Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/sunrpc/cache.c
15109 views
1
/*
2
* net/sunrpc/cache.c
3
*
4
* Generic code for various authentication-related caches
5
* used by sunrpc clients and servers.
6
*
7
* Copyright (C) 2002 Neil Brown <[email protected]>
8
*
9
* Released under terms in GPL version 2. See COPYING.
10
*
11
*/
12
13
#include <linux/types.h>
14
#include <linux/fs.h>
15
#include <linux/file.h>
16
#include <linux/slab.h>
17
#include <linux/signal.h>
18
#include <linux/sched.h>
19
#include <linux/kmod.h>
20
#include <linux/list.h>
21
#include <linux/module.h>
22
#include <linux/ctype.h>
23
#include <asm/uaccess.h>
24
#include <linux/poll.h>
25
#include <linux/seq_file.h>
26
#include <linux/proc_fs.h>
27
#include <linux/net.h>
28
#include <linux/workqueue.h>
29
#include <linux/mutex.h>
30
#include <linux/pagemap.h>
31
#include <asm/ioctls.h>
32
#include <linux/sunrpc/types.h>
33
#include <linux/sunrpc/cache.h>
34
#include <linux/sunrpc/stats.h>
35
#include <linux/sunrpc/rpc_pipe_fs.h>
36
#include "netns.h"
37
38
#define RPCDBG_FACILITY RPCDBG_CACHE
39
40
static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41
static void cache_revisit_request(struct cache_head *item);
42
43
static void cache_init(struct cache_head *h)
44
{
45
time_t now = seconds_since_boot();
46
h->next = NULL;
47
h->flags = 0;
48
kref_init(&h->ref);
49
h->expiry_time = now + CACHE_NEW_EXPIRY;
50
h->last_refresh = now;
51
}
52
53
static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54
{
55
return (h->expiry_time < seconds_since_boot()) ||
56
(detail->flush_time > h->last_refresh);
57
}
58
59
struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60
struct cache_head *key, int hash)
61
{
62
struct cache_head **head, **hp;
63
struct cache_head *new = NULL, *freeme = NULL;
64
65
head = &detail->hash_table[hash];
66
67
read_lock(&detail->hash_lock);
68
69
for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70
struct cache_head *tmp = *hp;
71
if (detail->match(tmp, key)) {
72
if (cache_is_expired(detail, tmp))
73
/* This entry is expired, we will discard it. */
74
break;
75
cache_get(tmp);
76
read_unlock(&detail->hash_lock);
77
return tmp;
78
}
79
}
80
read_unlock(&detail->hash_lock);
81
/* Didn't find anything, insert an empty entry */
82
83
new = detail->alloc();
84
if (!new)
85
return NULL;
86
/* must fully initialise 'new', else
87
* we might get lose if we need to
88
* cache_put it soon.
89
*/
90
cache_init(new);
91
detail->init(new, key);
92
93
write_lock(&detail->hash_lock);
94
95
/* check if entry appeared while we slept */
96
for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97
struct cache_head *tmp = *hp;
98
if (detail->match(tmp, key)) {
99
if (cache_is_expired(detail, tmp)) {
100
*hp = tmp->next;
101
tmp->next = NULL;
102
detail->entries --;
103
freeme = tmp;
104
break;
105
}
106
cache_get(tmp);
107
write_unlock(&detail->hash_lock);
108
cache_put(new, detail);
109
return tmp;
110
}
111
}
112
new->next = *head;
113
*head = new;
114
detail->entries++;
115
cache_get(new);
116
write_unlock(&detail->hash_lock);
117
118
if (freeme)
119
cache_put(freeme, detail);
120
return new;
121
}
122
EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125
static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127
static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128
{
129
head->expiry_time = expiry;
130
head->last_refresh = seconds_since_boot();
131
smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132
set_bit(CACHE_VALID, &head->flags);
133
}
134
135
static void cache_fresh_unlocked(struct cache_head *head,
136
struct cache_detail *detail)
137
{
138
if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139
cache_revisit_request(head);
140
cache_dequeue(detail, head);
141
}
142
}
143
144
struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145
struct cache_head *new, struct cache_head *old, int hash)
146
{
147
/* The 'old' entry is to be replaced by 'new'.
148
* If 'old' is not VALID, we update it directly,
149
* otherwise we need to replace it
150
*/
151
struct cache_head **head;
152
struct cache_head *tmp;
153
154
if (!test_bit(CACHE_VALID, &old->flags)) {
155
write_lock(&detail->hash_lock);
156
if (!test_bit(CACHE_VALID, &old->flags)) {
157
if (test_bit(CACHE_NEGATIVE, &new->flags))
158
set_bit(CACHE_NEGATIVE, &old->flags);
159
else
160
detail->update(old, new);
161
cache_fresh_locked(old, new->expiry_time);
162
write_unlock(&detail->hash_lock);
163
cache_fresh_unlocked(old, detail);
164
return old;
165
}
166
write_unlock(&detail->hash_lock);
167
}
168
/* We need to insert a new entry */
169
tmp = detail->alloc();
170
if (!tmp) {
171
cache_put(old, detail);
172
return NULL;
173
}
174
cache_init(tmp);
175
detail->init(tmp, old);
176
head = &detail->hash_table[hash];
177
178
write_lock(&detail->hash_lock);
179
if (test_bit(CACHE_NEGATIVE, &new->flags))
180
set_bit(CACHE_NEGATIVE, &tmp->flags);
181
else
182
detail->update(tmp, new);
183
tmp->next = *head;
184
*head = tmp;
185
detail->entries++;
186
cache_get(tmp);
187
cache_fresh_locked(tmp, new->expiry_time);
188
cache_fresh_locked(old, 0);
189
write_unlock(&detail->hash_lock);
190
cache_fresh_unlocked(tmp, detail);
191
cache_fresh_unlocked(old, detail);
192
cache_put(old, detail);
193
return tmp;
194
}
195
EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196
197
static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198
{
199
if (!cd->cache_upcall)
200
return -EINVAL;
201
return cd->cache_upcall(cd, h);
202
}
203
204
static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205
{
206
if (!test_bit(CACHE_VALID, &h->flags))
207
return -EAGAIN;
208
else {
209
/* entry is valid */
210
if (test_bit(CACHE_NEGATIVE, &h->flags))
211
return -ENOENT;
212
else {
213
/*
214
* In combination with write barrier in
215
* sunrpc_cache_update, ensures that anyone
216
* using the cache entry after this sees the
217
* updated contents:
218
*/
219
smp_rmb();
220
return 0;
221
}
222
}
223
}
224
225
static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
226
{
227
int rv;
228
229
write_lock(&detail->hash_lock);
230
rv = cache_is_valid(detail, h);
231
if (rv != -EAGAIN) {
232
write_unlock(&detail->hash_lock);
233
return rv;
234
}
235
set_bit(CACHE_NEGATIVE, &h->flags);
236
cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
237
write_unlock(&detail->hash_lock);
238
cache_fresh_unlocked(h, detail);
239
return -ENOENT;
240
}
241
242
/*
243
* This is the generic cache management routine for all
244
* the authentication caches.
245
* It checks the currency of a cache item and will (later)
246
* initiate an upcall to fill it if needed.
247
*
248
*
249
* Returns 0 if the cache_head can be used, or cache_puts it and returns
250
* -EAGAIN if upcall is pending and request has been queued
251
* -ETIMEDOUT if upcall failed or request could not be queue or
252
* upcall completed but item is still invalid (implying that
253
* the cache item has been replaced with a newer one).
254
* -ENOENT if cache entry was negative
255
*/
256
int cache_check(struct cache_detail *detail,
257
struct cache_head *h, struct cache_req *rqstp)
258
{
259
int rv;
260
long refresh_age, age;
261
262
/* First decide return status as best we can */
263
rv = cache_is_valid(detail, h);
264
265
/* now see if we want to start an upcall */
266
refresh_age = (h->expiry_time - h->last_refresh);
267
age = seconds_since_boot() - h->last_refresh;
268
269
if (rqstp == NULL) {
270
if (rv == -EAGAIN)
271
rv = -ENOENT;
272
} else if (rv == -EAGAIN || age > refresh_age/2) {
273
dprintk("RPC: Want update, refage=%ld, age=%ld\n",
274
refresh_age, age);
275
if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
276
switch (cache_make_upcall(detail, h)) {
277
case -EINVAL:
278
clear_bit(CACHE_PENDING, &h->flags);
279
cache_revisit_request(h);
280
rv = try_to_negate_entry(detail, h);
281
break;
282
case -EAGAIN:
283
clear_bit(CACHE_PENDING, &h->flags);
284
cache_revisit_request(h);
285
break;
286
}
287
}
288
}
289
290
if (rv == -EAGAIN) {
291
if (!cache_defer_req(rqstp, h)) {
292
/*
293
* Request was not deferred; handle it as best
294
* we can ourselves:
295
*/
296
rv = cache_is_valid(detail, h);
297
if (rv == -EAGAIN)
298
rv = -ETIMEDOUT;
299
}
300
}
301
if (rv)
302
cache_put(h, detail);
303
return rv;
304
}
305
EXPORT_SYMBOL_GPL(cache_check);
306
307
/*
308
* caches need to be periodically cleaned.
309
* For this we maintain a list of cache_detail and
310
* a current pointer into that list and into the table
311
* for that entry.
312
*
313
* Each time clean_cache is called it finds the next non-empty entry
314
* in the current table and walks the list in that entry
315
* looking for entries that can be removed.
316
*
317
* An entry gets removed if:
318
* - The expiry is before current time
319
* - The last_refresh time is before the flush_time for that cache
320
*
321
* later we might drop old entries with non-NEVER expiry if that table
322
* is getting 'full' for some definition of 'full'
323
*
324
* The question of "how often to scan a table" is an interesting one
325
* and is answered in part by the use of the "nextcheck" field in the
326
* cache_detail.
327
* When a scan of a table begins, the nextcheck field is set to a time
328
* that is well into the future.
329
* While scanning, if an expiry time is found that is earlier than the
330
* current nextcheck time, nextcheck is set to that expiry time.
331
* If the flush_time is ever set to a time earlier than the nextcheck
332
* time, the nextcheck time is then set to that flush_time.
333
*
334
* A table is then only scanned if the current time is at least
335
* the nextcheck time.
336
*
337
*/
338
339
static LIST_HEAD(cache_list);
340
static DEFINE_SPINLOCK(cache_list_lock);
341
static struct cache_detail *current_detail;
342
static int current_index;
343
344
static void do_cache_clean(struct work_struct *work);
345
static struct delayed_work cache_cleaner;
346
347
static void sunrpc_init_cache_detail(struct cache_detail *cd)
348
{
349
rwlock_init(&cd->hash_lock);
350
INIT_LIST_HEAD(&cd->queue);
351
spin_lock(&cache_list_lock);
352
cd->nextcheck = 0;
353
cd->entries = 0;
354
atomic_set(&cd->readers, 0);
355
cd->last_close = 0;
356
cd->last_warn = -1;
357
list_add(&cd->others, &cache_list);
358
spin_unlock(&cache_list_lock);
359
360
/* start the cleaning process */
361
schedule_delayed_work(&cache_cleaner, 0);
362
}
363
364
static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
365
{
366
cache_purge(cd);
367
spin_lock(&cache_list_lock);
368
write_lock(&cd->hash_lock);
369
if (cd->entries || atomic_read(&cd->inuse)) {
370
write_unlock(&cd->hash_lock);
371
spin_unlock(&cache_list_lock);
372
goto out;
373
}
374
if (current_detail == cd)
375
current_detail = NULL;
376
list_del_init(&cd->others);
377
write_unlock(&cd->hash_lock);
378
spin_unlock(&cache_list_lock);
379
if (list_empty(&cache_list)) {
380
/* module must be being unloaded so its safe to kill the worker */
381
cancel_delayed_work_sync(&cache_cleaner);
382
}
383
return;
384
out:
385
printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
386
}
387
388
/* clean cache tries to find something to clean
389
* and cleans it.
390
* It returns 1 if it cleaned something,
391
* 0 if it didn't find anything this time
392
* -1 if it fell off the end of the list.
393
*/
394
static int cache_clean(void)
395
{
396
int rv = 0;
397
struct list_head *next;
398
399
spin_lock(&cache_list_lock);
400
401
/* find a suitable table if we don't already have one */
402
while (current_detail == NULL ||
403
current_index >= current_detail->hash_size) {
404
if (current_detail)
405
next = current_detail->others.next;
406
else
407
next = cache_list.next;
408
if (next == &cache_list) {
409
current_detail = NULL;
410
spin_unlock(&cache_list_lock);
411
return -1;
412
}
413
current_detail = list_entry(next, struct cache_detail, others);
414
if (current_detail->nextcheck > seconds_since_boot())
415
current_index = current_detail->hash_size;
416
else {
417
current_index = 0;
418
current_detail->nextcheck = seconds_since_boot()+30*60;
419
}
420
}
421
422
/* find a non-empty bucket in the table */
423
while (current_detail &&
424
current_index < current_detail->hash_size &&
425
current_detail->hash_table[current_index] == NULL)
426
current_index++;
427
428
/* find a cleanable entry in the bucket and clean it, or set to next bucket */
429
430
if (current_detail && current_index < current_detail->hash_size) {
431
struct cache_head *ch, **cp;
432
struct cache_detail *d;
433
434
write_lock(&current_detail->hash_lock);
435
436
/* Ok, now to clean this strand */
437
438
cp = & current_detail->hash_table[current_index];
439
for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
440
if (current_detail->nextcheck > ch->expiry_time)
441
current_detail->nextcheck = ch->expiry_time+1;
442
if (!cache_is_expired(current_detail, ch))
443
continue;
444
445
*cp = ch->next;
446
ch->next = NULL;
447
current_detail->entries--;
448
rv = 1;
449
break;
450
}
451
452
write_unlock(&current_detail->hash_lock);
453
d = current_detail;
454
if (!ch)
455
current_index ++;
456
spin_unlock(&cache_list_lock);
457
if (ch) {
458
if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
459
cache_dequeue(current_detail, ch);
460
cache_revisit_request(ch);
461
cache_put(ch, d);
462
}
463
} else
464
spin_unlock(&cache_list_lock);
465
466
return rv;
467
}
468
469
/*
470
* We want to regularly clean the cache, so we need to schedule some work ...
471
*/
472
static void do_cache_clean(struct work_struct *work)
473
{
474
int delay = 5;
475
if (cache_clean() == -1)
476
delay = round_jiffies_relative(30*HZ);
477
478
if (list_empty(&cache_list))
479
delay = 0;
480
481
if (delay)
482
schedule_delayed_work(&cache_cleaner, delay);
483
}
484
485
486
/*
487
* Clean all caches promptly. This just calls cache_clean
488
* repeatedly until we are sure that every cache has had a chance to
489
* be fully cleaned
490
*/
491
void cache_flush(void)
492
{
493
while (cache_clean() != -1)
494
cond_resched();
495
while (cache_clean() != -1)
496
cond_resched();
497
}
498
EXPORT_SYMBOL_GPL(cache_flush);
499
500
void cache_purge(struct cache_detail *detail)
501
{
502
detail->flush_time = LONG_MAX;
503
detail->nextcheck = seconds_since_boot();
504
cache_flush();
505
detail->flush_time = 1;
506
}
507
EXPORT_SYMBOL_GPL(cache_purge);
508
509
510
/*
511
* Deferral and Revisiting of Requests.
512
*
513
* If a cache lookup finds a pending entry, we
514
* need to defer the request and revisit it later.
515
* All deferred requests are stored in a hash table,
516
* indexed by "struct cache_head *".
517
* As it may be wasteful to store a whole request
518
* structure, we allow the request to provide a
519
* deferred form, which must contain a
520
* 'struct cache_deferred_req'
521
* This cache_deferred_req contains a method to allow
522
* it to be revisited when cache info is available
523
*/
524
525
#define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
526
#define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
527
528
#define DFR_MAX 300 /* ??? */
529
530
static DEFINE_SPINLOCK(cache_defer_lock);
531
static LIST_HEAD(cache_defer_list);
532
static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
533
static int cache_defer_cnt;
534
535
static void __unhash_deferred_req(struct cache_deferred_req *dreq)
536
{
537
hlist_del_init(&dreq->hash);
538
if (!list_empty(&dreq->recent)) {
539
list_del_init(&dreq->recent);
540
cache_defer_cnt--;
541
}
542
}
543
544
static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
545
{
546
int hash = DFR_HASH(item);
547
548
INIT_LIST_HEAD(&dreq->recent);
549
hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
550
}
551
552
static void setup_deferral(struct cache_deferred_req *dreq,
553
struct cache_head *item,
554
int count_me)
555
{
556
557
dreq->item = item;
558
559
spin_lock(&cache_defer_lock);
560
561
__hash_deferred_req(dreq, item);
562
563
if (count_me) {
564
cache_defer_cnt++;
565
list_add(&dreq->recent, &cache_defer_list);
566
}
567
568
spin_unlock(&cache_defer_lock);
569
570
}
571
572
struct thread_deferred_req {
573
struct cache_deferred_req handle;
574
struct completion completion;
575
};
576
577
static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
578
{
579
struct thread_deferred_req *dr =
580
container_of(dreq, struct thread_deferred_req, handle);
581
complete(&dr->completion);
582
}
583
584
static void cache_wait_req(struct cache_req *req, struct cache_head *item)
585
{
586
struct thread_deferred_req sleeper;
587
struct cache_deferred_req *dreq = &sleeper.handle;
588
589
sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
590
dreq->revisit = cache_restart_thread;
591
592
setup_deferral(dreq, item, 0);
593
594
if (!test_bit(CACHE_PENDING, &item->flags) ||
595
wait_for_completion_interruptible_timeout(
596
&sleeper.completion, req->thread_wait) <= 0) {
597
/* The completion wasn't completed, so we need
598
* to clean up
599
*/
600
spin_lock(&cache_defer_lock);
601
if (!hlist_unhashed(&sleeper.handle.hash)) {
602
__unhash_deferred_req(&sleeper.handle);
603
spin_unlock(&cache_defer_lock);
604
} else {
605
/* cache_revisit_request already removed
606
* this from the hash table, but hasn't
607
* called ->revisit yet. It will very soon
608
* and we need to wait for it.
609
*/
610
spin_unlock(&cache_defer_lock);
611
wait_for_completion(&sleeper.completion);
612
}
613
}
614
}
615
616
static void cache_limit_defers(void)
617
{
618
/* Make sure we haven't exceed the limit of allowed deferred
619
* requests.
620
*/
621
struct cache_deferred_req *discard = NULL;
622
623
if (cache_defer_cnt <= DFR_MAX)
624
return;
625
626
spin_lock(&cache_defer_lock);
627
628
/* Consider removing either the first or the last */
629
if (cache_defer_cnt > DFR_MAX) {
630
if (net_random() & 1)
631
discard = list_entry(cache_defer_list.next,
632
struct cache_deferred_req, recent);
633
else
634
discard = list_entry(cache_defer_list.prev,
635
struct cache_deferred_req, recent);
636
__unhash_deferred_req(discard);
637
}
638
spin_unlock(&cache_defer_lock);
639
if (discard)
640
discard->revisit(discard, 1);
641
}
642
643
/* Return true if and only if a deferred request is queued. */
644
static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
645
{
646
struct cache_deferred_req *dreq;
647
648
if (req->thread_wait) {
649
cache_wait_req(req, item);
650
if (!test_bit(CACHE_PENDING, &item->flags))
651
return false;
652
}
653
dreq = req->defer(req);
654
if (dreq == NULL)
655
return false;
656
setup_deferral(dreq, item, 1);
657
if (!test_bit(CACHE_PENDING, &item->flags))
658
/* Bit could have been cleared before we managed to
659
* set up the deferral, so need to revisit just in case
660
*/
661
cache_revisit_request(item);
662
663
cache_limit_defers();
664
return true;
665
}
666
667
static void cache_revisit_request(struct cache_head *item)
668
{
669
struct cache_deferred_req *dreq;
670
struct list_head pending;
671
struct hlist_node *lp, *tmp;
672
int hash = DFR_HASH(item);
673
674
INIT_LIST_HEAD(&pending);
675
spin_lock(&cache_defer_lock);
676
677
hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash)
678
if (dreq->item == item) {
679
__unhash_deferred_req(dreq);
680
list_add(&dreq->recent, &pending);
681
}
682
683
spin_unlock(&cache_defer_lock);
684
685
while (!list_empty(&pending)) {
686
dreq = list_entry(pending.next, struct cache_deferred_req, recent);
687
list_del_init(&dreq->recent);
688
dreq->revisit(dreq, 0);
689
}
690
}
691
692
void cache_clean_deferred(void *owner)
693
{
694
struct cache_deferred_req *dreq, *tmp;
695
struct list_head pending;
696
697
698
INIT_LIST_HEAD(&pending);
699
spin_lock(&cache_defer_lock);
700
701
list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
702
if (dreq->owner == owner) {
703
__unhash_deferred_req(dreq);
704
list_add(&dreq->recent, &pending);
705
}
706
}
707
spin_unlock(&cache_defer_lock);
708
709
while (!list_empty(&pending)) {
710
dreq = list_entry(pending.next, struct cache_deferred_req, recent);
711
list_del_init(&dreq->recent);
712
dreq->revisit(dreq, 1);
713
}
714
}
715
716
/*
717
* communicate with user-space
718
*
719
* We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
720
* On read, you get a full request, or block.
721
* On write, an update request is processed.
722
* Poll works if anything to read, and always allows write.
723
*
724
* Implemented by linked list of requests. Each open file has
725
* a ->private that also exists in this list. New requests are added
726
* to the end and may wakeup and preceding readers.
727
* New readers are added to the head. If, on read, an item is found with
728
* CACHE_UPCALLING clear, we free it from the list.
729
*
730
*/
731
732
static DEFINE_SPINLOCK(queue_lock);
733
static DEFINE_MUTEX(queue_io_mutex);
734
735
struct cache_queue {
736
struct list_head list;
737
int reader; /* if 0, then request */
738
};
739
struct cache_request {
740
struct cache_queue q;
741
struct cache_head *item;
742
char * buf;
743
int len;
744
int readers;
745
};
746
struct cache_reader {
747
struct cache_queue q;
748
int offset; /* if non-0, we have a refcnt on next request */
749
};
750
751
static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
752
loff_t *ppos, struct cache_detail *cd)
753
{
754
struct cache_reader *rp = filp->private_data;
755
struct cache_request *rq;
756
struct inode *inode = filp->f_path.dentry->d_inode;
757
int err;
758
759
if (count == 0)
760
return 0;
761
762
mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
763
* readers on this file */
764
again:
765
spin_lock(&queue_lock);
766
/* need to find next request */
767
while (rp->q.list.next != &cd->queue &&
768
list_entry(rp->q.list.next, struct cache_queue, list)
769
->reader) {
770
struct list_head *next = rp->q.list.next;
771
list_move(&rp->q.list, next);
772
}
773
if (rp->q.list.next == &cd->queue) {
774
spin_unlock(&queue_lock);
775
mutex_unlock(&inode->i_mutex);
776
BUG_ON(rp->offset);
777
return 0;
778
}
779
rq = container_of(rp->q.list.next, struct cache_request, q.list);
780
BUG_ON(rq->q.reader);
781
if (rp->offset == 0)
782
rq->readers++;
783
spin_unlock(&queue_lock);
784
785
if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
786
err = -EAGAIN;
787
spin_lock(&queue_lock);
788
list_move(&rp->q.list, &rq->q.list);
789
spin_unlock(&queue_lock);
790
} else {
791
if (rp->offset + count > rq->len)
792
count = rq->len - rp->offset;
793
err = -EFAULT;
794
if (copy_to_user(buf, rq->buf + rp->offset, count))
795
goto out;
796
rp->offset += count;
797
if (rp->offset >= rq->len) {
798
rp->offset = 0;
799
spin_lock(&queue_lock);
800
list_move(&rp->q.list, &rq->q.list);
801
spin_unlock(&queue_lock);
802
}
803
err = 0;
804
}
805
out:
806
if (rp->offset == 0) {
807
/* need to release rq */
808
spin_lock(&queue_lock);
809
rq->readers--;
810
if (rq->readers == 0 &&
811
!test_bit(CACHE_PENDING, &rq->item->flags)) {
812
list_del(&rq->q.list);
813
spin_unlock(&queue_lock);
814
cache_put(rq->item, cd);
815
kfree(rq->buf);
816
kfree(rq);
817
} else
818
spin_unlock(&queue_lock);
819
}
820
if (err == -EAGAIN)
821
goto again;
822
mutex_unlock(&inode->i_mutex);
823
return err ? err : count;
824
}
825
826
static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
827
size_t count, struct cache_detail *cd)
828
{
829
ssize_t ret;
830
831
if (copy_from_user(kaddr, buf, count))
832
return -EFAULT;
833
kaddr[count] = '\0';
834
ret = cd->cache_parse(cd, kaddr, count);
835
if (!ret)
836
ret = count;
837
return ret;
838
}
839
840
static ssize_t cache_slow_downcall(const char __user *buf,
841
size_t count, struct cache_detail *cd)
842
{
843
static char write_buf[8192]; /* protected by queue_io_mutex */
844
ssize_t ret = -EINVAL;
845
846
if (count >= sizeof(write_buf))
847
goto out;
848
mutex_lock(&queue_io_mutex);
849
ret = cache_do_downcall(write_buf, buf, count, cd);
850
mutex_unlock(&queue_io_mutex);
851
out:
852
return ret;
853
}
854
855
static ssize_t cache_downcall(struct address_space *mapping,
856
const char __user *buf,
857
size_t count, struct cache_detail *cd)
858
{
859
struct page *page;
860
char *kaddr;
861
ssize_t ret = -ENOMEM;
862
863
if (count >= PAGE_CACHE_SIZE)
864
goto out_slow;
865
866
page = find_or_create_page(mapping, 0, GFP_KERNEL);
867
if (!page)
868
goto out_slow;
869
870
kaddr = kmap(page);
871
ret = cache_do_downcall(kaddr, buf, count, cd);
872
kunmap(page);
873
unlock_page(page);
874
page_cache_release(page);
875
return ret;
876
out_slow:
877
return cache_slow_downcall(buf, count, cd);
878
}
879
880
static ssize_t cache_write(struct file *filp, const char __user *buf,
881
size_t count, loff_t *ppos,
882
struct cache_detail *cd)
883
{
884
struct address_space *mapping = filp->f_mapping;
885
struct inode *inode = filp->f_path.dentry->d_inode;
886
ssize_t ret = -EINVAL;
887
888
if (!cd->cache_parse)
889
goto out;
890
891
mutex_lock(&inode->i_mutex);
892
ret = cache_downcall(mapping, buf, count, cd);
893
mutex_unlock(&inode->i_mutex);
894
out:
895
return ret;
896
}
897
898
static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
899
900
static unsigned int cache_poll(struct file *filp, poll_table *wait,
901
struct cache_detail *cd)
902
{
903
unsigned int mask;
904
struct cache_reader *rp = filp->private_data;
905
struct cache_queue *cq;
906
907
poll_wait(filp, &queue_wait, wait);
908
909
/* alway allow write */
910
mask = POLL_OUT | POLLWRNORM;
911
912
if (!rp)
913
return mask;
914
915
spin_lock(&queue_lock);
916
917
for (cq= &rp->q; &cq->list != &cd->queue;
918
cq = list_entry(cq->list.next, struct cache_queue, list))
919
if (!cq->reader) {
920
mask |= POLLIN | POLLRDNORM;
921
break;
922
}
923
spin_unlock(&queue_lock);
924
return mask;
925
}
926
927
static int cache_ioctl(struct inode *ino, struct file *filp,
928
unsigned int cmd, unsigned long arg,
929
struct cache_detail *cd)
930
{
931
int len = 0;
932
struct cache_reader *rp = filp->private_data;
933
struct cache_queue *cq;
934
935
if (cmd != FIONREAD || !rp)
936
return -EINVAL;
937
938
spin_lock(&queue_lock);
939
940
/* only find the length remaining in current request,
941
* or the length of the next request
942
*/
943
for (cq= &rp->q; &cq->list != &cd->queue;
944
cq = list_entry(cq->list.next, struct cache_queue, list))
945
if (!cq->reader) {
946
struct cache_request *cr =
947
container_of(cq, struct cache_request, q);
948
len = cr->len - rp->offset;
949
break;
950
}
951
spin_unlock(&queue_lock);
952
953
return put_user(len, (int __user *)arg);
954
}
955
956
static int cache_open(struct inode *inode, struct file *filp,
957
struct cache_detail *cd)
958
{
959
struct cache_reader *rp = NULL;
960
961
if (!cd || !try_module_get(cd->owner))
962
return -EACCES;
963
nonseekable_open(inode, filp);
964
if (filp->f_mode & FMODE_READ) {
965
rp = kmalloc(sizeof(*rp), GFP_KERNEL);
966
if (!rp)
967
return -ENOMEM;
968
rp->offset = 0;
969
rp->q.reader = 1;
970
atomic_inc(&cd->readers);
971
spin_lock(&queue_lock);
972
list_add(&rp->q.list, &cd->queue);
973
spin_unlock(&queue_lock);
974
}
975
filp->private_data = rp;
976
return 0;
977
}
978
979
static int cache_release(struct inode *inode, struct file *filp,
980
struct cache_detail *cd)
981
{
982
struct cache_reader *rp = filp->private_data;
983
984
if (rp) {
985
spin_lock(&queue_lock);
986
if (rp->offset) {
987
struct cache_queue *cq;
988
for (cq= &rp->q; &cq->list != &cd->queue;
989
cq = list_entry(cq->list.next, struct cache_queue, list))
990
if (!cq->reader) {
991
container_of(cq, struct cache_request, q)
992
->readers--;
993
break;
994
}
995
rp->offset = 0;
996
}
997
list_del(&rp->q.list);
998
spin_unlock(&queue_lock);
999
1000
filp->private_data = NULL;
1001
kfree(rp);
1002
1003
cd->last_close = seconds_since_boot();
1004
atomic_dec(&cd->readers);
1005
}
1006
module_put(cd->owner);
1007
return 0;
1008
}
1009
1010
1011
1012
static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1013
{
1014
struct cache_queue *cq;
1015
spin_lock(&queue_lock);
1016
list_for_each_entry(cq, &detail->queue, list)
1017
if (!cq->reader) {
1018
struct cache_request *cr = container_of(cq, struct cache_request, q);
1019
if (cr->item != ch)
1020
continue;
1021
if (cr->readers != 0)
1022
continue;
1023
list_del(&cr->q.list);
1024
spin_unlock(&queue_lock);
1025
cache_put(cr->item, detail);
1026
kfree(cr->buf);
1027
kfree(cr);
1028
return;
1029
}
1030
spin_unlock(&queue_lock);
1031
}
1032
1033
/*
1034
* Support routines for text-based upcalls.
1035
* Fields are separated by spaces.
1036
* Fields are either mangled to quote space tab newline slosh with slosh
1037
* or a hexified with a leading \x
1038
* Record is terminated with newline.
1039
*
1040
*/
1041
1042
void qword_add(char **bpp, int *lp, char *str)
1043
{
1044
char *bp = *bpp;
1045
int len = *lp;
1046
char c;
1047
1048
if (len < 0) return;
1049
1050
while ((c=*str++) && len)
1051
switch(c) {
1052
case ' ':
1053
case '\t':
1054
case '\n':
1055
case '\\':
1056
if (len >= 4) {
1057
*bp++ = '\\';
1058
*bp++ = '0' + ((c & 0300)>>6);
1059
*bp++ = '0' + ((c & 0070)>>3);
1060
*bp++ = '0' + ((c & 0007)>>0);
1061
}
1062
len -= 4;
1063
break;
1064
default:
1065
*bp++ = c;
1066
len--;
1067
}
1068
if (c || len <1) len = -1;
1069
else {
1070
*bp++ = ' ';
1071
len--;
1072
}
1073
*bpp = bp;
1074
*lp = len;
1075
}
1076
EXPORT_SYMBOL_GPL(qword_add);
1077
1078
void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1079
{
1080
char *bp = *bpp;
1081
int len = *lp;
1082
1083
if (len < 0) return;
1084
1085
if (len > 2) {
1086
*bp++ = '\\';
1087
*bp++ = 'x';
1088
len -= 2;
1089
while (blen && len >= 2) {
1090
unsigned char c = *buf++;
1091
*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1092
*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1093
len -= 2;
1094
blen--;
1095
}
1096
}
1097
if (blen || len<1) len = -1;
1098
else {
1099
*bp++ = ' ';
1100
len--;
1101
}
1102
*bpp = bp;
1103
*lp = len;
1104
}
1105
EXPORT_SYMBOL_GPL(qword_addhex);
1106
1107
static void warn_no_listener(struct cache_detail *detail)
1108
{
1109
if (detail->last_warn != detail->last_close) {
1110
detail->last_warn = detail->last_close;
1111
if (detail->warn_no_listener)
1112
detail->warn_no_listener(detail, detail->last_close != 0);
1113
}
1114
}
1115
1116
static bool cache_listeners_exist(struct cache_detail *detail)
1117
{
1118
if (atomic_read(&detail->readers))
1119
return true;
1120
if (detail->last_close == 0)
1121
/* This cache was never opened */
1122
return false;
1123
if (detail->last_close < seconds_since_boot() - 30)
1124
/*
1125
* We allow for the possibility that someone might
1126
* restart a userspace daemon without restarting the
1127
* server; but after 30 seconds, we give up.
1128
*/
1129
return false;
1130
return true;
1131
}
1132
1133
/*
1134
* register an upcall request to user-space and queue it up for read() by the
1135
* upcall daemon.
1136
*
1137
* Each request is at most one page long.
1138
*/
1139
int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1140
void (*cache_request)(struct cache_detail *,
1141
struct cache_head *,
1142
char **,
1143
int *))
1144
{
1145
1146
char *buf;
1147
struct cache_request *crq;
1148
char *bp;
1149
int len;
1150
1151
if (!cache_listeners_exist(detail)) {
1152
warn_no_listener(detail);
1153
return -EINVAL;
1154
}
1155
1156
buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1157
if (!buf)
1158
return -EAGAIN;
1159
1160
crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1161
if (!crq) {
1162
kfree(buf);
1163
return -EAGAIN;
1164
}
1165
1166
bp = buf; len = PAGE_SIZE;
1167
1168
cache_request(detail, h, &bp, &len);
1169
1170
if (len < 0) {
1171
kfree(buf);
1172
kfree(crq);
1173
return -EAGAIN;
1174
}
1175
crq->q.reader = 0;
1176
crq->item = cache_get(h);
1177
crq->buf = buf;
1178
crq->len = PAGE_SIZE - len;
1179
crq->readers = 0;
1180
spin_lock(&queue_lock);
1181
list_add_tail(&crq->q.list, &detail->queue);
1182
spin_unlock(&queue_lock);
1183
wake_up(&queue_wait);
1184
return 0;
1185
}
1186
EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1187
1188
/*
1189
* parse a message from user-space and pass it
1190
* to an appropriate cache
1191
* Messages are, like requests, separated into fields by
1192
* spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1193
*
1194
* Message is
1195
* reply cachename expiry key ... content....
1196
*
1197
* key and content are both parsed by cache
1198
*/
1199
1200
#define isodigit(c) (isdigit(c) && c <= '7')
1201
int qword_get(char **bpp, char *dest, int bufsize)
1202
{
1203
/* return bytes copied, or -1 on error */
1204
char *bp = *bpp;
1205
int len = 0;
1206
1207
while (*bp == ' ') bp++;
1208
1209
if (bp[0] == '\\' && bp[1] == 'x') {
1210
/* HEX STRING */
1211
bp += 2;
1212
while (len < bufsize) {
1213
int h, l;
1214
1215
h = hex_to_bin(bp[0]);
1216
if (h < 0)
1217
break;
1218
1219
l = hex_to_bin(bp[1]);
1220
if (l < 0)
1221
break;
1222
1223
*dest++ = (h << 4) | l;
1224
bp += 2;
1225
len++;
1226
}
1227
} else {
1228
/* text with \nnn octal quoting */
1229
while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1230
if (*bp == '\\' &&
1231
isodigit(bp[1]) && (bp[1] <= '3') &&
1232
isodigit(bp[2]) &&
1233
isodigit(bp[3])) {
1234
int byte = (*++bp -'0');
1235
bp++;
1236
byte = (byte << 3) | (*bp++ - '0');
1237
byte = (byte << 3) | (*bp++ - '0');
1238
*dest++ = byte;
1239
len++;
1240
} else {
1241
*dest++ = *bp++;
1242
len++;
1243
}
1244
}
1245
}
1246
1247
if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1248
return -1;
1249
while (*bp == ' ') bp++;
1250
*bpp = bp;
1251
*dest = '\0';
1252
return len;
1253
}
1254
EXPORT_SYMBOL_GPL(qword_get);
1255
1256
1257
/*
1258
* support /proc/sunrpc/cache/$CACHENAME/content
1259
* as a seqfile.
1260
* We call ->cache_show passing NULL for the item to
1261
* get a header, then pass each real item in the cache
1262
*/
1263
1264
struct handle {
1265
struct cache_detail *cd;
1266
};
1267
1268
static void *c_start(struct seq_file *m, loff_t *pos)
1269
__acquires(cd->hash_lock)
1270
{
1271
loff_t n = *pos;
1272
unsigned hash, entry;
1273
struct cache_head *ch;
1274
struct cache_detail *cd = ((struct handle*)m->private)->cd;
1275
1276
1277
read_lock(&cd->hash_lock);
1278
if (!n--)
1279
return SEQ_START_TOKEN;
1280
hash = n >> 32;
1281
entry = n & ((1LL<<32) - 1);
1282
1283
for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1284
if (!entry--)
1285
return ch;
1286
n &= ~((1LL<<32) - 1);
1287
do {
1288
hash++;
1289
n += 1LL<<32;
1290
} while(hash < cd->hash_size &&
1291
cd->hash_table[hash]==NULL);
1292
if (hash >= cd->hash_size)
1293
return NULL;
1294
*pos = n+1;
1295
return cd->hash_table[hash];
1296
}
1297
1298
static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1299
{
1300
struct cache_head *ch = p;
1301
int hash = (*pos >> 32);
1302
struct cache_detail *cd = ((struct handle*)m->private)->cd;
1303
1304
if (p == SEQ_START_TOKEN)
1305
hash = 0;
1306
else if (ch->next == NULL) {
1307
hash++;
1308
*pos += 1LL<<32;
1309
} else {
1310
++*pos;
1311
return ch->next;
1312
}
1313
*pos &= ~((1LL<<32) - 1);
1314
while (hash < cd->hash_size &&
1315
cd->hash_table[hash] == NULL) {
1316
hash++;
1317
*pos += 1LL<<32;
1318
}
1319
if (hash >= cd->hash_size)
1320
return NULL;
1321
++*pos;
1322
return cd->hash_table[hash];
1323
}
1324
1325
static void c_stop(struct seq_file *m, void *p)
1326
__releases(cd->hash_lock)
1327
{
1328
struct cache_detail *cd = ((struct handle*)m->private)->cd;
1329
read_unlock(&cd->hash_lock);
1330
}
1331
1332
static int c_show(struct seq_file *m, void *p)
1333
{
1334
struct cache_head *cp = p;
1335
struct cache_detail *cd = ((struct handle*)m->private)->cd;
1336
1337
if (p == SEQ_START_TOKEN)
1338
return cd->cache_show(m, cd, NULL);
1339
1340
ifdebug(CACHE)
1341
seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1342
convert_to_wallclock(cp->expiry_time),
1343
atomic_read(&cp->ref.refcount), cp->flags);
1344
cache_get(cp);
1345
if (cache_check(cd, cp, NULL))
1346
/* cache_check does a cache_put on failure */
1347
seq_printf(m, "# ");
1348
else
1349
cache_put(cp, cd);
1350
1351
return cd->cache_show(m, cd, cp);
1352
}
1353
1354
static const struct seq_operations cache_content_op = {
1355
.start = c_start,
1356
.next = c_next,
1357
.stop = c_stop,
1358
.show = c_show,
1359
};
1360
1361
static int content_open(struct inode *inode, struct file *file,
1362
struct cache_detail *cd)
1363
{
1364
struct handle *han;
1365
1366
if (!cd || !try_module_get(cd->owner))
1367
return -EACCES;
1368
han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1369
if (han == NULL) {
1370
module_put(cd->owner);
1371
return -ENOMEM;
1372
}
1373
1374
han->cd = cd;
1375
return 0;
1376
}
1377
1378
static int content_release(struct inode *inode, struct file *file,
1379
struct cache_detail *cd)
1380
{
1381
int ret = seq_release_private(inode, file);
1382
module_put(cd->owner);
1383
return ret;
1384
}
1385
1386
static int open_flush(struct inode *inode, struct file *file,
1387
struct cache_detail *cd)
1388
{
1389
if (!cd || !try_module_get(cd->owner))
1390
return -EACCES;
1391
return nonseekable_open(inode, file);
1392
}
1393
1394
static int release_flush(struct inode *inode, struct file *file,
1395
struct cache_detail *cd)
1396
{
1397
module_put(cd->owner);
1398
return 0;
1399
}
1400
1401
static ssize_t read_flush(struct file *file, char __user *buf,
1402
size_t count, loff_t *ppos,
1403
struct cache_detail *cd)
1404
{
1405
char tbuf[20];
1406
unsigned long p = *ppos;
1407
size_t len;
1408
1409
sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1410
len = strlen(tbuf);
1411
if (p >= len)
1412
return 0;
1413
len -= p;
1414
if (len > count)
1415
len = count;
1416
if (copy_to_user(buf, (void*)(tbuf+p), len))
1417
return -EFAULT;
1418
*ppos += len;
1419
return len;
1420
}
1421
1422
static ssize_t write_flush(struct file *file, const char __user *buf,
1423
size_t count, loff_t *ppos,
1424
struct cache_detail *cd)
1425
{
1426
char tbuf[20];
1427
char *bp, *ep;
1428
1429
if (*ppos || count > sizeof(tbuf)-1)
1430
return -EINVAL;
1431
if (copy_from_user(tbuf, buf, count))
1432
return -EFAULT;
1433
tbuf[count] = 0;
1434
simple_strtoul(tbuf, &ep, 0);
1435
if (*ep && *ep != '\n')
1436
return -EINVAL;
1437
1438
bp = tbuf;
1439
cd->flush_time = get_expiry(&bp);
1440
cd->nextcheck = seconds_since_boot();
1441
cache_flush();
1442
1443
*ppos += count;
1444
return count;
1445
}
1446
1447
static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1448
size_t count, loff_t *ppos)
1449
{
1450
struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1451
1452
return cache_read(filp, buf, count, ppos, cd);
1453
}
1454
1455
static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1456
size_t count, loff_t *ppos)
1457
{
1458
struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1459
1460
return cache_write(filp, buf, count, ppos, cd);
1461
}
1462
1463
static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1464
{
1465
struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1466
1467
return cache_poll(filp, wait, cd);
1468
}
1469
1470
static long cache_ioctl_procfs(struct file *filp,
1471
unsigned int cmd, unsigned long arg)
1472
{
1473
struct inode *inode = filp->f_path.dentry->d_inode;
1474
struct cache_detail *cd = PDE(inode)->data;
1475
1476
return cache_ioctl(inode, filp, cmd, arg, cd);
1477
}
1478
1479
static int cache_open_procfs(struct inode *inode, struct file *filp)
1480
{
1481
struct cache_detail *cd = PDE(inode)->data;
1482
1483
return cache_open(inode, filp, cd);
1484
}
1485
1486
static int cache_release_procfs(struct inode *inode, struct file *filp)
1487
{
1488
struct cache_detail *cd = PDE(inode)->data;
1489
1490
return cache_release(inode, filp, cd);
1491
}
1492
1493
static const struct file_operations cache_file_operations_procfs = {
1494
.owner = THIS_MODULE,
1495
.llseek = no_llseek,
1496
.read = cache_read_procfs,
1497
.write = cache_write_procfs,
1498
.poll = cache_poll_procfs,
1499
.unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1500
.open = cache_open_procfs,
1501
.release = cache_release_procfs,
1502
};
1503
1504
static int content_open_procfs(struct inode *inode, struct file *filp)
1505
{
1506
struct cache_detail *cd = PDE(inode)->data;
1507
1508
return content_open(inode, filp, cd);
1509
}
1510
1511
static int content_release_procfs(struct inode *inode, struct file *filp)
1512
{
1513
struct cache_detail *cd = PDE(inode)->data;
1514
1515
return content_release(inode, filp, cd);
1516
}
1517
1518
static const struct file_operations content_file_operations_procfs = {
1519
.open = content_open_procfs,
1520
.read = seq_read,
1521
.llseek = seq_lseek,
1522
.release = content_release_procfs,
1523
};
1524
1525
static int open_flush_procfs(struct inode *inode, struct file *filp)
1526
{
1527
struct cache_detail *cd = PDE(inode)->data;
1528
1529
return open_flush(inode, filp, cd);
1530
}
1531
1532
static int release_flush_procfs(struct inode *inode, struct file *filp)
1533
{
1534
struct cache_detail *cd = PDE(inode)->data;
1535
1536
return release_flush(inode, filp, cd);
1537
}
1538
1539
static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1540
size_t count, loff_t *ppos)
1541
{
1542
struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1543
1544
return read_flush(filp, buf, count, ppos, cd);
1545
}
1546
1547
static ssize_t write_flush_procfs(struct file *filp,
1548
const char __user *buf,
1549
size_t count, loff_t *ppos)
1550
{
1551
struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1552
1553
return write_flush(filp, buf, count, ppos, cd);
1554
}
1555
1556
static const struct file_operations cache_flush_operations_procfs = {
1557
.open = open_flush_procfs,
1558
.read = read_flush_procfs,
1559
.write = write_flush_procfs,
1560
.release = release_flush_procfs,
1561
.llseek = no_llseek,
1562
};
1563
1564
static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1565
{
1566
struct sunrpc_net *sn;
1567
1568
if (cd->u.procfs.proc_ent == NULL)
1569
return;
1570
if (cd->u.procfs.flush_ent)
1571
remove_proc_entry("flush", cd->u.procfs.proc_ent);
1572
if (cd->u.procfs.channel_ent)
1573
remove_proc_entry("channel", cd->u.procfs.proc_ent);
1574
if (cd->u.procfs.content_ent)
1575
remove_proc_entry("content", cd->u.procfs.proc_ent);
1576
cd->u.procfs.proc_ent = NULL;
1577
sn = net_generic(net, sunrpc_net_id);
1578
remove_proc_entry(cd->name, sn->proc_net_rpc);
1579
}
1580
1581
#ifdef CONFIG_PROC_FS
1582
static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1583
{
1584
struct proc_dir_entry *p;
1585
struct sunrpc_net *sn;
1586
1587
sn = net_generic(net, sunrpc_net_id);
1588
cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1589
if (cd->u.procfs.proc_ent == NULL)
1590
goto out_nomem;
1591
cd->u.procfs.channel_ent = NULL;
1592
cd->u.procfs.content_ent = NULL;
1593
1594
p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1595
cd->u.procfs.proc_ent,
1596
&cache_flush_operations_procfs, cd);
1597
cd->u.procfs.flush_ent = p;
1598
if (p == NULL)
1599
goto out_nomem;
1600
1601
if (cd->cache_upcall || cd->cache_parse) {
1602
p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1603
cd->u.procfs.proc_ent,
1604
&cache_file_operations_procfs, cd);
1605
cd->u.procfs.channel_ent = p;
1606
if (p == NULL)
1607
goto out_nomem;
1608
}
1609
if (cd->cache_show) {
1610
p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1611
cd->u.procfs.proc_ent,
1612
&content_file_operations_procfs, cd);
1613
cd->u.procfs.content_ent = p;
1614
if (p == NULL)
1615
goto out_nomem;
1616
}
1617
return 0;
1618
out_nomem:
1619
remove_cache_proc_entries(cd, net);
1620
return -ENOMEM;
1621
}
1622
#else /* CONFIG_PROC_FS */
1623
static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1624
{
1625
return 0;
1626
}
1627
#endif
1628
1629
void __init cache_initialize(void)
1630
{
1631
INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1632
}
1633
1634
int cache_register_net(struct cache_detail *cd, struct net *net)
1635
{
1636
int ret;
1637
1638
sunrpc_init_cache_detail(cd);
1639
ret = create_cache_proc_entries(cd, net);
1640
if (ret)
1641
sunrpc_destroy_cache_detail(cd);
1642
return ret;
1643
}
1644
1645
int cache_register(struct cache_detail *cd)
1646
{
1647
return cache_register_net(cd, &init_net);
1648
}
1649
EXPORT_SYMBOL_GPL(cache_register);
1650
1651
void cache_unregister_net(struct cache_detail *cd, struct net *net)
1652
{
1653
remove_cache_proc_entries(cd, net);
1654
sunrpc_destroy_cache_detail(cd);
1655
}
1656
1657
void cache_unregister(struct cache_detail *cd)
1658
{
1659
cache_unregister_net(cd, &init_net);
1660
}
1661
EXPORT_SYMBOL_GPL(cache_unregister);
1662
1663
static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1664
size_t count, loff_t *ppos)
1665
{
1666
struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1667
1668
return cache_read(filp, buf, count, ppos, cd);
1669
}
1670
1671
static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1672
size_t count, loff_t *ppos)
1673
{
1674
struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1675
1676
return cache_write(filp, buf, count, ppos, cd);
1677
}
1678
1679
static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1680
{
1681
struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1682
1683
return cache_poll(filp, wait, cd);
1684
}
1685
1686
static long cache_ioctl_pipefs(struct file *filp,
1687
unsigned int cmd, unsigned long arg)
1688
{
1689
struct inode *inode = filp->f_dentry->d_inode;
1690
struct cache_detail *cd = RPC_I(inode)->private;
1691
1692
return cache_ioctl(inode, filp, cmd, arg, cd);
1693
}
1694
1695
static int cache_open_pipefs(struct inode *inode, struct file *filp)
1696
{
1697
struct cache_detail *cd = RPC_I(inode)->private;
1698
1699
return cache_open(inode, filp, cd);
1700
}
1701
1702
static int cache_release_pipefs(struct inode *inode, struct file *filp)
1703
{
1704
struct cache_detail *cd = RPC_I(inode)->private;
1705
1706
return cache_release(inode, filp, cd);
1707
}
1708
1709
const struct file_operations cache_file_operations_pipefs = {
1710
.owner = THIS_MODULE,
1711
.llseek = no_llseek,
1712
.read = cache_read_pipefs,
1713
.write = cache_write_pipefs,
1714
.poll = cache_poll_pipefs,
1715
.unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1716
.open = cache_open_pipefs,
1717
.release = cache_release_pipefs,
1718
};
1719
1720
static int content_open_pipefs(struct inode *inode, struct file *filp)
1721
{
1722
struct cache_detail *cd = RPC_I(inode)->private;
1723
1724
return content_open(inode, filp, cd);
1725
}
1726
1727
static int content_release_pipefs(struct inode *inode, struct file *filp)
1728
{
1729
struct cache_detail *cd = RPC_I(inode)->private;
1730
1731
return content_release(inode, filp, cd);
1732
}
1733
1734
const struct file_operations content_file_operations_pipefs = {
1735
.open = content_open_pipefs,
1736
.read = seq_read,
1737
.llseek = seq_lseek,
1738
.release = content_release_pipefs,
1739
};
1740
1741
static int open_flush_pipefs(struct inode *inode, struct file *filp)
1742
{
1743
struct cache_detail *cd = RPC_I(inode)->private;
1744
1745
return open_flush(inode, filp, cd);
1746
}
1747
1748
static int release_flush_pipefs(struct inode *inode, struct file *filp)
1749
{
1750
struct cache_detail *cd = RPC_I(inode)->private;
1751
1752
return release_flush(inode, filp, cd);
1753
}
1754
1755
static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1756
size_t count, loff_t *ppos)
1757
{
1758
struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1759
1760
return read_flush(filp, buf, count, ppos, cd);
1761
}
1762
1763
static ssize_t write_flush_pipefs(struct file *filp,
1764
const char __user *buf,
1765
size_t count, loff_t *ppos)
1766
{
1767
struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1768
1769
return write_flush(filp, buf, count, ppos, cd);
1770
}
1771
1772
const struct file_operations cache_flush_operations_pipefs = {
1773
.open = open_flush_pipefs,
1774
.read = read_flush_pipefs,
1775
.write = write_flush_pipefs,
1776
.release = release_flush_pipefs,
1777
.llseek = no_llseek,
1778
};
1779
1780
int sunrpc_cache_register_pipefs(struct dentry *parent,
1781
const char *name, mode_t umode,
1782
struct cache_detail *cd)
1783
{
1784
struct qstr q;
1785
struct dentry *dir;
1786
int ret = 0;
1787
1788
sunrpc_init_cache_detail(cd);
1789
q.name = name;
1790
q.len = strlen(name);
1791
q.hash = full_name_hash(q.name, q.len);
1792
dir = rpc_create_cache_dir(parent, &q, umode, cd);
1793
if (!IS_ERR(dir))
1794
cd->u.pipefs.dir = dir;
1795
else {
1796
sunrpc_destroy_cache_detail(cd);
1797
ret = PTR_ERR(dir);
1798
}
1799
return ret;
1800
}
1801
EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1802
1803
void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1804
{
1805
rpc_remove_cache_dir(cd->u.pipefs.dir);
1806
cd->u.pipefs.dir = NULL;
1807
sunrpc_destroy_cache_detail(cd);
1808
}
1809
EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1810
1811
1812