Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/sctp/ulpqueue.c
15109 views
1
/* SCTP kernel implementation
2
* (C) Copyright IBM Corp. 2001, 2004
3
* Copyright (c) 1999-2000 Cisco, Inc.
4
* Copyright (c) 1999-2001 Motorola, Inc.
5
* Copyright (c) 2001 Intel Corp.
6
* Copyright (c) 2001 Nokia, Inc.
7
* Copyright (c) 2001 La Monte H.P. Yarroll
8
*
9
* This abstraction carries sctp events to the ULP (sockets).
10
*
11
* This SCTP implementation is free software;
12
* you can redistribute it and/or modify it under the terms of
13
* the GNU General Public License as published by
14
* the Free Software Foundation; either version 2, or (at your option)
15
* any later version.
16
*
17
* This SCTP implementation is distributed in the hope that it
18
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
19
* ************************
20
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21
* See the GNU General Public License for more details.
22
*
23
* You should have received a copy of the GNU General Public License
24
* along with GNU CC; see the file COPYING. If not, write to
25
* the Free Software Foundation, 59 Temple Place - Suite 330,
26
* Boston, MA 02111-1307, USA.
27
*
28
* Please send any bug reports or fixes you make to the
29
* email address(es):
30
* lksctp developers <[email protected]>
31
*
32
* Or submit a bug report through the following website:
33
* http://www.sf.net/projects/lksctp
34
*
35
* Written or modified by:
36
* Jon Grimm <[email protected]>
37
* La Monte H.P. Yarroll <[email protected]>
38
* Sridhar Samudrala <[email protected]>
39
*
40
* Any bugs reported given to us we will try to fix... any fixes shared will
41
* be incorporated into the next SCTP release.
42
*/
43
44
#include <linux/slab.h>
45
#include <linux/types.h>
46
#include <linux/skbuff.h>
47
#include <net/sock.h>
48
#include <net/sctp/structs.h>
49
#include <net/sctp/sctp.h>
50
#include <net/sctp/sm.h>
51
52
/* Forward declarations for internal helpers. */
53
static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
54
struct sctp_ulpevent *);
55
static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *,
56
struct sctp_ulpevent *);
57
static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
58
59
/* 1st Level Abstractions */
60
61
/* Initialize a ULP queue from a block of memory. */
62
struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
63
struct sctp_association *asoc)
64
{
65
memset(ulpq, 0, sizeof(struct sctp_ulpq));
66
67
ulpq->asoc = asoc;
68
skb_queue_head_init(&ulpq->reasm);
69
skb_queue_head_init(&ulpq->lobby);
70
ulpq->pd_mode = 0;
71
ulpq->malloced = 0;
72
73
return ulpq;
74
}
75
76
77
/* Flush the reassembly and ordering queues. */
78
void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
79
{
80
struct sk_buff *skb;
81
struct sctp_ulpevent *event;
82
83
while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
84
event = sctp_skb2event(skb);
85
sctp_ulpevent_free(event);
86
}
87
88
while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
89
event = sctp_skb2event(skb);
90
sctp_ulpevent_free(event);
91
}
92
93
}
94
95
/* Dispose of a ulpqueue. */
96
void sctp_ulpq_free(struct sctp_ulpq *ulpq)
97
{
98
sctp_ulpq_flush(ulpq);
99
if (ulpq->malloced)
100
kfree(ulpq);
101
}
102
103
/* Process an incoming DATA chunk. */
104
int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
105
gfp_t gfp)
106
{
107
struct sk_buff_head temp;
108
struct sctp_ulpevent *event;
109
110
/* Create an event from the incoming chunk. */
111
event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
112
if (!event)
113
return -ENOMEM;
114
115
/* Do reassembly if needed. */
116
event = sctp_ulpq_reasm(ulpq, event);
117
118
/* Do ordering if needed. */
119
if ((event) && (event->msg_flags & MSG_EOR)){
120
/* Create a temporary list to collect chunks on. */
121
skb_queue_head_init(&temp);
122
__skb_queue_tail(&temp, sctp_event2skb(event));
123
124
event = sctp_ulpq_order(ulpq, event);
125
}
126
127
/* Send event to the ULP. 'event' is the sctp_ulpevent for
128
* very first SKB on the 'temp' list.
129
*/
130
if (event)
131
sctp_ulpq_tail_event(ulpq, event);
132
133
return 0;
134
}
135
136
/* Add a new event for propagation to the ULP. */
137
/* Clear the partial delivery mode for this socket. Note: This
138
* assumes that no association is currently in partial delivery mode.
139
*/
140
int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
141
{
142
struct sctp_sock *sp = sctp_sk(sk);
143
144
if (atomic_dec_and_test(&sp->pd_mode)) {
145
/* This means there are no other associations in PD, so
146
* we can go ahead and clear out the lobby in one shot
147
*/
148
if (!skb_queue_empty(&sp->pd_lobby)) {
149
struct list_head *list;
150
sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue);
151
list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
152
INIT_LIST_HEAD(list);
153
return 1;
154
}
155
} else {
156
/* There are other associations in PD, so we only need to
157
* pull stuff out of the lobby that belongs to the
158
* associations that is exiting PD (all of its notifications
159
* are posted here).
160
*/
161
if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
162
struct sk_buff *skb, *tmp;
163
struct sctp_ulpevent *event;
164
165
sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
166
event = sctp_skb2event(skb);
167
if (event->asoc == asoc) {
168
__skb_unlink(skb, &sp->pd_lobby);
169
__skb_queue_tail(&sk->sk_receive_queue,
170
skb);
171
}
172
}
173
}
174
}
175
176
return 0;
177
}
178
179
/* Set the pd_mode on the socket and ulpq */
180
static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
181
{
182
struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
183
184
atomic_inc(&sp->pd_mode);
185
ulpq->pd_mode = 1;
186
}
187
188
/* Clear the pd_mode and restart any pending messages waiting for delivery. */
189
static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
190
{
191
ulpq->pd_mode = 0;
192
sctp_ulpq_reasm_drain(ulpq);
193
return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
194
}
195
196
/* If the SKB of 'event' is on a list, it is the first such member
197
* of that list.
198
*/
199
int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
200
{
201
struct sock *sk = ulpq->asoc->base.sk;
202
struct sk_buff_head *queue, *skb_list;
203
struct sk_buff *skb = sctp_event2skb(event);
204
int clear_pd = 0;
205
206
skb_list = (struct sk_buff_head *) skb->prev;
207
208
/* If the socket is just going to throw this away, do not
209
* even try to deliver it.
210
*/
211
if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN))
212
goto out_free;
213
214
/* Check if the user wishes to receive this event. */
215
if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe))
216
goto out_free;
217
218
/* If we are in partial delivery mode, post to the lobby until
219
* partial delivery is cleared, unless, of course _this_ is
220
* the association the cause of the partial delivery.
221
*/
222
223
if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) {
224
queue = &sk->sk_receive_queue;
225
} else {
226
if (ulpq->pd_mode) {
227
/* If the association is in partial delivery, we
228
* need to finish delivering the partially processed
229
* packet before passing any other data. This is
230
* because we don't truly support stream interleaving.
231
*/
232
if ((event->msg_flags & MSG_NOTIFICATION) ||
233
(SCTP_DATA_NOT_FRAG ==
234
(event->msg_flags & SCTP_DATA_FRAG_MASK)))
235
queue = &sctp_sk(sk)->pd_lobby;
236
else {
237
clear_pd = event->msg_flags & MSG_EOR;
238
queue = &sk->sk_receive_queue;
239
}
240
} else {
241
/*
242
* If fragment interleave is enabled, we
243
* can queue this to the receive queue instead
244
* of the lobby.
245
*/
246
if (sctp_sk(sk)->frag_interleave)
247
queue = &sk->sk_receive_queue;
248
else
249
queue = &sctp_sk(sk)->pd_lobby;
250
}
251
}
252
253
/* If we are harvesting multiple skbs they will be
254
* collected on a list.
255
*/
256
if (skb_list)
257
sctp_skb_list_tail(skb_list, queue);
258
else
259
__skb_queue_tail(queue, skb);
260
261
/* Did we just complete partial delivery and need to get
262
* rolling again? Move pending data to the receive
263
* queue.
264
*/
265
if (clear_pd)
266
sctp_ulpq_clear_pd(ulpq);
267
268
if (queue == &sk->sk_receive_queue)
269
sk->sk_data_ready(sk, 0);
270
return 1;
271
272
out_free:
273
if (skb_list)
274
sctp_queue_purge_ulpevents(skb_list);
275
else
276
sctp_ulpevent_free(event);
277
278
return 0;
279
}
280
281
/* 2nd Level Abstractions */
282
283
/* Helper function to store chunks that need to be reassembled. */
284
static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
285
struct sctp_ulpevent *event)
286
{
287
struct sk_buff *pos;
288
struct sctp_ulpevent *cevent;
289
__u32 tsn, ctsn;
290
291
tsn = event->tsn;
292
293
/* See if it belongs at the end. */
294
pos = skb_peek_tail(&ulpq->reasm);
295
if (!pos) {
296
__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
297
return;
298
}
299
300
/* Short circuit just dropping it at the end. */
301
cevent = sctp_skb2event(pos);
302
ctsn = cevent->tsn;
303
if (TSN_lt(ctsn, tsn)) {
304
__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
305
return;
306
}
307
308
/* Find the right place in this list. We store them by TSN. */
309
skb_queue_walk(&ulpq->reasm, pos) {
310
cevent = sctp_skb2event(pos);
311
ctsn = cevent->tsn;
312
313
if (TSN_lt(tsn, ctsn))
314
break;
315
}
316
317
/* Insert before pos. */
318
__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
319
320
}
321
322
/* Helper function to return an event corresponding to the reassembled
323
* datagram.
324
* This routine creates a re-assembled skb given the first and last skb's
325
* as stored in the reassembly queue. The skb's may be non-linear if the sctp
326
* payload was fragmented on the way and ip had to reassemble them.
327
* We add the rest of skb's to the first skb's fraglist.
328
*/
329
static struct sctp_ulpevent *sctp_make_reassembled_event(struct sk_buff_head *queue, struct sk_buff *f_frag, struct sk_buff *l_frag)
330
{
331
struct sk_buff *pos;
332
struct sk_buff *new = NULL;
333
struct sctp_ulpevent *event;
334
struct sk_buff *pnext, *last;
335
struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
336
337
/* Store the pointer to the 2nd skb */
338
if (f_frag == l_frag)
339
pos = NULL;
340
else
341
pos = f_frag->next;
342
343
/* Get the last skb in the f_frag's frag_list if present. */
344
for (last = list; list; last = list, list = list->next);
345
346
/* Add the list of remaining fragments to the first fragments
347
* frag_list.
348
*/
349
if (last)
350
last->next = pos;
351
else {
352
if (skb_cloned(f_frag)) {
353
/* This is a cloned skb, we can't just modify
354
* the frag_list. We need a new skb to do that.
355
* Instead of calling skb_unshare(), we'll do it
356
* ourselves since we need to delay the free.
357
*/
358
new = skb_copy(f_frag, GFP_ATOMIC);
359
if (!new)
360
return NULL; /* try again later */
361
362
sctp_skb_set_owner_r(new, f_frag->sk);
363
364
skb_shinfo(new)->frag_list = pos;
365
} else
366
skb_shinfo(f_frag)->frag_list = pos;
367
}
368
369
/* Remove the first fragment from the reassembly queue. */
370
__skb_unlink(f_frag, queue);
371
372
/* if we did unshare, then free the old skb and re-assign */
373
if (new) {
374
kfree_skb(f_frag);
375
f_frag = new;
376
}
377
378
while (pos) {
379
380
pnext = pos->next;
381
382
/* Update the len and data_len fields of the first fragment. */
383
f_frag->len += pos->len;
384
f_frag->data_len += pos->len;
385
386
/* Remove the fragment from the reassembly queue. */
387
__skb_unlink(pos, queue);
388
389
/* Break if we have reached the last fragment. */
390
if (pos == l_frag)
391
break;
392
pos->next = pnext;
393
pos = pnext;
394
}
395
396
event = sctp_skb2event(f_frag);
397
SCTP_INC_STATS(SCTP_MIB_REASMUSRMSGS);
398
399
return event;
400
}
401
402
403
/* Helper function to check if an incoming chunk has filled up the last
404
* missing fragment in a SCTP datagram and return the corresponding event.
405
*/
406
static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
407
{
408
struct sk_buff *pos;
409
struct sctp_ulpevent *cevent;
410
struct sk_buff *first_frag = NULL;
411
__u32 ctsn, next_tsn;
412
struct sctp_ulpevent *retval = NULL;
413
struct sk_buff *pd_first = NULL;
414
struct sk_buff *pd_last = NULL;
415
size_t pd_len = 0;
416
struct sctp_association *asoc;
417
u32 pd_point;
418
419
/* Initialized to 0 just to avoid compiler warning message. Will
420
* never be used with this value. It is referenced only after it
421
* is set when we find the first fragment of a message.
422
*/
423
next_tsn = 0;
424
425
/* The chunks are held in the reasm queue sorted by TSN.
426
* Walk through the queue sequentially and look for a sequence of
427
* fragmented chunks that complete a datagram.
428
* 'first_frag' and next_tsn are reset when we find a chunk which
429
* is the first fragment of a datagram. Once these 2 fields are set
430
* we expect to find the remaining middle fragments and the last
431
* fragment in order. If not, first_frag is reset to NULL and we
432
* start the next pass when we find another first fragment.
433
*
434
* There is a potential to do partial delivery if user sets
435
* SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
436
* to see if can do PD.
437
*/
438
skb_queue_walk(&ulpq->reasm, pos) {
439
cevent = sctp_skb2event(pos);
440
ctsn = cevent->tsn;
441
442
switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
443
case SCTP_DATA_FIRST_FRAG:
444
/* If this "FIRST_FRAG" is the first
445
* element in the queue, then count it towards
446
* possible PD.
447
*/
448
if (pos == ulpq->reasm.next) {
449
pd_first = pos;
450
pd_last = pos;
451
pd_len = pos->len;
452
} else {
453
pd_first = NULL;
454
pd_last = NULL;
455
pd_len = 0;
456
}
457
458
first_frag = pos;
459
next_tsn = ctsn + 1;
460
break;
461
462
case SCTP_DATA_MIDDLE_FRAG:
463
if ((first_frag) && (ctsn == next_tsn)) {
464
next_tsn++;
465
if (pd_first) {
466
pd_last = pos;
467
pd_len += pos->len;
468
}
469
} else
470
first_frag = NULL;
471
break;
472
473
case SCTP_DATA_LAST_FRAG:
474
if (first_frag && (ctsn == next_tsn))
475
goto found;
476
else
477
first_frag = NULL;
478
break;
479
}
480
}
481
482
asoc = ulpq->asoc;
483
if (pd_first) {
484
/* Make sure we can enter partial deliver.
485
* We can trigger partial delivery only if framgent
486
* interleave is set, or the socket is not already
487
* in partial delivery.
488
*/
489
if (!sctp_sk(asoc->base.sk)->frag_interleave &&
490
atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
491
goto done;
492
493
cevent = sctp_skb2event(pd_first);
494
pd_point = sctp_sk(asoc->base.sk)->pd_point;
495
if (pd_point && pd_point <= pd_len) {
496
retval = sctp_make_reassembled_event(&ulpq->reasm,
497
pd_first,
498
pd_last);
499
if (retval)
500
sctp_ulpq_set_pd(ulpq);
501
}
502
}
503
done:
504
return retval;
505
found:
506
retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, pos);
507
if (retval)
508
retval->msg_flags |= MSG_EOR;
509
goto done;
510
}
511
512
/* Retrieve the next set of fragments of a partial message. */
513
static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
514
{
515
struct sk_buff *pos, *last_frag, *first_frag;
516
struct sctp_ulpevent *cevent;
517
__u32 ctsn, next_tsn;
518
int is_last;
519
struct sctp_ulpevent *retval;
520
521
/* The chunks are held in the reasm queue sorted by TSN.
522
* Walk through the queue sequentially and look for the first
523
* sequence of fragmented chunks.
524
*/
525
526
if (skb_queue_empty(&ulpq->reasm))
527
return NULL;
528
529
last_frag = first_frag = NULL;
530
retval = NULL;
531
next_tsn = 0;
532
is_last = 0;
533
534
skb_queue_walk(&ulpq->reasm, pos) {
535
cevent = sctp_skb2event(pos);
536
ctsn = cevent->tsn;
537
538
switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
539
case SCTP_DATA_MIDDLE_FRAG:
540
if (!first_frag) {
541
first_frag = pos;
542
next_tsn = ctsn + 1;
543
last_frag = pos;
544
} else if (next_tsn == ctsn)
545
next_tsn++;
546
else
547
goto done;
548
break;
549
case SCTP_DATA_LAST_FRAG:
550
if (!first_frag)
551
first_frag = pos;
552
else if (ctsn != next_tsn)
553
goto done;
554
last_frag = pos;
555
is_last = 1;
556
goto done;
557
default:
558
return NULL;
559
}
560
}
561
562
/* We have the reassembled event. There is no need to look
563
* further.
564
*/
565
done:
566
retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, last_frag);
567
if (retval && is_last)
568
retval->msg_flags |= MSG_EOR;
569
570
return retval;
571
}
572
573
574
/* Helper function to reassemble chunks. Hold chunks on the reasm queue that
575
* need reassembling.
576
*/
577
static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
578
struct sctp_ulpevent *event)
579
{
580
struct sctp_ulpevent *retval = NULL;
581
582
/* Check if this is part of a fragmented message. */
583
if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
584
event->msg_flags |= MSG_EOR;
585
return event;
586
}
587
588
sctp_ulpq_store_reasm(ulpq, event);
589
if (!ulpq->pd_mode)
590
retval = sctp_ulpq_retrieve_reassembled(ulpq);
591
else {
592
__u32 ctsn, ctsnap;
593
594
/* Do not even bother unless this is the next tsn to
595
* be delivered.
596
*/
597
ctsn = event->tsn;
598
ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
599
if (TSN_lte(ctsn, ctsnap))
600
retval = sctp_ulpq_retrieve_partial(ulpq);
601
}
602
603
return retval;
604
}
605
606
/* Retrieve the first part (sequential fragments) for partial delivery. */
607
static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
608
{
609
struct sk_buff *pos, *last_frag, *first_frag;
610
struct sctp_ulpevent *cevent;
611
__u32 ctsn, next_tsn;
612
struct sctp_ulpevent *retval;
613
614
/* The chunks are held in the reasm queue sorted by TSN.
615
* Walk through the queue sequentially and look for a sequence of
616
* fragmented chunks that start a datagram.
617
*/
618
619
if (skb_queue_empty(&ulpq->reasm))
620
return NULL;
621
622
last_frag = first_frag = NULL;
623
retval = NULL;
624
next_tsn = 0;
625
626
skb_queue_walk(&ulpq->reasm, pos) {
627
cevent = sctp_skb2event(pos);
628
ctsn = cevent->tsn;
629
630
switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
631
case SCTP_DATA_FIRST_FRAG:
632
if (!first_frag) {
633
first_frag = pos;
634
next_tsn = ctsn + 1;
635
last_frag = pos;
636
} else
637
goto done;
638
break;
639
640
case SCTP_DATA_MIDDLE_FRAG:
641
if (!first_frag)
642
return NULL;
643
if (ctsn == next_tsn) {
644
next_tsn++;
645
last_frag = pos;
646
} else
647
goto done;
648
break;
649
default:
650
return NULL;
651
}
652
}
653
654
/* We have the reassembled event. There is no need to look
655
* further.
656
*/
657
done:
658
retval = sctp_make_reassembled_event(&ulpq->reasm, first_frag, last_frag);
659
return retval;
660
}
661
662
/*
663
* Flush out stale fragments from the reassembly queue when processing
664
* a Forward TSN.
665
*
666
* RFC 3758, Section 3.6
667
*
668
* After receiving and processing a FORWARD TSN, the data receiver MUST
669
* take cautions in updating its re-assembly queue. The receiver MUST
670
* remove any partially reassembled message, which is still missing one
671
* or more TSNs earlier than or equal to the new cumulative TSN point.
672
* In the event that the receiver has invoked the partial delivery API,
673
* a notification SHOULD also be generated to inform the upper layer API
674
* that the message being partially delivered will NOT be completed.
675
*/
676
void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
677
{
678
struct sk_buff *pos, *tmp;
679
struct sctp_ulpevent *event;
680
__u32 tsn;
681
682
if (skb_queue_empty(&ulpq->reasm))
683
return;
684
685
skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
686
event = sctp_skb2event(pos);
687
tsn = event->tsn;
688
689
/* Since the entire message must be abandoned by the
690
* sender (item A3 in Section 3.5, RFC 3758), we can
691
* free all fragments on the list that are less then
692
* or equal to ctsn_point
693
*/
694
if (TSN_lte(tsn, fwd_tsn)) {
695
__skb_unlink(pos, &ulpq->reasm);
696
sctp_ulpevent_free(event);
697
} else
698
break;
699
}
700
}
701
702
/*
703
* Drain the reassembly queue. If we just cleared parted delivery, it
704
* is possible that the reassembly queue will contain already reassembled
705
* messages. Retrieve any such messages and give them to the user.
706
*/
707
static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
708
{
709
struct sctp_ulpevent *event = NULL;
710
struct sk_buff_head temp;
711
712
if (skb_queue_empty(&ulpq->reasm))
713
return;
714
715
while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
716
/* Do ordering if needed. */
717
if ((event) && (event->msg_flags & MSG_EOR)){
718
skb_queue_head_init(&temp);
719
__skb_queue_tail(&temp, sctp_event2skb(event));
720
721
event = sctp_ulpq_order(ulpq, event);
722
}
723
724
/* Send event to the ULP. 'event' is the
725
* sctp_ulpevent for very first SKB on the temp' list.
726
*/
727
if (event)
728
sctp_ulpq_tail_event(ulpq, event);
729
}
730
}
731
732
733
/* Helper function to gather skbs that have possibly become
734
* ordered by an an incoming chunk.
735
*/
736
static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
737
struct sctp_ulpevent *event)
738
{
739
struct sk_buff_head *event_list;
740
struct sk_buff *pos, *tmp;
741
struct sctp_ulpevent *cevent;
742
struct sctp_stream *in;
743
__u16 sid, csid, cssn;
744
745
sid = event->stream;
746
in = &ulpq->asoc->ssnmap->in;
747
748
event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
749
750
/* We are holding the chunks by stream, by SSN. */
751
sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
752
cevent = (struct sctp_ulpevent *) pos->cb;
753
csid = cevent->stream;
754
cssn = cevent->ssn;
755
756
/* Have we gone too far? */
757
if (csid > sid)
758
break;
759
760
/* Have we not gone far enough? */
761
if (csid < sid)
762
continue;
763
764
if (cssn != sctp_ssn_peek(in, sid))
765
break;
766
767
/* Found it, so mark in the ssnmap. */
768
sctp_ssn_next(in, sid);
769
770
__skb_unlink(pos, &ulpq->lobby);
771
772
/* Attach all gathered skbs to the event. */
773
__skb_queue_tail(event_list, pos);
774
}
775
}
776
777
/* Helper function to store chunks needing ordering. */
778
static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
779
struct sctp_ulpevent *event)
780
{
781
struct sk_buff *pos;
782
struct sctp_ulpevent *cevent;
783
__u16 sid, csid;
784
__u16 ssn, cssn;
785
786
pos = skb_peek_tail(&ulpq->lobby);
787
if (!pos) {
788
__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
789
return;
790
}
791
792
sid = event->stream;
793
ssn = event->ssn;
794
795
cevent = (struct sctp_ulpevent *) pos->cb;
796
csid = cevent->stream;
797
cssn = cevent->ssn;
798
if (sid > csid) {
799
__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
800
return;
801
}
802
803
if ((sid == csid) && SSN_lt(cssn, ssn)) {
804
__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
805
return;
806
}
807
808
/* Find the right place in this list. We store them by
809
* stream ID and then by SSN.
810
*/
811
skb_queue_walk(&ulpq->lobby, pos) {
812
cevent = (struct sctp_ulpevent *) pos->cb;
813
csid = cevent->stream;
814
cssn = cevent->ssn;
815
816
if (csid > sid)
817
break;
818
if (csid == sid && SSN_lt(ssn, cssn))
819
break;
820
}
821
822
823
/* Insert before pos. */
824
__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
825
}
826
827
static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
828
struct sctp_ulpevent *event)
829
{
830
__u16 sid, ssn;
831
struct sctp_stream *in;
832
833
/* Check if this message needs ordering. */
834
if (SCTP_DATA_UNORDERED & event->msg_flags)
835
return event;
836
837
/* Note: The stream ID must be verified before this routine. */
838
sid = event->stream;
839
ssn = event->ssn;
840
in = &ulpq->asoc->ssnmap->in;
841
842
/* Is this the expected SSN for this stream ID? */
843
if (ssn != sctp_ssn_peek(in, sid)) {
844
/* We've received something out of order, so find where it
845
* needs to be placed. We order by stream and then by SSN.
846
*/
847
sctp_ulpq_store_ordered(ulpq, event);
848
return NULL;
849
}
850
851
/* Mark that the next chunk has been found. */
852
sctp_ssn_next(in, sid);
853
854
/* Go find any other chunks that were waiting for
855
* ordering.
856
*/
857
sctp_ulpq_retrieve_ordered(ulpq, event);
858
859
return event;
860
}
861
862
/* Helper function to gather skbs that have possibly become
863
* ordered by forward tsn skipping their dependencies.
864
*/
865
static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
866
{
867
struct sk_buff *pos, *tmp;
868
struct sctp_ulpevent *cevent;
869
struct sctp_ulpevent *event;
870
struct sctp_stream *in;
871
struct sk_buff_head temp;
872
struct sk_buff_head *lobby = &ulpq->lobby;
873
__u16 csid, cssn;
874
875
in = &ulpq->asoc->ssnmap->in;
876
877
/* We are holding the chunks by stream, by SSN. */
878
skb_queue_head_init(&temp);
879
event = NULL;
880
sctp_skb_for_each(pos, lobby, tmp) {
881
cevent = (struct sctp_ulpevent *) pos->cb;
882
csid = cevent->stream;
883
cssn = cevent->ssn;
884
885
/* Have we gone too far? */
886
if (csid > sid)
887
break;
888
889
/* Have we not gone far enough? */
890
if (csid < sid)
891
continue;
892
893
/* see if this ssn has been marked by skipping */
894
if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
895
break;
896
897
__skb_unlink(pos, lobby);
898
if (!event)
899
/* Create a temporary list to collect chunks on. */
900
event = sctp_skb2event(pos);
901
902
/* Attach all gathered skbs to the event. */
903
__skb_queue_tail(&temp, pos);
904
}
905
906
/* If we didn't reap any data, see if the next expected SSN
907
* is next on the queue and if so, use that.
908
*/
909
if (event == NULL && pos != (struct sk_buff *)lobby) {
910
cevent = (struct sctp_ulpevent *) pos->cb;
911
csid = cevent->stream;
912
cssn = cevent->ssn;
913
914
if (csid == sid && cssn == sctp_ssn_peek(in, csid)) {
915
sctp_ssn_next(in, csid);
916
__skb_unlink(pos, lobby);
917
__skb_queue_tail(&temp, pos);
918
event = sctp_skb2event(pos);
919
}
920
}
921
922
/* Send event to the ULP. 'event' is the sctp_ulpevent for
923
* very first SKB on the 'temp' list.
924
*/
925
if (event) {
926
/* see if we have more ordered that we can deliver */
927
sctp_ulpq_retrieve_ordered(ulpq, event);
928
sctp_ulpq_tail_event(ulpq, event);
929
}
930
}
931
932
/* Skip over an SSN. This is used during the processing of
933
* Forwared TSN chunk to skip over the abandoned ordered data
934
*/
935
void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
936
{
937
struct sctp_stream *in;
938
939
/* Note: The stream ID must be verified before this routine. */
940
in = &ulpq->asoc->ssnmap->in;
941
942
/* Is this an old SSN? If so ignore. */
943
if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
944
return;
945
946
/* Mark that we are no longer expecting this SSN or lower. */
947
sctp_ssn_skip(in, sid, ssn);
948
949
/* Go find any other chunks that were waiting for
950
* ordering and deliver them if needed.
951
*/
952
sctp_ulpq_reap_ordered(ulpq, sid);
953
}
954
955
static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
956
struct sk_buff_head *list, __u16 needed)
957
{
958
__u16 freed = 0;
959
__u32 tsn;
960
struct sk_buff *skb;
961
struct sctp_ulpevent *event;
962
struct sctp_tsnmap *tsnmap;
963
964
tsnmap = &ulpq->asoc->peer.tsn_map;
965
966
while ((skb = __skb_dequeue_tail(list)) != NULL) {
967
freed += skb_headlen(skb);
968
event = sctp_skb2event(skb);
969
tsn = event->tsn;
970
971
sctp_ulpevent_free(event);
972
sctp_tsnmap_renege(tsnmap, tsn);
973
if (freed >= needed)
974
return freed;
975
}
976
977
return freed;
978
}
979
980
/* Renege 'needed' bytes from the ordering queue. */
981
static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
982
{
983
return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
984
}
985
986
/* Renege 'needed' bytes from the reassembly queue. */
987
static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
988
{
989
return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
990
}
991
992
/* Partial deliver the first message as there is pressure on rwnd. */
993
void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
994
struct sctp_chunk *chunk,
995
gfp_t gfp)
996
{
997
struct sctp_ulpevent *event;
998
struct sctp_association *asoc;
999
struct sctp_sock *sp;
1000
1001
asoc = ulpq->asoc;
1002
sp = sctp_sk(asoc->base.sk);
1003
1004
/* If the association is already in Partial Delivery mode
1005
* we have noting to do.
1006
*/
1007
if (ulpq->pd_mode)
1008
return;
1009
1010
/* If the user enabled fragment interleave socket option,
1011
* multiple associations can enter partial delivery.
1012
* Otherwise, we can only enter partial delivery if the
1013
* socket is not in partial deliver mode.
1014
*/
1015
if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1016
/* Is partial delivery possible? */
1017
event = sctp_ulpq_retrieve_first(ulpq);
1018
/* Send event to the ULP. */
1019
if (event) {
1020
sctp_ulpq_tail_event(ulpq, event);
1021
sctp_ulpq_set_pd(ulpq);
1022
return;
1023
}
1024
}
1025
}
1026
1027
/* Renege some packets to make room for an incoming chunk. */
1028
void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1029
gfp_t gfp)
1030
{
1031
struct sctp_association *asoc;
1032
__u16 needed, freed;
1033
1034
asoc = ulpq->asoc;
1035
1036
if (chunk) {
1037
needed = ntohs(chunk->chunk_hdr->length);
1038
needed -= sizeof(sctp_data_chunk_t);
1039
} else
1040
needed = SCTP_DEFAULT_MAXWINDOW;
1041
1042
freed = 0;
1043
1044
if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1045
freed = sctp_ulpq_renege_order(ulpq, needed);
1046
if (freed < needed) {
1047
freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1048
}
1049
}
1050
/* If able to free enough room, accept this chunk. */
1051
if (chunk && (freed >= needed)) {
1052
__u32 tsn;
1053
tsn = ntohl(chunk->subh.data_hdr->tsn);
1054
sctp_tsnmap_mark(&asoc->peer.tsn_map, tsn);
1055
sctp_ulpq_tail_data(ulpq, chunk, gfp);
1056
1057
sctp_ulpq_partial_delivery(ulpq, chunk, gfp);
1058
}
1059
1060
sk_mem_reclaim(asoc->base.sk);
1061
}
1062
1063
1064
1065
/* Notify the application if an association is aborted and in
1066
* partial delivery mode. Send up any pending received messages.
1067
*/
1068
void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1069
{
1070
struct sctp_ulpevent *ev = NULL;
1071
struct sock *sk;
1072
1073
if (!ulpq->pd_mode)
1074
return;
1075
1076
sk = ulpq->asoc->base.sk;
1077
if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1078
&sctp_sk(sk)->subscribe))
1079
ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1080
SCTP_PARTIAL_DELIVERY_ABORTED,
1081
gfp);
1082
if (ev)
1083
__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1084
1085
/* If there is data waiting, send it up the socket now. */
1086
if (sctp_ulpq_clear_pd(ulpq) || ev)
1087
sk->sk_data_ready(sk, 0);
1088
}
1089
1090