Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/net/sunrpc/xprtrdma/svc_rdma_transport.c
15109 views
1
/*
2
* Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
3
*
4
* This software is available to you under a choice of one of two
5
* licenses. You may choose to be licensed under the terms of the GNU
6
* General Public License (GPL) Version 2, available from the file
7
* COPYING in the main directory of this source tree, or the BSD-type
8
* license below:
9
*
10
* Redistribution and use in source and binary forms, with or without
11
* modification, are permitted provided that the following conditions
12
* are met:
13
*
14
* Redistributions of source code must retain the above copyright
15
* notice, this list of conditions and the following disclaimer.
16
*
17
* Redistributions in binary form must reproduce the above
18
* copyright notice, this list of conditions and the following
19
* disclaimer in the documentation and/or other materials provided
20
* with the distribution.
21
*
22
* Neither the name of the Network Appliance, Inc. nor the names of
23
* its contributors may be used to endorse or promote products
24
* derived from this software without specific prior written
25
* permission.
26
*
27
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38
*
39
* Author: Tom Tucker <[email protected]>
40
*/
41
42
#include <linux/sunrpc/svc_xprt.h>
43
#include <linux/sunrpc/debug.h>
44
#include <linux/sunrpc/rpc_rdma.h>
45
#include <linux/sched.h>
46
#include <linux/slab.h>
47
#include <linux/spinlock.h>
48
#include <linux/workqueue.h>
49
#include <rdma/ib_verbs.h>
50
#include <rdma/rdma_cm.h>
51
#include <linux/sunrpc/svc_rdma.h>
52
53
#define RPCDBG_FACILITY RPCDBG_SVCXPRT
54
55
static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
56
struct net *net,
57
struct sockaddr *sa, int salen,
58
int flags);
59
static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
60
static void svc_rdma_release_rqst(struct svc_rqst *);
61
static void dto_tasklet_func(unsigned long data);
62
static void svc_rdma_detach(struct svc_xprt *xprt);
63
static void svc_rdma_free(struct svc_xprt *xprt);
64
static int svc_rdma_has_wspace(struct svc_xprt *xprt);
65
static void rq_cq_reap(struct svcxprt_rdma *xprt);
66
static void sq_cq_reap(struct svcxprt_rdma *xprt);
67
68
static DECLARE_TASKLET(dto_tasklet, dto_tasklet_func, 0UL);
69
static DEFINE_SPINLOCK(dto_lock);
70
static LIST_HEAD(dto_xprt_q);
71
72
static struct svc_xprt_ops svc_rdma_ops = {
73
.xpo_create = svc_rdma_create,
74
.xpo_recvfrom = svc_rdma_recvfrom,
75
.xpo_sendto = svc_rdma_sendto,
76
.xpo_release_rqst = svc_rdma_release_rqst,
77
.xpo_detach = svc_rdma_detach,
78
.xpo_free = svc_rdma_free,
79
.xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
80
.xpo_has_wspace = svc_rdma_has_wspace,
81
.xpo_accept = svc_rdma_accept,
82
};
83
84
struct svc_xprt_class svc_rdma_class = {
85
.xcl_name = "rdma",
86
.xcl_owner = THIS_MODULE,
87
.xcl_ops = &svc_rdma_ops,
88
.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
89
};
90
91
/* WR context cache. Created in svc_rdma.c */
92
extern struct kmem_cache *svc_rdma_ctxt_cachep;
93
94
/* Workqueue created in svc_rdma.c */
95
extern struct workqueue_struct *svc_rdma_wq;
96
97
struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt)
98
{
99
struct svc_rdma_op_ctxt *ctxt;
100
101
while (1) {
102
ctxt = kmem_cache_alloc(svc_rdma_ctxt_cachep, GFP_KERNEL);
103
if (ctxt)
104
break;
105
schedule_timeout_uninterruptible(msecs_to_jiffies(500));
106
}
107
ctxt->xprt = xprt;
108
INIT_LIST_HEAD(&ctxt->dto_q);
109
ctxt->count = 0;
110
ctxt->frmr = NULL;
111
atomic_inc(&xprt->sc_ctxt_used);
112
return ctxt;
113
}
114
115
void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt)
116
{
117
struct svcxprt_rdma *xprt = ctxt->xprt;
118
int i;
119
for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) {
120
/*
121
* Unmap the DMA addr in the SGE if the lkey matches
122
* the sc_dma_lkey, otherwise, ignore it since it is
123
* an FRMR lkey and will be unmapped later when the
124
* last WR that uses it completes.
125
*/
126
if (ctxt->sge[i].lkey == xprt->sc_dma_lkey) {
127
atomic_dec(&xprt->sc_dma_used);
128
ib_dma_unmap_page(xprt->sc_cm_id->device,
129
ctxt->sge[i].addr,
130
ctxt->sge[i].length,
131
ctxt->direction);
132
}
133
}
134
}
135
136
void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages)
137
{
138
struct svcxprt_rdma *xprt;
139
int i;
140
141
BUG_ON(!ctxt);
142
xprt = ctxt->xprt;
143
if (free_pages)
144
for (i = 0; i < ctxt->count; i++)
145
put_page(ctxt->pages[i]);
146
147
kmem_cache_free(svc_rdma_ctxt_cachep, ctxt);
148
atomic_dec(&xprt->sc_ctxt_used);
149
}
150
151
/* Temporary NFS request map cache. Created in svc_rdma.c */
152
extern struct kmem_cache *svc_rdma_map_cachep;
153
154
/*
155
* Temporary NFS req mappings are shared across all transport
156
* instances. These are short lived and should be bounded by the number
157
* of concurrent server threads * depth of the SQ.
158
*/
159
struct svc_rdma_req_map *svc_rdma_get_req_map(void)
160
{
161
struct svc_rdma_req_map *map;
162
while (1) {
163
map = kmem_cache_alloc(svc_rdma_map_cachep, GFP_KERNEL);
164
if (map)
165
break;
166
schedule_timeout_uninterruptible(msecs_to_jiffies(500));
167
}
168
map->count = 0;
169
map->frmr = NULL;
170
return map;
171
}
172
173
void svc_rdma_put_req_map(struct svc_rdma_req_map *map)
174
{
175
kmem_cache_free(svc_rdma_map_cachep, map);
176
}
177
178
/* ib_cq event handler */
179
static void cq_event_handler(struct ib_event *event, void *context)
180
{
181
struct svc_xprt *xprt = context;
182
dprintk("svcrdma: received CQ event id=%d, context=%p\n",
183
event->event, context);
184
set_bit(XPT_CLOSE, &xprt->xpt_flags);
185
}
186
187
/* QP event handler */
188
static void qp_event_handler(struct ib_event *event, void *context)
189
{
190
struct svc_xprt *xprt = context;
191
192
switch (event->event) {
193
/* These are considered benign events */
194
case IB_EVENT_PATH_MIG:
195
case IB_EVENT_COMM_EST:
196
case IB_EVENT_SQ_DRAINED:
197
case IB_EVENT_QP_LAST_WQE_REACHED:
198
dprintk("svcrdma: QP event %d received for QP=%p\n",
199
event->event, event->element.qp);
200
break;
201
/* These are considered fatal events */
202
case IB_EVENT_PATH_MIG_ERR:
203
case IB_EVENT_QP_FATAL:
204
case IB_EVENT_QP_REQ_ERR:
205
case IB_EVENT_QP_ACCESS_ERR:
206
case IB_EVENT_DEVICE_FATAL:
207
default:
208
dprintk("svcrdma: QP ERROR event %d received for QP=%p, "
209
"closing transport\n",
210
event->event, event->element.qp);
211
set_bit(XPT_CLOSE, &xprt->xpt_flags);
212
break;
213
}
214
}
215
216
/*
217
* Data Transfer Operation Tasklet
218
*
219
* Walks a list of transports with I/O pending, removing entries as
220
* they are added to the server's I/O pending list. Two bits indicate
221
* if SQ, RQ, or both have I/O pending. The dto_lock is an irqsave
222
* spinlock that serializes access to the transport list with the RQ
223
* and SQ interrupt handlers.
224
*/
225
static void dto_tasklet_func(unsigned long data)
226
{
227
struct svcxprt_rdma *xprt;
228
unsigned long flags;
229
230
spin_lock_irqsave(&dto_lock, flags);
231
while (!list_empty(&dto_xprt_q)) {
232
xprt = list_entry(dto_xprt_q.next,
233
struct svcxprt_rdma, sc_dto_q);
234
list_del_init(&xprt->sc_dto_q);
235
spin_unlock_irqrestore(&dto_lock, flags);
236
237
rq_cq_reap(xprt);
238
sq_cq_reap(xprt);
239
240
svc_xprt_put(&xprt->sc_xprt);
241
spin_lock_irqsave(&dto_lock, flags);
242
}
243
spin_unlock_irqrestore(&dto_lock, flags);
244
}
245
246
/*
247
* Receive Queue Completion Handler
248
*
249
* Since an RQ completion handler is called on interrupt context, we
250
* need to defer the handling of the I/O to a tasklet
251
*/
252
static void rq_comp_handler(struct ib_cq *cq, void *cq_context)
253
{
254
struct svcxprt_rdma *xprt = cq_context;
255
unsigned long flags;
256
257
/* Guard against unconditional flush call for destroyed QP */
258
if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
259
return;
260
261
/*
262
* Set the bit regardless of whether or not it's on the list
263
* because it may be on the list already due to an SQ
264
* completion.
265
*/
266
set_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags);
267
268
/*
269
* If this transport is not already on the DTO transport queue,
270
* add it
271
*/
272
spin_lock_irqsave(&dto_lock, flags);
273
if (list_empty(&xprt->sc_dto_q)) {
274
svc_xprt_get(&xprt->sc_xprt);
275
list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
276
}
277
spin_unlock_irqrestore(&dto_lock, flags);
278
279
/* Tasklet does all the work to avoid irqsave locks. */
280
tasklet_schedule(&dto_tasklet);
281
}
282
283
/*
284
* rq_cq_reap - Process the RQ CQ.
285
*
286
* Take all completing WC off the CQE and enqueue the associated DTO
287
* context on the dto_q for the transport.
288
*
289
* Note that caller must hold a transport reference.
290
*/
291
static void rq_cq_reap(struct svcxprt_rdma *xprt)
292
{
293
int ret;
294
struct ib_wc wc;
295
struct svc_rdma_op_ctxt *ctxt = NULL;
296
297
if (!test_and_clear_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags))
298
return;
299
300
ib_req_notify_cq(xprt->sc_rq_cq, IB_CQ_NEXT_COMP);
301
atomic_inc(&rdma_stat_rq_poll);
302
303
while ((ret = ib_poll_cq(xprt->sc_rq_cq, 1, &wc)) > 0) {
304
ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
305
ctxt->wc_status = wc.status;
306
ctxt->byte_len = wc.byte_len;
307
svc_rdma_unmap_dma(ctxt);
308
if (wc.status != IB_WC_SUCCESS) {
309
/* Close the transport */
310
dprintk("svcrdma: transport closing putting ctxt %p\n", ctxt);
311
set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
312
svc_rdma_put_context(ctxt, 1);
313
svc_xprt_put(&xprt->sc_xprt);
314
continue;
315
}
316
spin_lock_bh(&xprt->sc_rq_dto_lock);
317
list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q);
318
spin_unlock_bh(&xprt->sc_rq_dto_lock);
319
svc_xprt_put(&xprt->sc_xprt);
320
}
321
322
if (ctxt)
323
atomic_inc(&rdma_stat_rq_prod);
324
325
set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
326
/*
327
* If data arrived before established event,
328
* don't enqueue. This defers RPC I/O until the
329
* RDMA connection is complete.
330
*/
331
if (!test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags))
332
svc_xprt_enqueue(&xprt->sc_xprt);
333
}
334
335
/*
336
* Process a completion context
337
*/
338
static void process_context(struct svcxprt_rdma *xprt,
339
struct svc_rdma_op_ctxt *ctxt)
340
{
341
svc_rdma_unmap_dma(ctxt);
342
343
switch (ctxt->wr_op) {
344
case IB_WR_SEND:
345
if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
346
svc_rdma_put_frmr(xprt, ctxt->frmr);
347
svc_rdma_put_context(ctxt, 1);
348
break;
349
350
case IB_WR_RDMA_WRITE:
351
svc_rdma_put_context(ctxt, 0);
352
break;
353
354
case IB_WR_RDMA_READ:
355
case IB_WR_RDMA_READ_WITH_INV:
356
if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) {
357
struct svc_rdma_op_ctxt *read_hdr = ctxt->read_hdr;
358
BUG_ON(!read_hdr);
359
if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
360
svc_rdma_put_frmr(xprt, ctxt->frmr);
361
spin_lock_bh(&xprt->sc_rq_dto_lock);
362
set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
363
list_add_tail(&read_hdr->dto_q,
364
&xprt->sc_read_complete_q);
365
spin_unlock_bh(&xprt->sc_rq_dto_lock);
366
svc_xprt_enqueue(&xprt->sc_xprt);
367
}
368
svc_rdma_put_context(ctxt, 0);
369
break;
370
371
default:
372
printk(KERN_ERR "svcrdma: unexpected completion type, "
373
"opcode=%d\n",
374
ctxt->wr_op);
375
break;
376
}
377
}
378
379
/*
380
* Send Queue Completion Handler - potentially called on interrupt context.
381
*
382
* Note that caller must hold a transport reference.
383
*/
384
static void sq_cq_reap(struct svcxprt_rdma *xprt)
385
{
386
struct svc_rdma_op_ctxt *ctxt = NULL;
387
struct ib_wc wc;
388
struct ib_cq *cq = xprt->sc_sq_cq;
389
int ret;
390
391
if (!test_and_clear_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags))
392
return;
393
394
ib_req_notify_cq(xprt->sc_sq_cq, IB_CQ_NEXT_COMP);
395
atomic_inc(&rdma_stat_sq_poll);
396
while ((ret = ib_poll_cq(cq, 1, &wc)) > 0) {
397
if (wc.status != IB_WC_SUCCESS)
398
/* Close the transport */
399
set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
400
401
/* Decrement used SQ WR count */
402
atomic_dec(&xprt->sc_sq_count);
403
wake_up(&xprt->sc_send_wait);
404
405
ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
406
if (ctxt)
407
process_context(xprt, ctxt);
408
409
svc_xprt_put(&xprt->sc_xprt);
410
}
411
412
if (ctxt)
413
atomic_inc(&rdma_stat_sq_prod);
414
}
415
416
static void sq_comp_handler(struct ib_cq *cq, void *cq_context)
417
{
418
struct svcxprt_rdma *xprt = cq_context;
419
unsigned long flags;
420
421
/* Guard against unconditional flush call for destroyed QP */
422
if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
423
return;
424
425
/*
426
* Set the bit regardless of whether or not it's on the list
427
* because it may be on the list already due to an RQ
428
* completion.
429
*/
430
set_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags);
431
432
/*
433
* If this transport is not already on the DTO transport queue,
434
* add it
435
*/
436
spin_lock_irqsave(&dto_lock, flags);
437
if (list_empty(&xprt->sc_dto_q)) {
438
svc_xprt_get(&xprt->sc_xprt);
439
list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
440
}
441
spin_unlock_irqrestore(&dto_lock, flags);
442
443
/* Tasklet does all the work to avoid irqsave locks. */
444
tasklet_schedule(&dto_tasklet);
445
}
446
447
static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv,
448
int listener)
449
{
450
struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL);
451
452
if (!cma_xprt)
453
return NULL;
454
svc_xprt_init(&svc_rdma_class, &cma_xprt->sc_xprt, serv);
455
INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
456
INIT_LIST_HEAD(&cma_xprt->sc_dto_q);
457
INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
458
INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
459
INIT_LIST_HEAD(&cma_xprt->sc_frmr_q);
460
init_waitqueue_head(&cma_xprt->sc_send_wait);
461
462
spin_lock_init(&cma_xprt->sc_lock);
463
spin_lock_init(&cma_xprt->sc_rq_dto_lock);
464
spin_lock_init(&cma_xprt->sc_frmr_q_lock);
465
466
cma_xprt->sc_ord = svcrdma_ord;
467
468
cma_xprt->sc_max_req_size = svcrdma_max_req_size;
469
cma_xprt->sc_max_requests = svcrdma_max_requests;
470
cma_xprt->sc_sq_depth = svcrdma_max_requests * RPCRDMA_SQ_DEPTH_MULT;
471
atomic_set(&cma_xprt->sc_sq_count, 0);
472
atomic_set(&cma_xprt->sc_ctxt_used, 0);
473
474
if (listener)
475
set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
476
477
return cma_xprt;
478
}
479
480
struct page *svc_rdma_get_page(void)
481
{
482
struct page *page;
483
484
while ((page = alloc_page(GFP_KERNEL)) == NULL) {
485
/* If we can't get memory, wait a bit and try again */
486
printk(KERN_INFO "svcrdma: out of memory...retrying in 1000 "
487
"jiffies.\n");
488
schedule_timeout_uninterruptible(msecs_to_jiffies(1000));
489
}
490
return page;
491
}
492
493
int svc_rdma_post_recv(struct svcxprt_rdma *xprt)
494
{
495
struct ib_recv_wr recv_wr, *bad_recv_wr;
496
struct svc_rdma_op_ctxt *ctxt;
497
struct page *page;
498
dma_addr_t pa;
499
int sge_no;
500
int buflen;
501
int ret;
502
503
ctxt = svc_rdma_get_context(xprt);
504
buflen = 0;
505
ctxt->direction = DMA_FROM_DEVICE;
506
for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) {
507
BUG_ON(sge_no >= xprt->sc_max_sge);
508
page = svc_rdma_get_page();
509
ctxt->pages[sge_no] = page;
510
pa = ib_dma_map_page(xprt->sc_cm_id->device,
511
page, 0, PAGE_SIZE,
512
DMA_FROM_DEVICE);
513
if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa))
514
goto err_put_ctxt;
515
atomic_inc(&xprt->sc_dma_used);
516
ctxt->sge[sge_no].addr = pa;
517
ctxt->sge[sge_no].length = PAGE_SIZE;
518
ctxt->sge[sge_no].lkey = xprt->sc_dma_lkey;
519
ctxt->count = sge_no + 1;
520
buflen += PAGE_SIZE;
521
}
522
recv_wr.next = NULL;
523
recv_wr.sg_list = &ctxt->sge[0];
524
recv_wr.num_sge = ctxt->count;
525
recv_wr.wr_id = (u64)(unsigned long)ctxt;
526
527
svc_xprt_get(&xprt->sc_xprt);
528
ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr);
529
if (ret) {
530
svc_rdma_unmap_dma(ctxt);
531
svc_rdma_put_context(ctxt, 1);
532
svc_xprt_put(&xprt->sc_xprt);
533
}
534
return ret;
535
536
err_put_ctxt:
537
svc_rdma_unmap_dma(ctxt);
538
svc_rdma_put_context(ctxt, 1);
539
return -ENOMEM;
540
}
541
542
/*
543
* This function handles the CONNECT_REQUEST event on a listening
544
* endpoint. It is passed the cma_id for the _new_ connection. The context in
545
* this cma_id is inherited from the listening cma_id and is the svc_xprt
546
* structure for the listening endpoint.
547
*
548
* This function creates a new xprt for the new connection and enqueues it on
549
* the accept queue for the listent xprt. When the listen thread is kicked, it
550
* will call the recvfrom method on the listen xprt which will accept the new
551
* connection.
552
*/
553
static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird)
554
{
555
struct svcxprt_rdma *listen_xprt = new_cma_id->context;
556
struct svcxprt_rdma *newxprt;
557
struct sockaddr *sa;
558
559
/* Create a new transport */
560
newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0);
561
if (!newxprt) {
562
dprintk("svcrdma: failed to create new transport\n");
563
return;
564
}
565
newxprt->sc_cm_id = new_cma_id;
566
new_cma_id->context = newxprt;
567
dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n",
568
newxprt, newxprt->sc_cm_id, listen_xprt);
569
570
/* Save client advertised inbound read limit for use later in accept. */
571
newxprt->sc_ord = client_ird;
572
573
/* Set the local and remote addresses in the transport */
574
sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
575
svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa));
576
sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
577
svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
578
579
/*
580
* Enqueue the new transport on the accept queue of the listening
581
* transport
582
*/
583
spin_lock_bh(&listen_xprt->sc_lock);
584
list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
585
spin_unlock_bh(&listen_xprt->sc_lock);
586
587
/*
588
* Can't use svc_xprt_received here because we are not on a
589
* rqstp thread
590
*/
591
set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
592
svc_xprt_enqueue(&listen_xprt->sc_xprt);
593
}
594
595
/*
596
* Handles events generated on the listening endpoint. These events will be
597
* either be incoming connect requests or adapter removal events.
598
*/
599
static int rdma_listen_handler(struct rdma_cm_id *cma_id,
600
struct rdma_cm_event *event)
601
{
602
struct svcxprt_rdma *xprt = cma_id->context;
603
int ret = 0;
604
605
switch (event->event) {
606
case RDMA_CM_EVENT_CONNECT_REQUEST:
607
dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, "
608
"event=%d\n", cma_id, cma_id->context, event->event);
609
handle_connect_req(cma_id,
610
event->param.conn.initiator_depth);
611
break;
612
613
case RDMA_CM_EVENT_ESTABLISHED:
614
/* Accept complete */
615
dprintk("svcrdma: Connection completed on LISTEN xprt=%p, "
616
"cm_id=%p\n", xprt, cma_id);
617
break;
618
619
case RDMA_CM_EVENT_DEVICE_REMOVAL:
620
dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n",
621
xprt, cma_id);
622
if (xprt)
623
set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
624
break;
625
626
default:
627
dprintk("svcrdma: Unexpected event on listening endpoint %p, "
628
"event=%d\n", cma_id, event->event);
629
break;
630
}
631
632
return ret;
633
}
634
635
static int rdma_cma_handler(struct rdma_cm_id *cma_id,
636
struct rdma_cm_event *event)
637
{
638
struct svc_xprt *xprt = cma_id->context;
639
struct svcxprt_rdma *rdma =
640
container_of(xprt, struct svcxprt_rdma, sc_xprt);
641
switch (event->event) {
642
case RDMA_CM_EVENT_ESTABLISHED:
643
/* Accept complete */
644
svc_xprt_get(xprt);
645
dprintk("svcrdma: Connection completed on DTO xprt=%p, "
646
"cm_id=%p\n", xprt, cma_id);
647
clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags);
648
svc_xprt_enqueue(xprt);
649
break;
650
case RDMA_CM_EVENT_DISCONNECTED:
651
dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n",
652
xprt, cma_id);
653
if (xprt) {
654
set_bit(XPT_CLOSE, &xprt->xpt_flags);
655
svc_xprt_enqueue(xprt);
656
svc_xprt_put(xprt);
657
}
658
break;
659
case RDMA_CM_EVENT_DEVICE_REMOVAL:
660
dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, "
661
"event=%d\n", cma_id, xprt, event->event);
662
if (xprt) {
663
set_bit(XPT_CLOSE, &xprt->xpt_flags);
664
svc_xprt_enqueue(xprt);
665
}
666
break;
667
default:
668
dprintk("svcrdma: Unexpected event on DTO endpoint %p, "
669
"event=%d\n", cma_id, event->event);
670
break;
671
}
672
return 0;
673
}
674
675
/*
676
* Create a listening RDMA service endpoint.
677
*/
678
static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
679
struct net *net,
680
struct sockaddr *sa, int salen,
681
int flags)
682
{
683
struct rdma_cm_id *listen_id;
684
struct svcxprt_rdma *cma_xprt;
685
struct svc_xprt *xprt;
686
int ret;
687
688
dprintk("svcrdma: Creating RDMA socket\n");
689
if (sa->sa_family != AF_INET) {
690
dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family);
691
return ERR_PTR(-EAFNOSUPPORT);
692
}
693
cma_xprt = rdma_create_xprt(serv, 1);
694
if (!cma_xprt)
695
return ERR_PTR(-ENOMEM);
696
xprt = &cma_xprt->sc_xprt;
697
698
listen_id = rdma_create_id(rdma_listen_handler, cma_xprt, RDMA_PS_TCP,
699
IB_QPT_RC);
700
if (IS_ERR(listen_id)) {
701
ret = PTR_ERR(listen_id);
702
dprintk("svcrdma: rdma_create_id failed = %d\n", ret);
703
goto err0;
704
}
705
706
ret = rdma_bind_addr(listen_id, sa);
707
if (ret) {
708
dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret);
709
goto err1;
710
}
711
cma_xprt->sc_cm_id = listen_id;
712
713
ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
714
if (ret) {
715
dprintk("svcrdma: rdma_listen failed = %d\n", ret);
716
goto err1;
717
}
718
719
/*
720
* We need to use the address from the cm_id in case the
721
* caller specified 0 for the port number.
722
*/
723
sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
724
svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
725
726
return &cma_xprt->sc_xprt;
727
728
err1:
729
rdma_destroy_id(listen_id);
730
err0:
731
kfree(cma_xprt);
732
return ERR_PTR(ret);
733
}
734
735
static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt)
736
{
737
struct ib_mr *mr;
738
struct ib_fast_reg_page_list *pl;
739
struct svc_rdma_fastreg_mr *frmr;
740
741
frmr = kmalloc(sizeof(*frmr), GFP_KERNEL);
742
if (!frmr)
743
goto err;
744
745
mr = ib_alloc_fast_reg_mr(xprt->sc_pd, RPCSVC_MAXPAGES);
746
if (IS_ERR(mr))
747
goto err_free_frmr;
748
749
pl = ib_alloc_fast_reg_page_list(xprt->sc_cm_id->device,
750
RPCSVC_MAXPAGES);
751
if (IS_ERR(pl))
752
goto err_free_mr;
753
754
frmr->mr = mr;
755
frmr->page_list = pl;
756
INIT_LIST_HEAD(&frmr->frmr_list);
757
return frmr;
758
759
err_free_mr:
760
ib_dereg_mr(mr);
761
err_free_frmr:
762
kfree(frmr);
763
err:
764
return ERR_PTR(-ENOMEM);
765
}
766
767
static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt)
768
{
769
struct svc_rdma_fastreg_mr *frmr;
770
771
while (!list_empty(&xprt->sc_frmr_q)) {
772
frmr = list_entry(xprt->sc_frmr_q.next,
773
struct svc_rdma_fastreg_mr, frmr_list);
774
list_del_init(&frmr->frmr_list);
775
ib_dereg_mr(frmr->mr);
776
ib_free_fast_reg_page_list(frmr->page_list);
777
kfree(frmr);
778
}
779
}
780
781
struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma)
782
{
783
struct svc_rdma_fastreg_mr *frmr = NULL;
784
785
spin_lock_bh(&rdma->sc_frmr_q_lock);
786
if (!list_empty(&rdma->sc_frmr_q)) {
787
frmr = list_entry(rdma->sc_frmr_q.next,
788
struct svc_rdma_fastreg_mr, frmr_list);
789
list_del_init(&frmr->frmr_list);
790
frmr->map_len = 0;
791
frmr->page_list_len = 0;
792
}
793
spin_unlock_bh(&rdma->sc_frmr_q_lock);
794
if (frmr)
795
return frmr;
796
797
return rdma_alloc_frmr(rdma);
798
}
799
800
static void frmr_unmap_dma(struct svcxprt_rdma *xprt,
801
struct svc_rdma_fastreg_mr *frmr)
802
{
803
int page_no;
804
for (page_no = 0; page_no < frmr->page_list_len; page_no++) {
805
dma_addr_t addr = frmr->page_list->page_list[page_no];
806
if (ib_dma_mapping_error(frmr->mr->device, addr))
807
continue;
808
atomic_dec(&xprt->sc_dma_used);
809
ib_dma_unmap_page(frmr->mr->device, addr, PAGE_SIZE,
810
frmr->direction);
811
}
812
}
813
814
void svc_rdma_put_frmr(struct svcxprt_rdma *rdma,
815
struct svc_rdma_fastreg_mr *frmr)
816
{
817
if (frmr) {
818
frmr_unmap_dma(rdma, frmr);
819
spin_lock_bh(&rdma->sc_frmr_q_lock);
820
BUG_ON(!list_empty(&frmr->frmr_list));
821
list_add(&frmr->frmr_list, &rdma->sc_frmr_q);
822
spin_unlock_bh(&rdma->sc_frmr_q_lock);
823
}
824
}
825
826
/*
827
* This is the xpo_recvfrom function for listening endpoints. Its
828
* purpose is to accept incoming connections. The CMA callback handler
829
* has already created a new transport and attached it to the new CMA
830
* ID.
831
*
832
* There is a queue of pending connections hung on the listening
833
* transport. This queue contains the new svc_xprt structure. This
834
* function takes svc_xprt structures off the accept_q and completes
835
* the connection.
836
*/
837
static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
838
{
839
struct svcxprt_rdma *listen_rdma;
840
struct svcxprt_rdma *newxprt = NULL;
841
struct rdma_conn_param conn_param;
842
struct ib_qp_init_attr qp_attr;
843
struct ib_device_attr devattr;
844
int uninitialized_var(dma_mr_acc);
845
int need_dma_mr;
846
int ret;
847
int i;
848
849
listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
850
clear_bit(XPT_CONN, &xprt->xpt_flags);
851
/* Get the next entry off the accept list */
852
spin_lock_bh(&listen_rdma->sc_lock);
853
if (!list_empty(&listen_rdma->sc_accept_q)) {
854
newxprt = list_entry(listen_rdma->sc_accept_q.next,
855
struct svcxprt_rdma, sc_accept_q);
856
list_del_init(&newxprt->sc_accept_q);
857
}
858
if (!list_empty(&listen_rdma->sc_accept_q))
859
set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
860
spin_unlock_bh(&listen_rdma->sc_lock);
861
if (!newxprt)
862
return NULL;
863
864
dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n",
865
newxprt, newxprt->sc_cm_id);
866
867
ret = ib_query_device(newxprt->sc_cm_id->device, &devattr);
868
if (ret) {
869
dprintk("svcrdma: could not query device attributes on "
870
"device %p, rc=%d\n", newxprt->sc_cm_id->device, ret);
871
goto errout;
872
}
873
874
/* Qualify the transport resource defaults with the
875
* capabilities of this particular device */
876
newxprt->sc_max_sge = min((size_t)devattr.max_sge,
877
(size_t)RPCSVC_MAXPAGES);
878
newxprt->sc_max_requests = min((size_t)devattr.max_qp_wr,
879
(size_t)svcrdma_max_requests);
880
newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_max_requests;
881
882
/*
883
* Limit ORD based on client limit, local device limit, and
884
* configured svcrdma limit.
885
*/
886
newxprt->sc_ord = min_t(size_t, devattr.max_qp_rd_atom, newxprt->sc_ord);
887
newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord);
888
889
newxprt->sc_pd = ib_alloc_pd(newxprt->sc_cm_id->device);
890
if (IS_ERR(newxprt->sc_pd)) {
891
dprintk("svcrdma: error creating PD for connect request\n");
892
goto errout;
893
}
894
newxprt->sc_sq_cq = ib_create_cq(newxprt->sc_cm_id->device,
895
sq_comp_handler,
896
cq_event_handler,
897
newxprt,
898
newxprt->sc_sq_depth,
899
0);
900
if (IS_ERR(newxprt->sc_sq_cq)) {
901
dprintk("svcrdma: error creating SQ CQ for connect request\n");
902
goto errout;
903
}
904
newxprt->sc_rq_cq = ib_create_cq(newxprt->sc_cm_id->device,
905
rq_comp_handler,
906
cq_event_handler,
907
newxprt,
908
newxprt->sc_max_requests,
909
0);
910
if (IS_ERR(newxprt->sc_rq_cq)) {
911
dprintk("svcrdma: error creating RQ CQ for connect request\n");
912
goto errout;
913
}
914
915
memset(&qp_attr, 0, sizeof qp_attr);
916
qp_attr.event_handler = qp_event_handler;
917
qp_attr.qp_context = &newxprt->sc_xprt;
918
qp_attr.cap.max_send_wr = newxprt->sc_sq_depth;
919
qp_attr.cap.max_recv_wr = newxprt->sc_max_requests;
920
qp_attr.cap.max_send_sge = newxprt->sc_max_sge;
921
qp_attr.cap.max_recv_sge = newxprt->sc_max_sge;
922
qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
923
qp_attr.qp_type = IB_QPT_RC;
924
qp_attr.send_cq = newxprt->sc_sq_cq;
925
qp_attr.recv_cq = newxprt->sc_rq_cq;
926
dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n"
927
" cm_id->device=%p, sc_pd->device=%p\n"
928
" cap.max_send_wr = %d\n"
929
" cap.max_recv_wr = %d\n"
930
" cap.max_send_sge = %d\n"
931
" cap.max_recv_sge = %d\n",
932
newxprt->sc_cm_id, newxprt->sc_pd,
933
newxprt->sc_cm_id->device, newxprt->sc_pd->device,
934
qp_attr.cap.max_send_wr,
935
qp_attr.cap.max_recv_wr,
936
qp_attr.cap.max_send_sge,
937
qp_attr.cap.max_recv_sge);
938
939
ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
940
if (ret) {
941
/*
942
* XXX: This is a hack. We need a xx_request_qp interface
943
* that will adjust the qp_attr's with a best-effort
944
* number
945
*/
946
qp_attr.cap.max_send_sge -= 2;
947
qp_attr.cap.max_recv_sge -= 2;
948
ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd,
949
&qp_attr);
950
if (ret) {
951
dprintk("svcrdma: failed to create QP, ret=%d\n", ret);
952
goto errout;
953
}
954
newxprt->sc_max_sge = qp_attr.cap.max_send_sge;
955
newxprt->sc_max_sge = qp_attr.cap.max_recv_sge;
956
newxprt->sc_sq_depth = qp_attr.cap.max_send_wr;
957
newxprt->sc_max_requests = qp_attr.cap.max_recv_wr;
958
}
959
newxprt->sc_qp = newxprt->sc_cm_id->qp;
960
961
/*
962
* Use the most secure set of MR resources based on the
963
* transport type and available memory management features in
964
* the device. Here's the table implemented below:
965
*
966
* Fast Global DMA Remote WR
967
* Reg LKEY MR Access
968
* Sup'd Sup'd Needed Needed
969
*
970
* IWARP N N Y Y
971
* N Y Y Y
972
* Y N Y N
973
* Y Y N -
974
*
975
* IB N N Y N
976
* N Y N -
977
* Y N Y N
978
* Y Y N -
979
*
980
* NB: iWARP requires remote write access for the data sink
981
* of an RDMA_READ. IB does not.
982
*/
983
if (devattr.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
984
newxprt->sc_frmr_pg_list_len =
985
devattr.max_fast_reg_page_list_len;
986
newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG;
987
}
988
989
/*
990
* Determine if a DMA MR is required and if so, what privs are required
991
*/
992
switch (rdma_node_get_transport(newxprt->sc_cm_id->device->node_type)) {
993
case RDMA_TRANSPORT_IWARP:
994
newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV;
995
if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) {
996
need_dma_mr = 1;
997
dma_mr_acc =
998
(IB_ACCESS_LOCAL_WRITE |
999
IB_ACCESS_REMOTE_WRITE);
1000
} else if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
1001
need_dma_mr = 1;
1002
dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
1003
} else
1004
need_dma_mr = 0;
1005
break;
1006
case RDMA_TRANSPORT_IB:
1007
if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
1008
need_dma_mr = 1;
1009
dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
1010
} else
1011
need_dma_mr = 0;
1012
break;
1013
default:
1014
goto errout;
1015
}
1016
1017
/* Create the DMA MR if needed, otherwise, use the DMA LKEY */
1018
if (need_dma_mr) {
1019
/* Register all of physical memory */
1020
newxprt->sc_phys_mr =
1021
ib_get_dma_mr(newxprt->sc_pd, dma_mr_acc);
1022
if (IS_ERR(newxprt->sc_phys_mr)) {
1023
dprintk("svcrdma: Failed to create DMA MR ret=%d\n",
1024
ret);
1025
goto errout;
1026
}
1027
newxprt->sc_dma_lkey = newxprt->sc_phys_mr->lkey;
1028
} else
1029
newxprt->sc_dma_lkey =
1030
newxprt->sc_cm_id->device->local_dma_lkey;
1031
1032
/* Post receive buffers */
1033
for (i = 0; i < newxprt->sc_max_requests; i++) {
1034
ret = svc_rdma_post_recv(newxprt);
1035
if (ret) {
1036
dprintk("svcrdma: failure posting receive buffers\n");
1037
goto errout;
1038
}
1039
}
1040
1041
/* Swap out the handler */
1042
newxprt->sc_cm_id->event_handler = rdma_cma_handler;
1043
1044
/*
1045
* Arm the CQs for the SQ and RQ before accepting so we can't
1046
* miss the first message
1047
*/
1048
ib_req_notify_cq(newxprt->sc_sq_cq, IB_CQ_NEXT_COMP);
1049
ib_req_notify_cq(newxprt->sc_rq_cq, IB_CQ_NEXT_COMP);
1050
1051
/* Accept Connection */
1052
set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags);
1053
memset(&conn_param, 0, sizeof conn_param);
1054
conn_param.responder_resources = 0;
1055
conn_param.initiator_depth = newxprt->sc_ord;
1056
ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
1057
if (ret) {
1058
dprintk("svcrdma: failed to accept new connection, ret=%d\n",
1059
ret);
1060
goto errout;
1061
}
1062
1063
dprintk("svcrdma: new connection %p accepted with the following "
1064
"attributes:\n"
1065
" local_ip : %pI4\n"
1066
" local_port : %d\n"
1067
" remote_ip : %pI4\n"
1068
" remote_port : %d\n"
1069
" max_sge : %d\n"
1070
" sq_depth : %d\n"
1071
" max_requests : %d\n"
1072
" ord : %d\n",
1073
newxprt,
1074
&((struct sockaddr_in *)&newxprt->sc_cm_id->
1075
route.addr.src_addr)->sin_addr.s_addr,
1076
ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1077
route.addr.src_addr)->sin_port),
1078
&((struct sockaddr_in *)&newxprt->sc_cm_id->
1079
route.addr.dst_addr)->sin_addr.s_addr,
1080
ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1081
route.addr.dst_addr)->sin_port),
1082
newxprt->sc_max_sge,
1083
newxprt->sc_sq_depth,
1084
newxprt->sc_max_requests,
1085
newxprt->sc_ord);
1086
1087
return &newxprt->sc_xprt;
1088
1089
errout:
1090
dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret);
1091
/* Take a reference in case the DTO handler runs */
1092
svc_xprt_get(&newxprt->sc_xprt);
1093
if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
1094
ib_destroy_qp(newxprt->sc_qp);
1095
rdma_destroy_id(newxprt->sc_cm_id);
1096
/* This call to put will destroy the transport */
1097
svc_xprt_put(&newxprt->sc_xprt);
1098
return NULL;
1099
}
1100
1101
static void svc_rdma_release_rqst(struct svc_rqst *rqstp)
1102
{
1103
}
1104
1105
/*
1106
* When connected, an svc_xprt has at least two references:
1107
*
1108
* - A reference held by the cm_id between the ESTABLISHED and
1109
* DISCONNECTED events. If the remote peer disconnected first, this
1110
* reference could be gone.
1111
*
1112
* - A reference held by the svc_recv code that called this function
1113
* as part of close processing.
1114
*
1115
* At a minimum one references should still be held.
1116
*/
1117
static void svc_rdma_detach(struct svc_xprt *xprt)
1118
{
1119
struct svcxprt_rdma *rdma =
1120
container_of(xprt, struct svcxprt_rdma, sc_xprt);
1121
dprintk("svc: svc_rdma_detach(%p)\n", xprt);
1122
1123
/* Disconnect and flush posted WQE */
1124
rdma_disconnect(rdma->sc_cm_id);
1125
}
1126
1127
static void __svc_rdma_free(struct work_struct *work)
1128
{
1129
struct svcxprt_rdma *rdma =
1130
container_of(work, struct svcxprt_rdma, sc_work);
1131
dprintk("svcrdma: svc_rdma_free(%p)\n", rdma);
1132
1133
/* We should only be called from kref_put */
1134
BUG_ON(atomic_read(&rdma->sc_xprt.xpt_ref.refcount) != 0);
1135
1136
/*
1137
* Destroy queued, but not processed read completions. Note
1138
* that this cleanup has to be done before destroying the
1139
* cm_id because the device ptr is needed to unmap the dma in
1140
* svc_rdma_put_context.
1141
*/
1142
while (!list_empty(&rdma->sc_read_complete_q)) {
1143
struct svc_rdma_op_ctxt *ctxt;
1144
ctxt = list_entry(rdma->sc_read_complete_q.next,
1145
struct svc_rdma_op_ctxt,
1146
dto_q);
1147
list_del_init(&ctxt->dto_q);
1148
svc_rdma_put_context(ctxt, 1);
1149
}
1150
1151
/* Destroy queued, but not processed recv completions */
1152
while (!list_empty(&rdma->sc_rq_dto_q)) {
1153
struct svc_rdma_op_ctxt *ctxt;
1154
ctxt = list_entry(rdma->sc_rq_dto_q.next,
1155
struct svc_rdma_op_ctxt,
1156
dto_q);
1157
list_del_init(&ctxt->dto_q);
1158
svc_rdma_put_context(ctxt, 1);
1159
}
1160
1161
/* Warn if we leaked a resource or under-referenced */
1162
WARN_ON(atomic_read(&rdma->sc_ctxt_used) != 0);
1163
WARN_ON(atomic_read(&rdma->sc_dma_used) != 0);
1164
1165
/* De-allocate fastreg mr */
1166
rdma_dealloc_frmr_q(rdma);
1167
1168
/* Destroy the QP if present (not a listener) */
1169
if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
1170
ib_destroy_qp(rdma->sc_qp);
1171
1172
if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
1173
ib_destroy_cq(rdma->sc_sq_cq);
1174
1175
if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
1176
ib_destroy_cq(rdma->sc_rq_cq);
1177
1178
if (rdma->sc_phys_mr && !IS_ERR(rdma->sc_phys_mr))
1179
ib_dereg_mr(rdma->sc_phys_mr);
1180
1181
if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
1182
ib_dealloc_pd(rdma->sc_pd);
1183
1184
/* Destroy the CM ID */
1185
rdma_destroy_id(rdma->sc_cm_id);
1186
1187
kfree(rdma);
1188
}
1189
1190
static void svc_rdma_free(struct svc_xprt *xprt)
1191
{
1192
struct svcxprt_rdma *rdma =
1193
container_of(xprt, struct svcxprt_rdma, sc_xprt);
1194
INIT_WORK(&rdma->sc_work, __svc_rdma_free);
1195
queue_work(svc_rdma_wq, &rdma->sc_work);
1196
}
1197
1198
static int svc_rdma_has_wspace(struct svc_xprt *xprt)
1199
{
1200
struct svcxprt_rdma *rdma =
1201
container_of(xprt, struct svcxprt_rdma, sc_xprt);
1202
1203
/*
1204
* If there are fewer SQ WR available than required to send a
1205
* simple response, return false.
1206
*/
1207
if ((rdma->sc_sq_depth - atomic_read(&rdma->sc_sq_count) < 3))
1208
return 0;
1209
1210
/*
1211
* ...or there are already waiters on the SQ,
1212
* return false.
1213
*/
1214
if (waitqueue_active(&rdma->sc_send_wait))
1215
return 0;
1216
1217
/* Otherwise return true. */
1218
return 1;
1219
}
1220
1221
/*
1222
* Attempt to register the kvec representing the RPC memory with the
1223
* device.
1224
*
1225
* Returns:
1226
* NULL : The device does not support fastreg or there were no more
1227
* fastreg mr.
1228
* frmr : The kvec register request was successfully posted.
1229
* <0 : An error was encountered attempting to register the kvec.
1230
*/
1231
int svc_rdma_fastreg(struct svcxprt_rdma *xprt,
1232
struct svc_rdma_fastreg_mr *frmr)
1233
{
1234
struct ib_send_wr fastreg_wr;
1235
u8 key;
1236
1237
/* Bump the key */
1238
key = (u8)(frmr->mr->lkey & 0x000000FF);
1239
ib_update_fast_reg_key(frmr->mr, ++key);
1240
1241
/* Prepare FASTREG WR */
1242
memset(&fastreg_wr, 0, sizeof fastreg_wr);
1243
fastreg_wr.opcode = IB_WR_FAST_REG_MR;
1244
fastreg_wr.send_flags = IB_SEND_SIGNALED;
1245
fastreg_wr.wr.fast_reg.iova_start = (unsigned long)frmr->kva;
1246
fastreg_wr.wr.fast_reg.page_list = frmr->page_list;
1247
fastreg_wr.wr.fast_reg.page_list_len = frmr->page_list_len;
1248
fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
1249
fastreg_wr.wr.fast_reg.length = frmr->map_len;
1250
fastreg_wr.wr.fast_reg.access_flags = frmr->access_flags;
1251
fastreg_wr.wr.fast_reg.rkey = frmr->mr->lkey;
1252
return svc_rdma_send(xprt, &fastreg_wr);
1253
}
1254
1255
int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr)
1256
{
1257
struct ib_send_wr *bad_wr, *n_wr;
1258
int wr_count;
1259
int i;
1260
int ret;
1261
1262
if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1263
return -ENOTCONN;
1264
1265
BUG_ON(wr->send_flags != IB_SEND_SIGNALED);
1266
wr_count = 1;
1267
for (n_wr = wr->next; n_wr; n_wr = n_wr->next)
1268
wr_count++;
1269
1270
/* If the SQ is full, wait until an SQ entry is available */
1271
while (1) {
1272
spin_lock_bh(&xprt->sc_lock);
1273
if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) {
1274
spin_unlock_bh(&xprt->sc_lock);
1275
atomic_inc(&rdma_stat_sq_starve);
1276
1277
/* See if we can opportunistically reap SQ WR to make room */
1278
sq_cq_reap(xprt);
1279
1280
/* Wait until SQ WR available if SQ still full */
1281
wait_event(xprt->sc_send_wait,
1282
atomic_read(&xprt->sc_sq_count) <
1283
xprt->sc_sq_depth);
1284
if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1285
return -ENOTCONN;
1286
continue;
1287
}
1288
/* Take a transport ref for each WR posted */
1289
for (i = 0; i < wr_count; i++)
1290
svc_xprt_get(&xprt->sc_xprt);
1291
1292
/* Bump used SQ WR count and post */
1293
atomic_add(wr_count, &xprt->sc_sq_count);
1294
ret = ib_post_send(xprt->sc_qp, wr, &bad_wr);
1295
if (ret) {
1296
set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
1297
atomic_sub(wr_count, &xprt->sc_sq_count);
1298
for (i = 0; i < wr_count; i ++)
1299
svc_xprt_put(&xprt->sc_xprt);
1300
dprintk("svcrdma: failed to post SQ WR rc=%d, "
1301
"sc_sq_count=%d, sc_sq_depth=%d\n",
1302
ret, atomic_read(&xprt->sc_sq_count),
1303
xprt->sc_sq_depth);
1304
}
1305
spin_unlock_bh(&xprt->sc_lock);
1306
if (ret)
1307
wake_up(&xprt->sc_send_wait);
1308
break;
1309
}
1310
return ret;
1311
}
1312
1313
void svc_rdma_send_error(struct svcxprt_rdma *xprt, struct rpcrdma_msg *rmsgp,
1314
enum rpcrdma_errcode err)
1315
{
1316
struct ib_send_wr err_wr;
1317
struct page *p;
1318
struct svc_rdma_op_ctxt *ctxt;
1319
u32 *va;
1320
int length;
1321
int ret;
1322
1323
p = svc_rdma_get_page();
1324
va = page_address(p);
1325
1326
/* XDR encode error */
1327
length = svc_rdma_xdr_encode_error(xprt, rmsgp, err, va);
1328
1329
ctxt = svc_rdma_get_context(xprt);
1330
ctxt->direction = DMA_FROM_DEVICE;
1331
ctxt->count = 1;
1332
ctxt->pages[0] = p;
1333
1334
/* Prepare SGE for local address */
1335
ctxt->sge[0].addr = ib_dma_map_page(xprt->sc_cm_id->device,
1336
p, 0, length, DMA_FROM_DEVICE);
1337
if (ib_dma_mapping_error(xprt->sc_cm_id->device, ctxt->sge[0].addr)) {
1338
put_page(p);
1339
svc_rdma_put_context(ctxt, 1);
1340
return;
1341
}
1342
atomic_inc(&xprt->sc_dma_used);
1343
ctxt->sge[0].lkey = xprt->sc_dma_lkey;
1344
ctxt->sge[0].length = length;
1345
1346
/* Prepare SEND WR */
1347
memset(&err_wr, 0, sizeof err_wr);
1348
ctxt->wr_op = IB_WR_SEND;
1349
err_wr.wr_id = (unsigned long)ctxt;
1350
err_wr.sg_list = ctxt->sge;
1351
err_wr.num_sge = 1;
1352
err_wr.opcode = IB_WR_SEND;
1353
err_wr.send_flags = IB_SEND_SIGNALED;
1354
1355
/* Post It */
1356
ret = svc_rdma_send(xprt, &err_wr);
1357
if (ret) {
1358
dprintk("svcrdma: Error %d posting send for protocol error\n",
1359
ret);
1360
svc_rdma_unmap_dma(ctxt);
1361
svc_rdma_put_context(ctxt, 1);
1362
}
1363
}
1364
1365