk, len, optval,
5415
optlen);
5416
break;
5417
case SCTP_SOCKOPT_CONNECTX3:
5418
retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5419
break;
5420
case SCTP_DEFAULT_SEND_PARAM:
5421
retval = sctp_getsockopt_default_send_param(sk, len,
5422
optval, optlen);
5423
break;
5424
case SCTP_PRIMARY_ADDR:
5425
retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5426
break;
5427
case SCTP_NODELAY:
5428
retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5429
break;
5430
case SCTP_RTOINFO:
5431
retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5432
break;
5433
case SCTP_ASSOCINFO:
5434
retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5435
break;
5436
case SCTP_I_WANT_MAPPED_V4_ADDR:
5437
retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5438
break;
5439
case SCTP_MAXSEG:
5440
retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5441
break;
5442
case SCTP_GET_PEER_ADDR_INFO:
5443
retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5444
optlen);
5445
break;
5446
case SCTP_ADAPTATION_LAYER:
5447
retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5448
optlen);
5449
break;
5450
case SCTP_CONTEXT:
5451
retval = sctp_getsockopt_context(sk, len, optval, optlen);
5452
break;
5453
case SCTP_FRAGMENT_INTERLEAVE:
5454
retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5455
optlen);
5456
break;
5457
case SCTP_PARTIAL_DELIVERY_POINT:
5458
retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5459
optlen);
5460
break;
5461
case SCTP_MAX_BURST:
5462
retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5463
break;
5464
case SCTP_AUTH_KEY:
5465
case SCTP_AUTH_CHUNK:
5466
case SCTP_AUTH_DELETE_KEY:
5467
retval = -EOPNOTSUPP;
5468
break;
5469
case SCTP_HMAC_IDENT:
5470
retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5471
break;
5472
case SCTP_AUTH_ACTIVE_KEY:
5473
retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5474
break;
5475
case SCTP_PEER_AUTH_CHUNKS:
5476
retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5477
optlen);
5478
break;
5479
case SCTP_LOCAL_AUTH_CHUNKS:
5480
retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5481
optlen);
5482
break;
5483
case SCTP_GET_ASSOC_NUMBER:
5484
retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5485
break;
5486
case SCTP_GET_ASSOC_ID_LIST:
5487
retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5488
break;
5489
default:
5490
retval = -ENOPROTOOPT;
5491
break;
5492
}
5493
5494
sctp_release_sock(sk);
5495
return retval;
5496
}
5497
5498
static void sctp_hash(struct sock *sk)
5499
{
5500
/* STUB */
5501
}
5502
5503
static void sctp_unhash(struct sock *sk)
5504
{
5505
/* STUB */
5506
}
5507
5508
/* Check if port is acceptable. Possibly find first available port.
5509
*
5510
* The port hash table (contained in the 'global' SCTP protocol storage
5511
* returned by struct sctp_protocol *sctp_get_protocol()). The hash
5512
* table is an array of 4096 lists (sctp_bind_hashbucket). Each
5513
* list (the list number is the port number hashed out, so as you
5514
* would expect from a hash function, all the ports in a given list have
5515
* such a number that hashes out to the same list number; you were
5516
* expecting that, right?); so each list has a set of ports, with a
5517
* link to the socket (struct sock) that uses it, the port number and
5518
* a fastreuse flag (FIXME: NPI ipg).
5519
*/
5520
static struct sctp_bind_bucket *sctp_bucket_create(
5521
struct sctp_bind_hashbucket *head, unsigned short snum);
5522
5523
static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5524
{
5525
struct sctp_bind_hashbucket *head; /* hash list */
5526
struct sctp_bind_bucket *pp; /* hash list port iterator */
5527
struct hlist_node *node;
5528
unsigned short snum;
5529
int ret;
5530
5531
snum = ntohs(addr->v4.sin_port);
5532
5533
SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5534
sctp_local_bh_disable();
5535
5536
if (snum == 0) {
5537
/* Search for an available port. */
5538
int low, high, remaining, index;
5539
unsigned int rover;
5540
5541
inet_get_local_port_range(&low, &high);
5542
remaining = (high - low) + 1;
5543
rover = net_random() % remaining + low;
5544
5545
do {
5546
rover++;
5547
if ((rover < low) || (rover > high))
5548
rover = low;
5549
if (inet_is_reserved_local_port(rover))
5550
continue;
5551
index = sctp_phashfn(rover);
5552
head = &sctp_port_hashtable[index];
5553
sctp_spin_lock(&head->lock);
5554
sctp_for_each_hentry(pp, node, &head->chain)
5555
if (pp->port == rover)
5556
goto next;
5557
break;
5558
next:
5559
sctp_spin_unlock(&head->lock);
5560
} while (--remaining > 0);
5561
5562
/* Exhausted local port range during search? */
5563
ret = 1;
5564
if (remaining <= 0)
5565
goto fail;
5566
5567
/* OK, here is the one we will use. HEAD (the port
5568
* hash table list entry) is non-NULL and we hold it's
5569
* mutex.
5570
*/
5571
snum = rover;
5572
} else {
5573
/* We are given an specific port number; we verify
5574
* that it is not being used. If it is used, we will
5575
* exahust the search in the hash list corresponding
5576
* to the port number (snum) - we detect that with the
5577
* port iterator, pp being NULL.
5578
*/
5579
head = &sctp_port_hashtable[sctp_phashfn(snum)];
5580
sctp_spin_lock(&head->lock);
5581
sctp_for_each_hentry(pp, node, &head->chain) {
5582
if (pp->port == snum)
5583
goto pp_found;
5584
}
5585
}
5586
pp = NULL;
5587
goto pp_not_found;
5588
pp_found:
5589
if (!hlist_empty(&pp->owner)) {
5590
/* We had a port hash table hit - there is an
5591
* available port (pp != NULL) and it is being
5592
* used by other socket (pp->owner not empty); that other
5593
* socket is going to be sk2.
5594
*/
5595
int reuse = sk->sk_reuse;
5596
struct sock *sk2;
5597
5598
SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5599
if (pp->fastreuse && sk->sk_reuse &&
5600
sk->sk_state != SCTP_SS_LISTENING)
5601
goto success;
5602
5603
/* Run through the list of sockets bound to the port
5604
* (pp->port) [via the pointers bind_next and
5605
* bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5606
* we get the endpoint they describe and run through
5607
* the endpoint's list of IP (v4 or v6) addresses,
5608
* comparing each of the addresses with the address of
5609
* the socket sk. If we find a match, then that means
5610
* that this port/socket (sk) combination are already
5611
* in an endpoint.
5612
*/
5613
sk_for_each_bound(sk2, node, &pp->owner) {
5614
struct sctp_endpoint *ep2;
5615
ep2 = sctp_sk(sk2)->ep;
5616
5617
if (sk == sk2 ||
5618
(reuse && sk2->sk_reuse &&
5619
sk2->sk_state != SCTP_SS_LISTENING))
5620
continue;
5621
5622
if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5623
sctp_sk(sk2), sctp_sk(sk))) {
5624
ret = (long)sk2;
5625
goto fail_unlock;
5626
}
5627
}
5628
SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5629
}
5630
pp_not_found:
5631
/* If there was a hash table miss, create a new port. */
5632
ret = 1;
5633
if (!pp && !(pp = sctp_bucket_create(head, snum)))
5634
goto fail_unlock;
5635
5636
/* In either case (hit or miss), make sure fastreuse is 1 only
5637
* if sk->sk_reuse is too (that is, if the caller requested
5638
* SO_REUSEADDR on this socket -sk-).
5639
*/
5640
if (hlist_empty(&pp->owner)) {
5641
if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5642
pp->fastreuse = 1;
5643
else
5644
pp->fastreuse = 0;
5645
} else if (pp->fastreuse &&
5646
(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5647
pp->fastreuse = 0;
5648
5649
/* We are set, so fill up all the data in the hash table
5650
* entry, tie the socket list information with the rest of the
5651
* sockets FIXME: Blurry, NPI (ipg).
5652
*/
5653
success:
5654
if (!sctp_sk(sk)->bind_hash) {
5655
inet_sk(sk)->inet_num = snum;
5656
sk_add_bind_node(sk, &pp->owner);
5657
sctp_sk(sk)->bind_hash = pp;
5658
}
5659
ret = 0;
5660
5661
fail_unlock:
5662
sctp_spin_unlock(&head->lock);
5663
5664
fail:
5665
sctp_local_bh_enable();
5666
return ret;
5667
}
5668
5669
/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5670
* port is requested.
5671
*/
5672
static int sctp_get_port(struct sock *sk, unsigned short snum)
5673
{
5674
long ret;
5675
union sctp_addr addr;
5676
struct sctp_af *af = sctp_sk(sk)->pf->af;
5677
5678
/* Set up a dummy address struct from the sk. */
5679
af->from_sk(&addr, sk);
5680
addr.v4.sin_port = htons(snum);
5681
5682
/* Note: sk->sk_num gets filled in if ephemeral port request. */
5683
ret = sctp_get_port_local(sk, &addr);
5684
5685
return ret ? 1 : 0;
5686
}
5687
5688
/*
5689
* Move a socket to LISTENING state.
5690
*/
5691
SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5692
{
5693
struct sctp_sock *sp = sctp_sk(sk);
5694
struct sctp_endpoint *ep = sp->ep;
5695
struct crypto_hash *tfm = NULL;
5696
5697
/* Allocate HMAC for generating cookie. */
5698
if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5699
tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5700
if (IS_ERR(tfm)) {
5701
if (net_ratelimit()) {
5702
pr_info("failed to load transform for %s: %ld\n",
5703
sctp_hmac_alg, PTR_ERR(tfm));
5704
}
5705
return -ENOSYS;
5706
}
5707
sctp_sk(sk)->hmac = tfm;
5708
}
5709
5710
/*
5711
* If a bind() or sctp_bindx() is not called prior to a listen()
5712
* call that allows new associations to be accepted, the system
5713
* picks an ephemeral port and will choose an address set equivalent
5714
* to binding with a wildcard address.
5715
*
5716
* This is not currently spelled out in the SCTP sockets
5717
* extensions draft, but follows the practice as seen in TCP
5718
* sockets.
5719
*
5720
*/
5721
sk->sk_state = SCTP_SS_LISTENING;
5722
if (!ep->base.bind_addr.port) {
5723
if (sctp_autobind(sk))
5724
return -EAGAIN;
5725
} else {
5726
if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5727
sk->sk_state = SCTP_SS_CLOSED;
5728
return -EADDRINUSE;
5729
}
5730
}
5731
5732
sk->sk_max_ack_backlog = backlog;
5733
sctp_hash_endpoint(ep);
5734
return 0;
5735
}
5736
5737
/*
5738
* 4.1.3 / 5.1.3 listen()
5739
*
5740
* By default, new associations are not accepted for UDP style sockets.
5741
* An application uses listen() to mark a socket as being able to
5742
* accept new associations.
5743
*
5744
* On TCP style sockets, applications use listen() to ready the SCTP
5745
* endpoint for accepting inbound associations.
5746
*
5747
* On both types of endpoints a backlog of '0' disables listening.
5748
*
5749
* Move a socket to LISTENING state.
5750
*/
5751
int sctp_inet_listen(struct socket *sock, int backlog)
5752
{
5753
struct sock *sk = sock->sk;
5754
struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5755
int err = -EINVAL;
5756
5757
if (unlikely(backlog < 0))
5758
return err;
5759
5760
sctp_lock_sock(sk);
5761
5762
/* Peeled-off sockets are not allowed to listen(). */
5763
if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5764
goto out;
5765
5766
if (sock->state != SS_UNCONNECTED)
5767
goto out;
5768
5769
/* If backlog is zero, disable listening. */
5770
if (!backlog) {
5771
if (sctp_sstate(sk, CLOSED))
5772
goto out;
5773
5774
err = 0;
5775
sctp_unhash_endpoint(ep);
5776
sk->sk_state = SCTP_SS_CLOSED;
5777
if (sk->sk_reuse)
5778
sctp_sk(sk)->bind_hash->fastreuse = 1;
5779
goto out;
5780
}
5781
5782
/* If we are already listening, just update the backlog */
5783
if (sctp_sstate(sk, LISTENING))
5784
sk->sk_max_ack_backlog = backlog;
5785
else {
5786
err = sctp_listen_start(sk, backlog);
5787
if (err)
5788
goto out;
5789
}
5790
5791
err = 0;
5792
out:
5793
sctp_release_sock(sk);
5794
return err;
5795
}
5796
5797
/*
5798
* This function is done by modeling the current datagram_poll() and the
5799
* tcp_poll(). Note that, based on these implementations, we don't
5800
* lock the socket in this function, even though it seems that,
5801
* ideally, locking or some other mechanisms can be used to ensure
5802
* the integrity of the counters (sndbuf and wmem_alloc) used
5803
* in this place. We assume that we don't need locks either until proven
5804
* otherwise.
5805
*
5806
* Another thing to note is that we include the Async I/O support
5807
* here, again, by modeling the current TCP/UDP code. We don't have
5808
* a good way to test with it yet.
5809
*/
5810
unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5811
{
5812
struct sock *sk = sock->sk;
5813
struct sctp_sock *sp = sctp_sk(sk);
5814
unsigned int mask;
5815
5816
poll_wait(file, sk_sleep(sk), wait);
5817
5818
/* A TCP-style listening socket becomes readable when the accept queue
5819
* is not empty.
5820
*/
5821
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5822
return (!list_empty(&sp->ep->asocs)) ?
5823
(POLLIN | POLLRDNORM) : 0;
5824
5825
mask = 0;
5826
5827
/* Is there any exceptional events? */
5828
if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5829
mask |= POLLERR;
5830
if (sk->sk_shutdown & RCV_SHUTDOWN)
5831
mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5832
if (sk->sk_shutdown == SHUTDOWN_MASK)
5833
mask |= POLLHUP;
5834
5835
/* Is it readable? Reconsider this code with TCP-style support. */
5836
if (!skb_queue_empty(&sk->sk_receive_queue))
5837
mask |= POLLIN | POLLRDNORM;
5838
5839
/* The association is either gone or not ready. */
5840
if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5841
return mask;
5842
5843
/* Is it writable? */
5844
if (sctp_writeable(sk)) {
5845
mask |= POLLOUT | POLLWRNORM;
5846
} else {
5847
set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5848
/*
5849
* Since the socket is not locked, the buffer
5850
* might be made available after the writeable check and
5851
* before the bit is set. This could cause a lost I/O
5852
* signal. tcp_poll() has a race breaker for this race
5853
* condition. Based on their implementation, we put
5854
* in the following code to cover it as well.
5855
*/
5856
if (sctp_writeable(sk))
5857
mask |= POLLOUT | POLLWRNORM;
5858
}
5859
return mask;
5860
}
5861
5862
/********************************************************************
5863
* 2nd Level Abstractions
5864
********************************************************************/
5865
5866
static struct sctp_bind_bucket *sctp_bucket_create(
5867
struct sctp_bind_hashbucket *head, unsigned short snum)
5868
{
5869
struct sctp_bind_bucket *pp;
5870
5871
pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5872
if (pp) {
5873
SCTP_DBG_OBJCNT_INC(bind_bucket);
5874
pp->port = snum;
5875
pp->fastreuse = 0;
5876
INIT_HLIST_HEAD(&pp->owner);
5877
hlist_add_head(&pp->node, &head->chain);
5878
}
5879
return pp;
5880
}
5881
5882
/* Caller must hold hashbucket lock for this tb with local BH disabled */
5883
static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5884
{
5885
if (pp && hlist_empty(&pp->owner)) {
5886
__hlist_del(&pp->node);
5887
kmem_cache_free(sctp_bucket_cachep, pp);
5888
SCTP_DBG_OBJCNT_DEC(bind_bucket);
5889
}
5890
}
5891
5892
/* Release this socket's reference to a local port. */
5893
static inline void __sctp_put_port(struct sock *sk)
5894
{
5895
struct sctp_bind_hashbucket *head =
5896
&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
5897
struct sctp_bind_bucket *pp;
5898
5899
sctp_spin_lock(&head->lock);
5900
pp = sctp_sk(sk)->bind_hash;
5901
__sk_del_bind_node(sk);
5902
sctp_sk(sk)->bind_hash = NULL;
5903
inet_sk(sk)->inet_num = 0;
5904
sctp_bucket_destroy(pp);
5905
sctp_spin_unlock(&head->lock);
5906
}
5907
5908
void sctp_put_port(struct sock *sk)
5909
{
5910
sctp_local_bh_disable();
5911
__sctp_put_port(sk);
5912
sctp_local_bh_enable();
5913
}
5914
5915
/*
5916
* The system picks an ephemeral port and choose an address set equivalent
5917
* to binding with a wildcard address.
5918
* One of those addresses will be the primary address for the association.
5919
* This automatically enables the multihoming capability of SCTP.
5920
*/
5921
static int sctp_autobind(struct sock *sk)
5922
{
5923
union sctp_addr autoaddr;
5924
struct sctp_af *af;
5925
__be16 port;
5926
5927
/* Initialize a local sockaddr structure to INADDR_ANY. */
5928
af = sctp_sk(sk)->pf->af;
5929
5930
port = htons(inet_sk(sk)->inet_num);
5931
af->inaddr_any(&autoaddr, port);
5932
5933
return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5934
}
5935
5936
/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5937
*
5938
* From RFC 2292
5939
* 4.2 The cmsghdr Structure *
5940
*
5941
* When ancillary data is sent or received, any number of ancillary data
5942
* objects can be specified by the msg_control and msg_controllen members of
5943
* the msghdr structure, because each object is preceded by
5944
* a cmsghdr structure defining the object's length (the cmsg_len member).
5945
* Historically Berkeley-derived implementations have passed only one object
5946
* at a time, but this API allows multiple objects to be
5947
* passed in a single call to sendmsg() or recvmsg(). The following example
5948
* shows two ancillary data objects in a control buffer.
5949
*
5950
* |<--------------------------- msg_controllen -------------------------->|
5951
* | |
5952
*
5953
* |<----- ancillary data object ----->|<----- ancillary data object ----->|
5954
*
5955
* |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5956
* | | |
5957
*
5958
* |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5959
*
5960
* |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5961
* | | | | |
5962
*
5963
* +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5964
* |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5965
*
5966
* |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5967
*
5968
* +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5969
* ^
5970
* |
5971
*
5972
* msg_control
5973
* points here
5974
*/
5975
SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5976
sctp_cmsgs_t *cmsgs)
5977
{
5978
struct cmsghdr *cmsg;
5979
struct msghdr *my_msg = (struct msghdr *)msg;
5980
5981
for (cmsg = CMSG_FIRSTHDR(msg);
5982
cmsg != NULL;
5983
cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
5984
if (!CMSG_OK(my_msg, cmsg))
5985
return -EINVAL;
5986
5987
/* Should we parse this header or ignore? */
5988
if (cmsg->cmsg_level != IPPROTO_SCTP)
5989
continue;
5990
5991
/* Strictly check lengths following example in SCM code. */
5992
switch (cmsg->cmsg_type) {
5993
case SCTP_INIT:
5994
/* SCTP Socket API Extension
5995
* 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5996
*
5997
* This cmsghdr structure provides information for
5998
* initializing new SCTP associations with sendmsg().
5999
* The SCTP_INITMSG socket option uses this same data
6000
* structure. This structure is not used for
6001
* recvmsg().
6002
*
6003
* cmsg_level cmsg_type cmsg_data[]
6004
* ------------ ------------ ----------------------
6005
* IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6006
*/
6007
if (cmsg->cmsg_len !=
6008
CMSG_LEN(sizeof(struct sctp_initmsg)))
6009
return -EINVAL;
6010
cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6011
break;
6012
6013
case SCTP_SNDRCV:
6014
/* SCTP Socket API Extension
6015
* 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6016
*
6017
* This cmsghdr structure specifies SCTP options for
6018
* sendmsg() and describes SCTP header information
6019
* about a received message through recvmsg().
6020
*
6021
* cmsg_level cmsg_type cmsg_data[]
6022
* ------------ ------------ ----------------------
6023
* IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6024
*/
6025
if (cmsg->cmsg_len !=
6026
CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6027
return -EINVAL;
6028
6029
cmsgs->info =
6030
(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6031
6032
/* Minimally, validate the sinfo_flags. */
6033
if (cmsgs->info->sinfo_flags &
6034
~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6035
SCTP_ABORT | SCTP_EOF))
6036
return -EINVAL;
6037
break;
6038
6039
default:
6040
return -EINVAL;
6041
}
6042
}
6043
return 0;
6044
}
6045
6046
/*
6047
* Wait for a packet..
6048
* Note: This function is the same function as in core/datagram.c
6049
* with a few modifications to make lksctp work.
6050
*/
6051
static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6052
{
6053
int error;
6054
DEFINE_WAIT(wait);
6055
6056
prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6057
6058
/* Socket errors? */
6059
error = sock_error(sk);
6060
if (error)
6061
goto out;
6062
6063
if (!skb_queue_empty(&sk->sk_receive_queue))
6064
goto ready;
6065
6066
/* Socket shut down? */
6067
if (sk->sk_shutdown & RCV_SHUTDOWN)
6068
goto out;
6069
6070
/* Sequenced packets can come disconnected. If so we report the
6071
* problem.
6072
*/
6073
error = -ENOTCONN;
6074
6075
/* Is there a good reason to think that we may receive some data? */
6076
if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6077
goto out;
6078
6079
/* Handle signals. */
6080
if (signal_pending(current))
6081
goto interrupted;
6082
6083
/* Let another process have a go. Since we are going to sleep
6084
* anyway. Note: This may cause odd behaviors if the message
6085
* does not fit in the user's buffer, but this seems to be the
6086
* only way to honor MSG_DONTWAIT realistically.
6087
*/
6088
sctp_release_sock(sk);
6089
*timeo_p = schedule_timeout(*timeo_p);
6090
sctp_lock_sock(sk);
6091
6092
ready:
6093
finish_wait(sk_sleep(sk), &wait);
6094
return 0;
6095
6096
interrupted:
6097
error = sock_intr_errno(*timeo_p);
6098
6099
out:
6100
finish_wait(sk_sleep(sk), &wait);
6101
*err = error;
6102
return error;
6103
}
6104
6105
/* Receive a datagram.
6106
* Note: This is pretty much the same routine as in core/datagram.c
6107
* with a few changes to make lksctp work.
6108
*/
6109
static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6110
int noblock, int *err)
6111
{
6112
int error;
6113
struct sk_buff *skb;
6114
long timeo;
6115
6116
timeo = sock_rcvtimeo(sk, noblock);
6117
6118
SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6119
timeo, MAX_SCHEDULE_TIMEOUT);
6120
6121
do {
6122
/* Again only user level code calls this function,
6123
* so nothing interrupt level
6124
* will suddenly eat the receive_queue.
6125
*
6126
* Look at current nfs client by the way...
6127
* However, this function was correct in any case. 8)
6128
*/
6129
if (flags & MSG_PEEK) {
6130
spin_lock_bh(&sk->sk_receive_queue.lock);
6131
skb = skb_peek(&sk->sk_receive_queue);
6132
if (skb)
6133
atomic_inc(&skb->users);
6134
spin_unlock_bh(&sk->sk_receive_queue.lock);
6135
} else {
6136
skb = skb_dequeue(&sk->sk_receive_queue);
6137
}
6138
6139
if (skb)
6140
return skb;
6141
6142
/* Caller is allowed not to check sk->sk_err before calling. */
6143
error = sock_error(sk);
6144
if (error)
6145
goto no_packet;
6146
6147
if (sk->sk_shutdown & RCV_SHUTDOWN)
6148
break;
6149
6150
/* User doesn't want to wait. */
6151
error = -EAGAIN;
6152
if (!timeo)
6153
goto no_packet;
6154
} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6155
6156
return NULL;
6157
6158
no_packet:
6159
*err = error;
6160
return NULL;
6161
}
6162
6163
/* If sndbuf has changed, wake up per association sndbuf waiters. */
6164
static void __sctp_write_space(struct sctp_association *asoc)
6165
{
6166
struct sock *sk = asoc->base.sk;
6167
struct socket *sock = sk->sk_socket;
6168
6169
if ((sctp_wspace(asoc) > 0) && sock) {
6170
if (waitqueue_active(&asoc->wait))
6171
wake_up_interruptible(&asoc->wait);
6172
6173
if (sctp_writeable(sk)) {
6174
wait_queue_head_t *wq = sk_sleep(sk);
6175
6176
if (wq && waitqueue_active(wq))
6177
wake_up_interruptible(wq);
6178
6179
/* Note that we try to include the Async I/O support
6180
* here by modeling from the current TCP/UDP code.
6181
* We have not tested with it yet.
6182
*/
6183
if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6184
sock_wake_async(sock,
6185
SOCK_WAKE_SPACE, POLL_OUT);
6186
}
6187
}
6188
}
6189
6190
/* Do accounting for the sndbuf space.
6191
* Decrement the used sndbuf space of the corresponding association by the
6192
* data size which was just transmitted(freed).
6193
*/
6194
static void sctp_wfree(struct sk_buff *skb)
6195
{
6196
struct sctp_association *asoc;
6197
struct sctp_chunk *chunk;
6198
struct sock *sk;
6199
6200
/* Get the saved chunk pointer. */
6201
chunk = *((struct sctp_chunk **)(skb->cb));
6202
asoc = chunk->asoc;
6203
sk = asoc->base.sk;
6204
asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6205
sizeof(struct sk_buff) +
6206
sizeof(struct sctp_chunk);
6207
6208
atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6209
6210
/*
6211
* This undoes what is done via sctp_set_owner_w and sk_mem_charge
6212
*/
6213
sk->sk_wmem_queued -= skb->truesize;
6214
sk_mem_uncharge(sk, skb->truesize);
6215
6216
sock_wfree(skb);
6217
__sctp_write_space(asoc);
6218
6219
sctp_association_put(asoc);
6220
}
6221
6222
/* Do accounting for the receive space on the socket.
6223
* Accounting for the association is done in ulpevent.c
6224
* We set this as a destructor for the cloned data skbs so that
6225
* accounting is done at the correct time.
6226
*/
6227
void sctp_sock_rfree(struct sk_buff *skb)
6228
{
6229
struct sock *sk = skb->sk;
6230
struct sctp_ulpevent *event = sctp_skb2event(skb);
6231
6232
atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6233
6234
/*
6235
* Mimic the behavior of sock_rfree
6236
*/
6237
sk_mem_uncharge(sk, event->rmem_len);
6238
}
6239
6240
6241
/* Helper function to wait for space in the sndbuf. */
6242
static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6243
size_t msg_len)
6244
{
6245
struct sock *sk = asoc->base.sk;
6246
int err = 0;
6247
long current_timeo = *timeo_p;
6248
DEFINE_WAIT(wait);
6249
6250
SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6251
asoc, (long)(*timeo_p), msg_len);
6252
6253
/* Increment the association's refcnt. */
6254
sctp_association_hold(asoc);
6255
6256
/* Wait on the association specific sndbuf space. */
6257
for (;;) {
6258
prepare_to_wait_exclusive(&asoc->wait, &wait,
6259
TASK_INTERRUPTIBLE);
6260
if (!*timeo_p)
6261
goto do_nonblock;
6262
if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6263
asoc->base.dead)
6264
goto do_error;
6265
if (signal_pending(current))
6266
goto do_interrupted;
6267
if (msg_len <= sctp_wspace(asoc))
6268
break;
6269
6270
/* Let another process have a go. Since we are going
6271
* to sleep anyway.
6272
*/
6273
sctp_release_sock(sk);
6274
current_timeo = schedule_timeout(current_timeo);
6275
BUG_ON(sk != asoc->base.sk);
6276
sctp_lock_sock(sk);
6277
6278
*timeo_p = current_timeo;
6279
}
6280
6281
out:
6282
finish_wait(&asoc->wait, &wait);
6283
6284
/* Release the association's refcnt. */
6285
sctp_association_put(asoc);
6286
6287
return err;
6288
6289
do_error:
6290
err = -EPIPE;
6291
goto out;
6292
6293
do_interrupted:
6294
err = sock_intr_errno(*timeo_p);
6295
goto out;
6296
6297
do_nonblock:
6298
err = -EAGAIN;
6299
goto out;
6300
}
6301
6302
void sctp_data_ready(struct sock *sk, int len)
6303
{
6304
struct socket_wq *wq;
6305
6306
rcu_read_lock();
6307
wq = rcu_dereference(sk->sk_wq);
6308
if (wq_has_sleeper(wq))
6309
wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6310
POLLRDNORM | POLLRDBAND);
6311
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6312
rcu_read_unlock();
6313
}
6314
6315
/* If socket sndbuf has changed, wake up all per association waiters. */
6316
void sctp_write_space(struct sock *sk)
6317
{
6318
struct sctp_association *asoc;
6319
6320
/* Wake up the tasks in each wait queue. */
6321
list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6322
__sctp_write_space(asoc);
6323
}
6324
}
6325
6326
/* Is there any sndbuf space available on the socket?
6327
*
6328
* Note that sk_wmem_alloc is the sum of the send buffers on all of the
6329
* associations on the same socket. For a UDP-style socket with
6330
* multiple associations, it is possible for it to be "unwriteable"
6331
* prematurely. I assume that this is acceptable because
6332
* a premature "unwriteable" is better than an accidental "writeable" which
6333
* would cause an unwanted block under certain circumstances. For the 1-1
6334
* UDP-style sockets or TCP-style sockets, this code should work.
6335
* - Daisy
6336
*/
6337
static int sctp_writeable(struct sock *sk)
6338
{
6339
int amt = 0;
6340
6341
amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6342
if (amt < 0)
6343
amt = 0;
6344
return amt;
6345
}
6346
6347
/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6348
* returns immediately with EINPROGRESS.
6349
*/
6350
static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6351
{
6352
struct sock *sk = asoc->base.sk;
6353
int err = 0;
6354
long current_timeo = *timeo_p;
6355
DEFINE_WAIT(wait);
6356
6357
SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6358
(long)(*timeo_p));
6359
6360
/* Increment the association's refcnt. */
6361
sctp_association_hold(asoc);
6362
6363
for (;;) {
6364
prepare_to_wait_exclusive(&asoc->wait, &wait,
6365
TASK_INTERRUPTIBLE);
6366
if (!*timeo_p)
6367
goto do_nonblock;
6368
if (sk->sk_shutdown & RCV_SHUTDOWN)
6369
break;
6370
if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6371
asoc->base.dead)
6372
goto do_error;
6373
if (signal_pending(current))
6374
goto do_interrupted;
6375
6376
if (sctp_state(asoc, ESTABLISHED))
6377
break;
6378
6379
/* Let another process have a go. Since we are going
6380
* to sleep anyway.
6381
*/
6382
sctp_release_sock(sk);
6383
current_timeo = schedule_timeout(current_timeo);
6384
sctp_lock_sock(sk);
6385
6386
*timeo_p = current_timeo;
6387
}
6388
6389
out:
6390
finish_wait(&asoc->wait, &wait);
6391
6392
/* Release the association's refcnt. */
6393
sctp_association_put(asoc);
6394
6395
return err;
6396
6397
do_error:
6398
if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6399
err = -ETIMEDOUT;
6400
else
6401
err = -ECONNREFUSED;
6402
goto out;
6403
6404
do_interrupted:
6405
err = sock_intr_errno(*timeo_p);
6406
goto out;
6407
6408
do_nonblock:
6409
err = -EINPROGRESS;
6410
goto out;
6411
}
6412
6413
static int sctp_wait_for_accept(struct sock *sk, long timeo)
6414
{
6415
struct sctp_endpoint *ep;
6416
int err = 0;
6417
DEFINE_WAIT(wait);
6418
6419
ep = sctp_sk(sk)->ep;
6420
6421
6422
for (;;) {
6423
prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6424
TASK_INTERRUPTIBLE);
6425
6426
if (list_empty(&ep->asocs)) {
6427
sctp_release_sock(sk);
6428
timeo = schedule_timeout(timeo);
6429
sctp_lock_sock(sk);
6430
}
6431
6432
err = -EINVAL;
6433
if (!sctp_sstate(sk, LISTENING))
6434
break;
6435
6436
err = 0;
6437
if (!list_empty(&ep->asocs))
6438
break;
6439
6440
err = sock_intr_errno(timeo);
6441
if (signal_pending(current))
6442
break;
6443
6444
err = -EAGAIN;
6445
if (!timeo)
6446
break;
6447
}
6448
6449
finish_wait(sk_sleep(sk), &wait);
6450
6451
return err;
6452
}
6453
6454
static void sctp_wait_for_close(struct sock *sk, long timeout)
6455
{
6456
DEFINE_WAIT(wait);
6457
6458
do {
6459
prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6460
if (list_empty(&sctp_sk(sk)->ep->asocs))
6461
break;
6462
sctp_release_sock(sk);
6463
timeout = schedule_timeout(timeout);
6464
sctp_lock_sock(sk);
6465
} while (!signal_pending(current) && timeout);
6466
6467
finish_wait(sk_sleep(sk), &wait);
6468
}
6469
6470
static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6471
{
6472
struct sk_buff *frag;
6473
6474
if (!skb->data_len)
6475
goto done;
6476
6477
/* Don't forget the fragments. */
6478
skb_walk_frags(skb, frag)
6479
sctp_skb_set_owner_r_frag(frag, sk);
6480
6481
done:
6482
sctp_skb_set_owner_r(skb, sk);
6483
}
6484
6485
void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6486
struct sctp_association *asoc)
6487
{
6488
struct inet_sock *inet = inet_sk(sk);
6489
struct inet_sock *newinet;
6490
6491
newsk->sk_type = sk->sk_type;
6492
newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6493
newsk->sk_flags = sk->sk_flags;
6494
newsk->sk_no_check = sk->sk_no_check;
6495
newsk->sk_reuse = sk->sk_reuse;
6496
6497
newsk->sk_shutdown = sk->sk_shutdown;
6498
newsk->sk_destruct = inet_sock_destruct;
6499
newsk->sk_family = sk->sk_family;
6500
newsk->sk_protocol = IPPROTO_SCTP;
6501
newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6502
newsk->sk_sndbuf = sk->sk_sndbuf;
6503
newsk->sk_rcvbuf = sk->sk_rcvbuf;
6504
newsk->sk_lingertime = sk->sk_lingertime;
6505
newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6506
newsk->sk_sndtimeo = sk->sk_sndtimeo;
6507
6508
newinet = inet_sk(newsk);
6509
6510
/* Initialize sk's sport, dport, rcv_saddr and daddr for
6511
* getsockname() and getpeername()
6512
*/
6513
newinet->inet_sport = inet->inet_sport;
6514
newinet->inet_saddr = inet->inet_saddr;
6515
newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6516
newinet->inet_dport = htons(asoc->peer.port);
6517
newinet->pmtudisc = inet->pmtudisc;
6518
newinet->inet_id = asoc->next_tsn ^ jiffies;
6519
6520
newinet->uc_ttl = inet->uc_ttl;
6521
newinet->mc_loop = 1;
6522
newinet->mc_ttl = 1;
6523
newinet->mc_index = 0;
6524
newinet->mc_list = NULL;
6525
}
6526
6527
/* Populate the fields of the newsk from the oldsk and migrate the assoc
6528
* and its messages to the newsk.
6529
*/
6530
static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6531
struct sctp_association *assoc,
6532
sctp_socket_type_t type)
6533
{
6534
struct sctp_sock *oldsp = sctp_sk(oldsk);
6535
struct sctp_sock *newsp = sctp_sk(newsk);
6536
struct sctp_bind_bucket *pp; /* hash list port iterator */
6537
struct sctp_endpoint *newep = newsp->ep;
6538
struct sk_buff *skb, *tmp;
6539
struct sctp_ulpevent *event;
6540
struct sctp_bind_hashbucket *head;
6541
6542
/* Migrate socket buffer sizes and all the socket level options to the
6543
* new socket.
6544
*/
6545
newsk->sk_sndbuf = oldsk->sk_sndbuf;
6546
newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6547
/* Brute force copy old sctp opt. */
6548
inet_sk_copy_descendant(newsk, oldsk);
6549
6550
/* Restore the ep value that was overwritten with the above structure
6551
* copy.
6552
*/
6553
newsp->ep = newep;
6554
newsp->hmac = NULL;
6555
6556
/* Hook this new socket in to the bind_hash list. */
6557
head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6558
sctp_local_bh_disable();
6559
sctp_spin_lock(&head->lock);
6560
pp = sctp_sk(oldsk)->bind_hash;
6561
sk_add_bind_node(newsk, &pp->owner);
6562
sctp_sk(newsk)->bind_hash = pp;
6563
inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6564
sctp_spin_unlock(&head->lock);
6565
sctp_local_bh_enable();
6566
6567
/* Copy the bind_addr list from the original endpoint to the new
6568
* endpoint so that we can handle restarts properly
6569
*/
6570
sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6571
&oldsp->ep->base.bind_addr, GFP_KERNEL);
6572
6573
/* Move any messages in the old socket's receive queue that are for the
6574
* peeled off association to the new socket's receive queue.
6575
*/
6576
sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6577
event = sctp_skb2event(skb);
6578
if (event->asoc == assoc) {
6579
__skb_unlink(skb, &oldsk->sk_receive_queue);
6580
__skb_queue_tail(&newsk->sk_receive_queue, skb);
6581
sctp_skb_set_owner_r_frag(skb, newsk);
6582
}
6583
}
6584
6585
/* Clean up any messages pending delivery due to partial
6586
* delivery. Three cases:
6587
* 1) No partial deliver; no work.
6588
* 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6589
* 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6590
*/
6591
skb_queue_head_init(&newsp->pd_lobby);
6592
atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6593
6594
if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6595
struct sk_buff_head *queue;
6596
6597
/* Decide which queue to move pd_lobby skbs to. */
6598
if (assoc->ulpq.pd_mode) {
6599
queue = &newsp->pd_lobby;
6600
} else
6601
queue = &newsk->sk_receive_queue;
6602
6603
/* Walk through the pd_lobby, looking for skbs that
6604
* need moved to the new socket.
6605
*/
6606
sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6607
event = sctp_skb2event(skb);
6608
if (event->asoc == assoc) {
6609
__skb_unlink(skb, &oldsp->pd_lobby);
6610
__skb_queue_tail(queue, skb);
6611
sctp_skb_set_owner_r_frag(skb, newsk);
6612
}
6613
}
6614
6615
/* Clear up any skbs waiting for the partial
6616
* delivery to finish.
6617
*/
6618
if (assoc->ulpq.pd_mode)
6619
sctp_clear_pd(oldsk, NULL);
6620
6621
}
6622
6623
sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6624
sctp_skb_set_owner_r_frag(skb, newsk);
6625
6626
sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6627
sctp_skb_set_owner_r_frag(skb, newsk);
6628
6629
/* Set the type of socket to indicate that it is peeled off from the
6630
* original UDP-style socket or created with the accept() call on a
6631
* TCP-style socket..
6632
*/
6633
newsp->type = type;
6634
6635
/* Mark the new socket "in-use" by the user so that any packets
6636
* that may arrive on the association after we've moved it are
6637
* queued to the backlog. This prevents a potential race between
6638
* backlog processing on the old socket and new-packet processing
6639
* on the new socket.
6640
*
6641
* The caller has just allocated newsk so we can guarantee that other
6642
* paths won't try to lock it and then oldsk.
6643
*/
6644
lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6645
sctp_assoc_migrate(assoc, newsk);
6646
6647
/* If the association on the newsk is already closed before accept()
6648
* is called, set RCV_SHUTDOWN flag.
6649
*/
6650
if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6651
newsk->sk_shutdown |= RCV_SHUTDOWN;
6652
6653
newsk->sk_state = SCTP_SS_ESTABLISHED;
6654
sctp_release_sock(newsk);
6655
}
6656
6657
6658
/* This proto struct describes the ULP interface for SCTP. */
6659
struct proto sctp_prot = {
6660
.name = "SCTP",
6661
.owner = THIS_MODULE,
6662
.close = sctp_close,
6663
.connect = sctp_connect,
6664
.disconnect = sctp_disconnect,
6665
.accept = sctp_accept,
6666
.ioctl = sctp_ioctl,
6667
.init = sctp_init_sock,
6668
.destroy = sctp_destroy_sock,
6669
.shutdown = sctp_shutdown,
6670
.setsockopt = sctp_setsockopt,
6671
.getsockopt = sctp_getsockopt,
6672
.sendmsg = sctp_sendmsg,
6673
.recvmsg = sctp_recvmsg,
6674
.bind = sctp_bind,
6675
.backlog_rcv = sctp_backlog_rcv,
6676
.hash = sctp_hash,
6677
.unhash = sctp_unhash,
6678
.get_port = sctp_get_port,
6679
.obj_size = sizeof(struct sctp_sock),
6680
.sysctl_mem = sysctl_sctp_mem,
6681
.sysctl_rmem = sysctl_sctp_rmem,
6682
.sysctl_wmem = sysctl_sctp_wmem,
6683
.memory_pressure = &sctp_memory_pressure,
6684
.enter_memory_pressure = sctp_enter_memory_pressure,
6685
.memory_allocated = &sctp_memory_allocated,
6686
.sockets_allocated = &sctp_sockets_allocated,
6687
};
6688
6689
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6690
6691
struct proto sctpv6_prot = {
6692
.name = "SCTPv6",
6693
.owner = THIS_MODULE,
6694
.close = sctp_close,
6695
.connect = sctp_connect,
6696
.disconnect = sctp_disconnect,
6697
.accept = sctp_accept,
6698
.ioctl = sctp_ioctl,
6699
.init = sctp_init_sock,
6700
.destroy = sctp_destroy_sock,
6701
.shutdown = sctp_shutdown,
6702
.setsockopt = sctp_setsockopt,
6703
.getsockopt = sctp_getsockopt,
6704
.sendmsg = sctp_sendmsg,
6705
.recvmsg = sctp_recvmsg,
6706
.bind = sctp_bind,
6707
.backlog_rcv = sctp_backlog_rcv,
6708
.hash = sctp_hash,
6709
.unhash = sctp_unhash,
6710
.get_port = sctp_get_port,
6711
.obj_size = sizeof(struct sctp6_sock),
6712
.sysctl_mem = sysctl_sctp_mem,
6713
.sysctl_rmem = sysctl_sctp_rmem,
6714
.sysctl_wmem = sysctl_sctp_wmem,
6715
.memory_pressure = &sctp_memory_pressure,
6716
.enter_memory_pressure = sctp_enter_memory_pressure,
6717
.memory_allocated = &sctp_memory_allocated,
6718
.sockets_allocated = &sctp_sockets_allocated,
6719
};
6720
#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
6721
6722