Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/sunrpc/svc_xprt.c
15109 views
1
/*
2
* linux/net/sunrpc/svc_xprt.c
3
*
4
* Author: Tom Tucker <[email protected]>
5
*/
6
7
#include <linux/sched.h>
8
#include <linux/errno.h>
9
#include <linux/freezer.h>
10
#include <linux/kthread.h>
11
#include <linux/slab.h>
12
#include <net/sock.h>
13
#include <linux/sunrpc/stats.h>
14
#include <linux/sunrpc/svc_xprt.h>
15
#include <linux/sunrpc/svcsock.h>
16
#include <linux/sunrpc/xprt.h>
17
18
#define RPCDBG_FACILITY RPCDBG_SVCXPRT
19
20
static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
21
static int svc_deferred_recv(struct svc_rqst *rqstp);
22
static struct cache_deferred_req *svc_defer(struct cache_req *req);
23
static void svc_age_temp_xprts(unsigned long closure);
24
25
/* apparently the "standard" is that clients close
26
* idle connections after 5 minutes, servers after
27
* 6 minutes
28
* http://www.connectathon.org/talks96/nfstcp.pdf
29
*/
30
static int svc_conn_age_period = 6*60;
31
32
/* List of registered transport classes */
33
static DEFINE_SPINLOCK(svc_xprt_class_lock);
34
static LIST_HEAD(svc_xprt_class_list);
35
36
/* SMP locking strategy:
37
*
38
* svc_pool->sp_lock protects most of the fields of that pool.
39
* svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
40
* when both need to be taken (rare), svc_serv->sv_lock is first.
41
* BKL protects svc_serv->sv_nrthread.
42
* svc_sock->sk_lock protects the svc_sock->sk_deferred list
43
* and the ->sk_info_authunix cache.
44
*
45
* The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
46
* enqueued multiply. During normal transport processing this bit
47
* is set by svc_xprt_enqueue and cleared by svc_xprt_received.
48
* Providers should not manipulate this bit directly.
49
*
50
* Some flags can be set to certain values at any time
51
* providing that certain rules are followed:
52
*
53
* XPT_CONN, XPT_DATA:
54
* - Can be set or cleared at any time.
55
* - After a set, svc_xprt_enqueue must be called to enqueue
56
* the transport for processing.
57
* - After a clear, the transport must be read/accepted.
58
* If this succeeds, it must be set again.
59
* XPT_CLOSE:
60
* - Can set at any time. It is never cleared.
61
* XPT_DEAD:
62
* - Can only be set while XPT_BUSY is held which ensures
63
* that no other thread will be using the transport or will
64
* try to set XPT_DEAD.
65
*/
66
67
int svc_reg_xprt_class(struct svc_xprt_class *xcl)
68
{
69
struct svc_xprt_class *cl;
70
int res = -EEXIST;
71
72
dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
73
74
INIT_LIST_HEAD(&xcl->xcl_list);
75
spin_lock(&svc_xprt_class_lock);
76
/* Make sure there isn't already a class with the same name */
77
list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
78
if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
79
goto out;
80
}
81
list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
82
res = 0;
83
out:
84
spin_unlock(&svc_xprt_class_lock);
85
return res;
86
}
87
EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
88
89
void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
90
{
91
dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
92
spin_lock(&svc_xprt_class_lock);
93
list_del_init(&xcl->xcl_list);
94
spin_unlock(&svc_xprt_class_lock);
95
}
96
EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
97
98
/*
99
* Format the transport list for printing
100
*/
101
int svc_print_xprts(char *buf, int maxlen)
102
{
103
struct svc_xprt_class *xcl;
104
char tmpstr[80];
105
int len = 0;
106
buf[0] = '\0';
107
108
spin_lock(&svc_xprt_class_lock);
109
list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
110
int slen;
111
112
sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
113
slen = strlen(tmpstr);
114
if (len + slen > maxlen)
115
break;
116
len += slen;
117
strcat(buf, tmpstr);
118
}
119
spin_unlock(&svc_xprt_class_lock);
120
121
return len;
122
}
123
124
static void svc_xprt_free(struct kref *kref)
125
{
126
struct svc_xprt *xprt =
127
container_of(kref, struct svc_xprt, xpt_ref);
128
struct module *owner = xprt->xpt_class->xcl_owner;
129
if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
130
svcauth_unix_info_release(xprt);
131
put_net(xprt->xpt_net);
132
/* See comment on corresponding get in xs_setup_bc_tcp(): */
133
if (xprt->xpt_bc_xprt)
134
xprt_put(xprt->xpt_bc_xprt);
135
xprt->xpt_ops->xpo_free(xprt);
136
module_put(owner);
137
}
138
139
void svc_xprt_put(struct svc_xprt *xprt)
140
{
141
kref_put(&xprt->xpt_ref, svc_xprt_free);
142
}
143
EXPORT_SYMBOL_GPL(svc_xprt_put);
144
145
/*
146
* Called by transport drivers to initialize the transport independent
147
* portion of the transport instance.
148
*/
149
void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
150
struct svc_serv *serv)
151
{
152
memset(xprt, 0, sizeof(*xprt));
153
xprt->xpt_class = xcl;
154
xprt->xpt_ops = xcl->xcl_ops;
155
kref_init(&xprt->xpt_ref);
156
xprt->xpt_server = serv;
157
INIT_LIST_HEAD(&xprt->xpt_list);
158
INIT_LIST_HEAD(&xprt->xpt_ready);
159
INIT_LIST_HEAD(&xprt->xpt_deferred);
160
INIT_LIST_HEAD(&xprt->xpt_users);
161
mutex_init(&xprt->xpt_mutex);
162
spin_lock_init(&xprt->xpt_lock);
163
set_bit(XPT_BUSY, &xprt->xpt_flags);
164
rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
165
xprt->xpt_net = get_net(&init_net);
166
}
167
EXPORT_SYMBOL_GPL(svc_xprt_init);
168
169
static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
170
struct svc_serv *serv,
171
struct net *net,
172
const int family,
173
const unsigned short port,
174
int flags)
175
{
176
struct sockaddr_in sin = {
177
.sin_family = AF_INET,
178
.sin_addr.s_addr = htonl(INADDR_ANY),
179
.sin_port = htons(port),
180
};
181
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
182
struct sockaddr_in6 sin6 = {
183
.sin6_family = AF_INET6,
184
.sin6_addr = IN6ADDR_ANY_INIT,
185
.sin6_port = htons(port),
186
};
187
#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
188
struct sockaddr *sap;
189
size_t len;
190
191
switch (family) {
192
case PF_INET:
193
sap = (struct sockaddr *)&sin;
194
len = sizeof(sin);
195
break;
196
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
197
case PF_INET6:
198
sap = (struct sockaddr *)&sin6;
199
len = sizeof(sin6);
200
break;
201
#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
202
default:
203
return ERR_PTR(-EAFNOSUPPORT);
204
}
205
206
return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
207
}
208
209
int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
210
struct net *net, const int family,
211
const unsigned short port, int flags)
212
{
213
struct svc_xprt_class *xcl;
214
215
dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
216
spin_lock(&svc_xprt_class_lock);
217
list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
218
struct svc_xprt *newxprt;
219
unsigned short newport;
220
221
if (strcmp(xprt_name, xcl->xcl_name))
222
continue;
223
224
if (!try_module_get(xcl->xcl_owner))
225
goto err;
226
227
spin_unlock(&svc_xprt_class_lock);
228
newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
229
if (IS_ERR(newxprt)) {
230
module_put(xcl->xcl_owner);
231
return PTR_ERR(newxprt);
232
}
233
234
clear_bit(XPT_TEMP, &newxprt->xpt_flags);
235
spin_lock_bh(&serv->sv_lock);
236
list_add(&newxprt->xpt_list, &serv->sv_permsocks);
237
spin_unlock_bh(&serv->sv_lock);
238
newport = svc_xprt_local_port(newxprt);
239
clear_bit(XPT_BUSY, &newxprt->xpt_flags);
240
return newport;
241
}
242
err:
243
spin_unlock(&svc_xprt_class_lock);
244
dprintk("svc: transport %s not found\n", xprt_name);
245
246
/* This errno is exposed to user space. Provide a reasonable
247
* perror msg for a bad transport. */
248
return -EPROTONOSUPPORT;
249
}
250
EXPORT_SYMBOL_GPL(svc_create_xprt);
251
252
/*
253
* Copy the local and remote xprt addresses to the rqstp structure
254
*/
255
void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
256
{
257
struct sockaddr *sin;
258
259
memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
260
rqstp->rq_addrlen = xprt->xpt_remotelen;
261
262
/*
263
* Destination address in request is needed for binding the
264
* source address in RPC replies/callbacks later.
265
*/
266
sin = (struct sockaddr *)&xprt->xpt_local;
267
switch (sin->sa_family) {
268
case AF_INET:
269
rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
270
break;
271
case AF_INET6:
272
rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
273
break;
274
}
275
}
276
EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
277
278
/**
279
* svc_print_addr - Format rq_addr field for printing
280
* @rqstp: svc_rqst struct containing address to print
281
* @buf: target buffer for formatted address
282
* @len: length of target buffer
283
*
284
*/
285
char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
286
{
287
return __svc_print_addr(svc_addr(rqstp), buf, len);
288
}
289
EXPORT_SYMBOL_GPL(svc_print_addr);
290
291
/*
292
* Queue up an idle server thread. Must have pool->sp_lock held.
293
* Note: this is really a stack rather than a queue, so that we only
294
* use as many different threads as we need, and the rest don't pollute
295
* the cache.
296
*/
297
static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
298
{
299
list_add(&rqstp->rq_list, &pool->sp_threads);
300
}
301
302
/*
303
* Dequeue an nfsd thread. Must have pool->sp_lock held.
304
*/
305
static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
306
{
307
list_del(&rqstp->rq_list);
308
}
309
310
static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
311
{
312
if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
313
return true;
314
if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
315
return xprt->xpt_ops->xpo_has_wspace(xprt);
316
return false;
317
}
318
319
/*
320
* Queue up a transport with data pending. If there are idle nfsd
321
* processes, wake 'em up.
322
*
323
*/
324
void svc_xprt_enqueue(struct svc_xprt *xprt)
325
{
326
struct svc_serv *serv = xprt->xpt_server;
327
struct svc_pool *pool;
328
struct svc_rqst *rqstp;
329
int cpu;
330
331
if (!svc_xprt_has_something_to_do(xprt))
332
return;
333
334
cpu = get_cpu();
335
pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
336
put_cpu();
337
338
spin_lock_bh(&pool->sp_lock);
339
340
if (!list_empty(&pool->sp_threads) &&
341
!list_empty(&pool->sp_sockets))
342
printk(KERN_ERR
343
"svc_xprt_enqueue: "
344
"threads and transports both waiting??\n");
345
346
pool->sp_stats.packets++;
347
348
/* Mark transport as busy. It will remain in this state until
349
* the provider calls svc_xprt_received. We update XPT_BUSY
350
* atomically because it also guards against trying to enqueue
351
* the transport twice.
352
*/
353
if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
354
/* Don't enqueue transport while already enqueued */
355
dprintk("svc: transport %p busy, not enqueued\n", xprt);
356
goto out_unlock;
357
}
358
359
if (!list_empty(&pool->sp_threads)) {
360
rqstp = list_entry(pool->sp_threads.next,
361
struct svc_rqst,
362
rq_list);
363
dprintk("svc: transport %p served by daemon %p\n",
364
xprt, rqstp);
365
svc_thread_dequeue(pool, rqstp);
366
if (rqstp->rq_xprt)
367
printk(KERN_ERR
368
"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
369
rqstp, rqstp->rq_xprt);
370
rqstp->rq_xprt = xprt;
371
svc_xprt_get(xprt);
372
rqstp->rq_reserved = serv->sv_max_mesg;
373
atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
374
pool->sp_stats.threads_woken++;
375
wake_up(&rqstp->rq_wait);
376
} else {
377
dprintk("svc: transport %p put into queue\n", xprt);
378
list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
379
pool->sp_stats.sockets_queued++;
380
}
381
382
out_unlock:
383
spin_unlock_bh(&pool->sp_lock);
384
}
385
EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
386
387
/*
388
* Dequeue the first transport. Must be called with the pool->sp_lock held.
389
*/
390
static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
391
{
392
struct svc_xprt *xprt;
393
394
if (list_empty(&pool->sp_sockets))
395
return NULL;
396
397
xprt = list_entry(pool->sp_sockets.next,
398
struct svc_xprt, xpt_ready);
399
list_del_init(&xprt->xpt_ready);
400
401
dprintk("svc: transport %p dequeued, inuse=%d\n",
402
xprt, atomic_read(&xprt->xpt_ref.refcount));
403
404
return xprt;
405
}
406
407
/*
408
* svc_xprt_received conditionally queues the transport for processing
409
* by another thread. The caller must hold the XPT_BUSY bit and must
410
* not thereafter touch transport data.
411
*
412
* Note: XPT_DATA only gets cleared when a read-attempt finds no (or
413
* insufficient) data.
414
*/
415
void svc_xprt_received(struct svc_xprt *xprt)
416
{
417
BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
418
/* As soon as we clear busy, the xprt could be closed and
419
* 'put', so we need a reference to call svc_xprt_enqueue with:
420
*/
421
svc_xprt_get(xprt);
422
clear_bit(XPT_BUSY, &xprt->xpt_flags);
423
svc_xprt_enqueue(xprt);
424
svc_xprt_put(xprt);
425
}
426
EXPORT_SYMBOL_GPL(svc_xprt_received);
427
428
/**
429
* svc_reserve - change the space reserved for the reply to a request.
430
* @rqstp: The request in question
431
* @space: new max space to reserve
432
*
433
* Each request reserves some space on the output queue of the transport
434
* to make sure the reply fits. This function reduces that reserved
435
* space to be the amount of space used already, plus @space.
436
*
437
*/
438
void svc_reserve(struct svc_rqst *rqstp, int space)
439
{
440
space += rqstp->rq_res.head[0].iov_len;
441
442
if (space < rqstp->rq_reserved) {
443
struct svc_xprt *xprt = rqstp->rq_xprt;
444
atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
445
rqstp->rq_reserved = space;
446
447
svc_xprt_enqueue(xprt);
448
}
449
}
450
EXPORT_SYMBOL_GPL(svc_reserve);
451
452
static void svc_xprt_release(struct svc_rqst *rqstp)
453
{
454
struct svc_xprt *xprt = rqstp->rq_xprt;
455
456
rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
457
458
kfree(rqstp->rq_deferred);
459
rqstp->rq_deferred = NULL;
460
461
svc_free_res_pages(rqstp);
462
rqstp->rq_res.page_len = 0;
463
rqstp->rq_res.page_base = 0;
464
465
/* Reset response buffer and release
466
* the reservation.
467
* But first, check that enough space was reserved
468
* for the reply, otherwise we have a bug!
469
*/
470
if ((rqstp->rq_res.len) > rqstp->rq_reserved)
471
printk(KERN_ERR "RPC request reserved %d but used %d\n",
472
rqstp->rq_reserved,
473
rqstp->rq_res.len);
474
475
rqstp->rq_res.head[0].iov_len = 0;
476
svc_reserve(rqstp, 0);
477
rqstp->rq_xprt = NULL;
478
479
svc_xprt_put(xprt);
480
}
481
482
/*
483
* External function to wake up a server waiting for data
484
* This really only makes sense for services like lockd
485
* which have exactly one thread anyway.
486
*/
487
void svc_wake_up(struct svc_serv *serv)
488
{
489
struct svc_rqst *rqstp;
490
unsigned int i;
491
struct svc_pool *pool;
492
493
for (i = 0; i < serv->sv_nrpools; i++) {
494
pool = &serv->sv_pools[i];
495
496
spin_lock_bh(&pool->sp_lock);
497
if (!list_empty(&pool->sp_threads)) {
498
rqstp = list_entry(pool->sp_threads.next,
499
struct svc_rqst,
500
rq_list);
501
dprintk("svc: daemon %p woken up.\n", rqstp);
502
/*
503
svc_thread_dequeue(pool, rqstp);
504
rqstp->rq_xprt = NULL;
505
*/
506
wake_up(&rqstp->rq_wait);
507
}
508
spin_unlock_bh(&pool->sp_lock);
509
}
510
}
511
EXPORT_SYMBOL_GPL(svc_wake_up);
512
513
int svc_port_is_privileged(struct sockaddr *sin)
514
{
515
switch (sin->sa_family) {
516
case AF_INET:
517
return ntohs(((struct sockaddr_in *)sin)->sin_port)
518
< PROT_SOCK;
519
case AF_INET6:
520
return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
521
< PROT_SOCK;
522
default:
523
return 0;
524
}
525
}
526
527
/*
528
* Make sure that we don't have too many active connections. If we have,
529
* something must be dropped. It's not clear what will happen if we allow
530
* "too many" connections, but when dealing with network-facing software,
531
* we have to code defensively. Here we do that by imposing hard limits.
532
*
533
* There's no point in trying to do random drop here for DoS
534
* prevention. The NFS clients does 1 reconnect in 15 seconds. An
535
* attacker can easily beat that.
536
*
537
* The only somewhat efficient mechanism would be if drop old
538
* connections from the same IP first. But right now we don't even
539
* record the client IP in svc_sock.
540
*
541
* single-threaded services that expect a lot of clients will probably
542
* need to set sv_maxconn to override the default value which is based
543
* on the number of threads
544
*/
545
static void svc_check_conn_limits(struct svc_serv *serv)
546
{
547
unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
548
(serv->sv_nrthreads+3) * 20;
549
550
if (serv->sv_tmpcnt > limit) {
551
struct svc_xprt *xprt = NULL;
552
spin_lock_bh(&serv->sv_lock);
553
if (!list_empty(&serv->sv_tempsocks)) {
554
if (net_ratelimit()) {
555
/* Try to help the admin */
556
printk(KERN_NOTICE "%s: too many open "
557
"connections, consider increasing %s\n",
558
serv->sv_name, serv->sv_maxconn ?
559
"the max number of connections." :
560
"the number of threads.");
561
}
562
/*
563
* Always select the oldest connection. It's not fair,
564
* but so is life
565
*/
566
xprt = list_entry(serv->sv_tempsocks.prev,
567
struct svc_xprt,
568
xpt_list);
569
set_bit(XPT_CLOSE, &xprt->xpt_flags);
570
svc_xprt_get(xprt);
571
}
572
spin_unlock_bh(&serv->sv_lock);
573
574
if (xprt) {
575
svc_xprt_enqueue(xprt);
576
svc_xprt_put(xprt);
577
}
578
}
579
}
580
581
/*
582
* Receive the next request on any transport. This code is carefully
583
* organised not to touch any cachelines in the shared svc_serv
584
* structure, only cachelines in the local svc_pool.
585
*/
586
int svc_recv(struct svc_rqst *rqstp, long timeout)
587
{
588
struct svc_xprt *xprt = NULL;
589
struct svc_serv *serv = rqstp->rq_server;
590
struct svc_pool *pool = rqstp->rq_pool;
591
int len, i;
592
int pages;
593
struct xdr_buf *arg;
594
DECLARE_WAITQUEUE(wait, current);
595
long time_left;
596
597
dprintk("svc: server %p waiting for data (to = %ld)\n",
598
rqstp, timeout);
599
600
if (rqstp->rq_xprt)
601
printk(KERN_ERR
602
"svc_recv: service %p, transport not NULL!\n",
603
rqstp);
604
if (waitqueue_active(&rqstp->rq_wait))
605
printk(KERN_ERR
606
"svc_recv: service %p, wait queue active!\n",
607
rqstp);
608
609
/* now allocate needed pages. If we get a failure, sleep briefly */
610
pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
611
for (i = 0; i < pages ; i++)
612
while (rqstp->rq_pages[i] == NULL) {
613
struct page *p = alloc_page(GFP_KERNEL);
614
if (!p) {
615
set_current_state(TASK_INTERRUPTIBLE);
616
if (signalled() || kthread_should_stop()) {
617
set_current_state(TASK_RUNNING);
618
return -EINTR;
619
}
620
schedule_timeout(msecs_to_jiffies(500));
621
}
622
rqstp->rq_pages[i] = p;
623
}
624
rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
625
BUG_ON(pages >= RPCSVC_MAXPAGES);
626
627
/* Make arg->head point to first page and arg->pages point to rest */
628
arg = &rqstp->rq_arg;
629
arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
630
arg->head[0].iov_len = PAGE_SIZE;
631
arg->pages = rqstp->rq_pages + 1;
632
arg->page_base = 0;
633
/* save at least one page for response */
634
arg->page_len = (pages-2)*PAGE_SIZE;
635
arg->len = (pages-1)*PAGE_SIZE;
636
arg->tail[0].iov_len = 0;
637
638
try_to_freeze();
639
cond_resched();
640
if (signalled() || kthread_should_stop())
641
return -EINTR;
642
643
/* Normally we will wait up to 5 seconds for any required
644
* cache information to be provided.
645
*/
646
rqstp->rq_chandle.thread_wait = 5*HZ;
647
648
spin_lock_bh(&pool->sp_lock);
649
xprt = svc_xprt_dequeue(pool);
650
if (xprt) {
651
rqstp->rq_xprt = xprt;
652
svc_xprt_get(xprt);
653
rqstp->rq_reserved = serv->sv_max_mesg;
654
atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
655
656
/* As there is a shortage of threads and this request
657
* had to be queued, don't allow the thread to wait so
658
* long for cache updates.
659
*/
660
rqstp->rq_chandle.thread_wait = 1*HZ;
661
} else {
662
/* No data pending. Go to sleep */
663
svc_thread_enqueue(pool, rqstp);
664
665
/*
666
* We have to be able to interrupt this wait
667
* to bring down the daemons ...
668
*/
669
set_current_state(TASK_INTERRUPTIBLE);
670
671
/*
672
* checking kthread_should_stop() here allows us to avoid
673
* locking and signalling when stopping kthreads that call
674
* svc_recv. If the thread has already been woken up, then
675
* we can exit here without sleeping. If not, then it
676
* it'll be woken up quickly during the schedule_timeout
677
*/
678
if (kthread_should_stop()) {
679
set_current_state(TASK_RUNNING);
680
spin_unlock_bh(&pool->sp_lock);
681
return -EINTR;
682
}
683
684
add_wait_queue(&rqstp->rq_wait, &wait);
685
spin_unlock_bh(&pool->sp_lock);
686
687
time_left = schedule_timeout(timeout);
688
689
try_to_freeze();
690
691
spin_lock_bh(&pool->sp_lock);
692
remove_wait_queue(&rqstp->rq_wait, &wait);
693
if (!time_left)
694
pool->sp_stats.threads_timedout++;
695
696
xprt = rqstp->rq_xprt;
697
if (!xprt) {
698
svc_thread_dequeue(pool, rqstp);
699
spin_unlock_bh(&pool->sp_lock);
700
dprintk("svc: server %p, no data yet\n", rqstp);
701
if (signalled() || kthread_should_stop())
702
return -EINTR;
703
else
704
return -EAGAIN;
705
}
706
}
707
spin_unlock_bh(&pool->sp_lock);
708
709
len = 0;
710
if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
711
dprintk("svc_recv: found XPT_CLOSE\n");
712
svc_delete_xprt(xprt);
713
/* Leave XPT_BUSY set on the dead xprt: */
714
goto out;
715
}
716
if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
717
struct svc_xprt *newxpt;
718
newxpt = xprt->xpt_ops->xpo_accept(xprt);
719
if (newxpt) {
720
/*
721
* We know this module_get will succeed because the
722
* listener holds a reference too
723
*/
724
__module_get(newxpt->xpt_class->xcl_owner);
725
svc_check_conn_limits(xprt->xpt_server);
726
spin_lock_bh(&serv->sv_lock);
727
set_bit(XPT_TEMP, &newxpt->xpt_flags);
728
list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
729
serv->sv_tmpcnt++;
730
if (serv->sv_temptimer.function == NULL) {
731
/* setup timer to age temp transports */
732
setup_timer(&serv->sv_temptimer,
733
svc_age_temp_xprts,
734
(unsigned long)serv);
735
mod_timer(&serv->sv_temptimer,
736
jiffies + svc_conn_age_period * HZ);
737
}
738
spin_unlock_bh(&serv->sv_lock);
739
svc_xprt_received(newxpt);
740
}
741
} else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
742
dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
743
rqstp, pool->sp_id, xprt,
744
atomic_read(&xprt->xpt_ref.refcount));
745
rqstp->rq_deferred = svc_deferred_dequeue(xprt);
746
if (rqstp->rq_deferred)
747
len = svc_deferred_recv(rqstp);
748
else
749
len = xprt->xpt_ops->xpo_recvfrom(rqstp);
750
dprintk("svc: got len=%d\n", len);
751
}
752
svc_xprt_received(xprt);
753
754
/* No data, incomplete (TCP) read, or accept() */
755
if (len == 0 || len == -EAGAIN)
756
goto out;
757
758
clear_bit(XPT_OLD, &xprt->xpt_flags);
759
760
rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
761
rqstp->rq_chandle.defer = svc_defer;
762
763
if (serv->sv_stats)
764
serv->sv_stats->netcnt++;
765
return len;
766
out:
767
rqstp->rq_res.len = 0;
768
svc_xprt_release(rqstp);
769
return -EAGAIN;
770
}
771
EXPORT_SYMBOL_GPL(svc_recv);
772
773
/*
774
* Drop request
775
*/
776
void svc_drop(struct svc_rqst *rqstp)
777
{
778
dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
779
svc_xprt_release(rqstp);
780
}
781
EXPORT_SYMBOL_GPL(svc_drop);
782
783
/*
784
* Return reply to client.
785
*/
786
int svc_send(struct svc_rqst *rqstp)
787
{
788
struct svc_xprt *xprt;
789
int len;
790
struct xdr_buf *xb;
791
792
xprt = rqstp->rq_xprt;
793
if (!xprt)
794
return -EFAULT;
795
796
/* release the receive skb before sending the reply */
797
rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
798
799
/* calculate over-all length */
800
xb = &rqstp->rq_res;
801
xb->len = xb->head[0].iov_len +
802
xb->page_len +
803
xb->tail[0].iov_len;
804
805
/* Grab mutex to serialize outgoing data. */
806
mutex_lock(&xprt->xpt_mutex);
807
if (test_bit(XPT_DEAD, &xprt->xpt_flags))
808
len = -ENOTCONN;
809
else
810
len = xprt->xpt_ops->xpo_sendto(rqstp);
811
mutex_unlock(&xprt->xpt_mutex);
812
rpc_wake_up(&xprt->xpt_bc_pending);
813
svc_xprt_release(rqstp);
814
815
if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
816
return 0;
817
return len;
818
}
819
820
/*
821
* Timer function to close old temporary transports, using
822
* a mark-and-sweep algorithm.
823
*/
824
static void svc_age_temp_xprts(unsigned long closure)
825
{
826
struct svc_serv *serv = (struct svc_serv *)closure;
827
struct svc_xprt *xprt;
828
struct list_head *le, *next;
829
LIST_HEAD(to_be_aged);
830
831
dprintk("svc_age_temp_xprts\n");
832
833
if (!spin_trylock_bh(&serv->sv_lock)) {
834
/* busy, try again 1 sec later */
835
dprintk("svc_age_temp_xprts: busy\n");
836
mod_timer(&serv->sv_temptimer, jiffies + HZ);
837
return;
838
}
839
840
list_for_each_safe(le, next, &serv->sv_tempsocks) {
841
xprt = list_entry(le, struct svc_xprt, xpt_list);
842
843
/* First time through, just mark it OLD. Second time
844
* through, close it. */
845
if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
846
continue;
847
if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
848
test_bit(XPT_BUSY, &xprt->xpt_flags))
849
continue;
850
svc_xprt_get(xprt);
851
list_move(le, &to_be_aged);
852
set_bit(XPT_CLOSE, &xprt->xpt_flags);
853
set_bit(XPT_DETACHED, &xprt->xpt_flags);
854
}
855
spin_unlock_bh(&serv->sv_lock);
856
857
while (!list_empty(&to_be_aged)) {
858
le = to_be_aged.next;
859
/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
860
list_del_init(le);
861
xprt = list_entry(le, struct svc_xprt, xpt_list);
862
863
dprintk("queuing xprt %p for closing\n", xprt);
864
865
/* a thread will dequeue and close it soon */
866
svc_xprt_enqueue(xprt);
867
svc_xprt_put(xprt);
868
}
869
870
mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
871
}
872
873
static void call_xpt_users(struct svc_xprt *xprt)
874
{
875
struct svc_xpt_user *u;
876
877
spin_lock(&xprt->xpt_lock);
878
while (!list_empty(&xprt->xpt_users)) {
879
u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
880
list_del(&u->list);
881
u->callback(u);
882
}
883
spin_unlock(&xprt->xpt_lock);
884
}
885
886
/*
887
* Remove a dead transport
888
*/
889
void svc_delete_xprt(struct svc_xprt *xprt)
890
{
891
struct svc_serv *serv = xprt->xpt_server;
892
struct svc_deferred_req *dr;
893
894
/* Only do this once */
895
if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
896
BUG();
897
898
dprintk("svc: svc_delete_xprt(%p)\n", xprt);
899
xprt->xpt_ops->xpo_detach(xprt);
900
901
spin_lock_bh(&serv->sv_lock);
902
if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
903
list_del_init(&xprt->xpt_list);
904
/*
905
* We used to delete the transport from whichever list
906
* it's sk_xprt.xpt_ready node was on, but we don't actually
907
* need to. This is because the only time we're called
908
* while still attached to a queue, the queue itself
909
* is about to be destroyed (in svc_destroy).
910
*/
911
if (test_bit(XPT_TEMP, &xprt->xpt_flags))
912
serv->sv_tmpcnt--;
913
spin_unlock_bh(&serv->sv_lock);
914
915
while ((dr = svc_deferred_dequeue(xprt)) != NULL)
916
kfree(dr);
917
918
call_xpt_users(xprt);
919
svc_xprt_put(xprt);
920
}
921
922
void svc_close_xprt(struct svc_xprt *xprt)
923
{
924
set_bit(XPT_CLOSE, &xprt->xpt_flags);
925
if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
926
/* someone else will have to effect the close */
927
return;
928
/*
929
* We expect svc_close_xprt() to work even when no threads are
930
* running (e.g., while configuring the server before starting
931
* any threads), so if the transport isn't busy, we delete
932
* it ourself:
933
*/
934
svc_delete_xprt(xprt);
935
}
936
EXPORT_SYMBOL_GPL(svc_close_xprt);
937
938
void svc_close_all(struct list_head *xprt_list)
939
{
940
struct svc_xprt *xprt;
941
struct svc_xprt *tmp;
942
943
/*
944
* The server is shutting down, and no more threads are running.
945
* svc_xprt_enqueue() might still be running, but at worst it
946
* will re-add the xprt to sp_sockets, which will soon get
947
* freed. So we don't bother with any more locking, and don't
948
* leave the close to the (nonexistent) server threads:
949
*/
950
list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
951
set_bit(XPT_CLOSE, &xprt->xpt_flags);
952
svc_delete_xprt(xprt);
953
}
954
}
955
956
/*
957
* Handle defer and revisit of requests
958
*/
959
960
static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
961
{
962
struct svc_deferred_req *dr =
963
container_of(dreq, struct svc_deferred_req, handle);
964
struct svc_xprt *xprt = dr->xprt;
965
966
spin_lock(&xprt->xpt_lock);
967
set_bit(XPT_DEFERRED, &xprt->xpt_flags);
968
if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
969
spin_unlock(&xprt->xpt_lock);
970
dprintk("revisit canceled\n");
971
svc_xprt_put(xprt);
972
kfree(dr);
973
return;
974
}
975
dprintk("revisit queued\n");
976
dr->xprt = NULL;
977
list_add(&dr->handle.recent, &xprt->xpt_deferred);
978
spin_unlock(&xprt->xpt_lock);
979
svc_xprt_enqueue(xprt);
980
svc_xprt_put(xprt);
981
}
982
983
/*
984
* Save the request off for later processing. The request buffer looks
985
* like this:
986
*
987
* <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
988
*
989
* This code can only handle requests that consist of an xprt-header
990
* and rpc-header.
991
*/
992
static struct cache_deferred_req *svc_defer(struct cache_req *req)
993
{
994
struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
995
struct svc_deferred_req *dr;
996
997
if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
998
return NULL; /* if more than a page, give up FIXME */
999
if (rqstp->rq_deferred) {
1000
dr = rqstp->rq_deferred;
1001
rqstp->rq_deferred = NULL;
1002
} else {
1003
size_t skip;
1004
size_t size;
1005
/* FIXME maybe discard if size too large */
1006
size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1007
dr = kmalloc(size, GFP_KERNEL);
1008
if (dr == NULL)
1009
return NULL;
1010
1011
dr->handle.owner = rqstp->rq_server;
1012
dr->prot = rqstp->rq_prot;
1013
memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1014
dr->addrlen = rqstp->rq_addrlen;
1015
dr->daddr = rqstp->rq_daddr;
1016
dr->argslen = rqstp->rq_arg.len >> 2;
1017
dr->xprt_hlen = rqstp->rq_xprt_hlen;
1018
1019
/* back up head to the start of the buffer and copy */
1020
skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1021
memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1022
dr->argslen << 2);
1023
}
1024
svc_xprt_get(rqstp->rq_xprt);
1025
dr->xprt = rqstp->rq_xprt;
1026
rqstp->rq_dropme = true;
1027
1028
dr->handle.revisit = svc_revisit;
1029
return &dr->handle;
1030
}
1031
1032
/*
1033
* recv data from a deferred request into an active one
1034
*/
1035
static int svc_deferred_recv(struct svc_rqst *rqstp)
1036
{
1037
struct svc_deferred_req *dr = rqstp->rq_deferred;
1038
1039
/* setup iov_base past transport header */
1040
rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1041
/* The iov_len does not include the transport header bytes */
1042
rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1043
rqstp->rq_arg.page_len = 0;
1044
/* The rq_arg.len includes the transport header bytes */
1045
rqstp->rq_arg.len = dr->argslen<<2;
1046
rqstp->rq_prot = dr->prot;
1047
memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1048
rqstp->rq_addrlen = dr->addrlen;
1049
/* Save off transport header len in case we get deferred again */
1050
rqstp->rq_xprt_hlen = dr->xprt_hlen;
1051
rqstp->rq_daddr = dr->daddr;
1052
rqstp->rq_respages = rqstp->rq_pages;
1053
return (dr->argslen<<2) - dr->xprt_hlen;
1054
}
1055
1056
1057
static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1058
{
1059
struct svc_deferred_req *dr = NULL;
1060
1061
if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1062
return NULL;
1063
spin_lock(&xprt->xpt_lock);
1064
if (!list_empty(&xprt->xpt_deferred)) {
1065
dr = list_entry(xprt->xpt_deferred.next,
1066
struct svc_deferred_req,
1067
handle.recent);
1068
list_del_init(&dr->handle.recent);
1069
} else
1070
clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1071
spin_unlock(&xprt->xpt_lock);
1072
return dr;
1073
}
1074
1075
/**
1076
* svc_find_xprt - find an RPC transport instance
1077
* @serv: pointer to svc_serv to search
1078
* @xcl_name: C string containing transport's class name
1079
* @af: Address family of transport's local address
1080
* @port: transport's IP port number
1081
*
1082
* Return the transport instance pointer for the endpoint accepting
1083
* connections/peer traffic from the specified transport class,
1084
* address family and port.
1085
*
1086
* Specifying 0 for the address family or port is effectively a
1087
* wild-card, and will result in matching the first transport in the
1088
* service's list that has a matching class name.
1089
*/
1090
struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1091
const sa_family_t af, const unsigned short port)
1092
{
1093
struct svc_xprt *xprt;
1094
struct svc_xprt *found = NULL;
1095
1096
/* Sanity check the args */
1097
if (serv == NULL || xcl_name == NULL)
1098
return found;
1099
1100
spin_lock_bh(&serv->sv_lock);
1101
list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1102
if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1103
continue;
1104
if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1105
continue;
1106
if (port != 0 && port != svc_xprt_local_port(xprt))
1107
continue;
1108
found = xprt;
1109
svc_xprt_get(xprt);
1110
break;
1111
}
1112
spin_unlock_bh(&serv->sv_lock);
1113
return found;
1114
}
1115
EXPORT_SYMBOL_GPL(svc_find_xprt);
1116
1117
static int svc_one_xprt_name(const struct svc_xprt *xprt,
1118
char *pos, int remaining)
1119
{
1120
int len;
1121
1122
len = snprintf(pos, remaining, "%s %u\n",
1123
xprt->xpt_class->xcl_name,
1124
svc_xprt_local_port(xprt));
1125
if (len >= remaining)
1126
return -ENAMETOOLONG;
1127
return len;
1128
}
1129
1130
/**
1131
* svc_xprt_names - format a buffer with a list of transport names
1132
* @serv: pointer to an RPC service
1133
* @buf: pointer to a buffer to be filled in
1134
* @buflen: length of buffer to be filled in
1135
*
1136
* Fills in @buf with a string containing a list of transport names,
1137
* each name terminated with '\n'.
1138
*
1139
* Returns positive length of the filled-in string on success; otherwise
1140
* a negative errno value is returned if an error occurs.
1141
*/
1142
int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1143
{
1144
struct svc_xprt *xprt;
1145
int len, totlen;
1146
char *pos;
1147
1148
/* Sanity check args */
1149
if (!serv)
1150
return 0;
1151
1152
spin_lock_bh(&serv->sv_lock);
1153
1154
pos = buf;
1155
totlen = 0;
1156
list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1157
len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1158
if (len < 0) {
1159
*buf = '\0';
1160
totlen = len;
1161
}
1162
if (len <= 0)
1163
break;
1164
1165
pos += len;
1166
totlen += len;
1167
}
1168
1169
spin_unlock_bh(&serv->sv_lock);
1170
return totlen;
1171
}
1172
EXPORT_SYMBOL_GPL(svc_xprt_names);
1173
1174
1175
/*----------------------------------------------------------------------------*/
1176
1177
static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1178
{
1179
unsigned int pidx = (unsigned int)*pos;
1180
struct svc_serv *serv = m->private;
1181
1182
dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1183
1184
if (!pidx)
1185
return SEQ_START_TOKEN;
1186
return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1187
}
1188
1189
static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1190
{
1191
struct svc_pool *pool = p;
1192
struct svc_serv *serv = m->private;
1193
1194
dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1195
1196
if (p == SEQ_START_TOKEN) {
1197
pool = &serv->sv_pools[0];
1198
} else {
1199
unsigned int pidx = (pool - &serv->sv_pools[0]);
1200
if (pidx < serv->sv_nrpools-1)
1201
pool = &serv->sv_pools[pidx+1];
1202
else
1203
pool = NULL;
1204
}
1205
++*pos;
1206
return pool;
1207
}
1208
1209
static void svc_pool_stats_stop(struct seq_file *m, void *p)
1210
{
1211
}
1212
1213
static int svc_pool_stats_show(struct seq_file *m, void *p)
1214
{
1215
struct svc_pool *pool = p;
1216
1217
if (p == SEQ_START_TOKEN) {
1218
seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1219
return 0;
1220
}
1221
1222
seq_printf(m, "%u %lu %lu %lu %lu\n",
1223
pool->sp_id,
1224
pool->sp_stats.packets,
1225
pool->sp_stats.sockets_queued,
1226
pool->sp_stats.threads_woken,
1227
pool->sp_stats.threads_timedout);
1228
1229
return 0;
1230
}
1231
1232
static const struct seq_operations svc_pool_stats_seq_ops = {
1233
.start = svc_pool_stats_start,
1234
.next = svc_pool_stats_next,
1235
.stop = svc_pool_stats_stop,
1236
.show = svc_pool_stats_show,
1237
};
1238
1239
int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1240
{
1241
int err;
1242
1243
err = seq_open(file, &svc_pool_stats_seq_ops);
1244
if (!err)
1245
((struct seq_file *) file->private_data)->private = serv;
1246
return err;
1247
}
1248
EXPORT_SYMBOL(svc_pool_stats_open);
1249
1250
/*----------------------------------------------------------------------------*/
1251
1252