Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/security/commoncap.c
10811 views
1
/* Common capabilities, needed by capability.o.
2
*
3
* This program is free software; you can redistribute it and/or modify
4
* it under the terms of the GNU General Public License as published by
5
* the Free Software Foundation; either version 2 of the License, or
6
* (at your option) any later version.
7
*
8
*/
9
10
#include <linux/capability.h>
11
#include <linux/audit.h>
12
#include <linux/module.h>
13
#include <linux/init.h>
14
#include <linux/kernel.h>
15
#include <linux/security.h>
16
#include <linux/file.h>
17
#include <linux/mm.h>
18
#include <linux/mman.h>
19
#include <linux/pagemap.h>
20
#include <linux/swap.h>
21
#include <linux/skbuff.h>
22
#include <linux/netlink.h>
23
#include <linux/ptrace.h>
24
#include <linux/xattr.h>
25
#include <linux/hugetlb.h>
26
#include <linux/mount.h>
27
#include <linux/sched.h>
28
#include <linux/prctl.h>
29
#include <linux/securebits.h>
30
#include <linux/user_namespace.h>
31
32
/*
33
* If a non-root user executes a setuid-root binary in
34
* !secure(SECURE_NOROOT) mode, then we raise capabilities.
35
* However if fE is also set, then the intent is for only
36
* the file capabilities to be applied, and the setuid-root
37
* bit is left on either to change the uid (plausible) or
38
* to get full privilege on a kernel without file capabilities
39
* support. So in that case we do not raise capabilities.
40
*
41
* Warn if that happens, once per boot.
42
*/
43
static void warn_setuid_and_fcaps_mixed(const char *fname)
44
{
45
static int warned;
46
if (!warned) {
47
printk(KERN_INFO "warning: `%s' has both setuid-root and"
48
" effective capabilities. Therefore not raising all"
49
" capabilities.\n", fname);
50
warned = 1;
51
}
52
}
53
54
int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
55
{
56
return 0;
57
}
58
59
int cap_netlink_recv(struct sk_buff *skb, int cap)
60
{
61
if (!cap_raised(current_cap(), cap))
62
return -EPERM;
63
return 0;
64
}
65
EXPORT_SYMBOL(cap_netlink_recv);
66
67
/**
68
* cap_capable - Determine whether a task has a particular effective capability
69
* @tsk: The task to query
70
* @cred: The credentials to use
71
* @ns: The user namespace in which we need the capability
72
* @cap: The capability to check for
73
* @audit: Whether to write an audit message or not
74
*
75
* Determine whether the nominated task has the specified capability amongst
76
* its effective set, returning 0 if it does, -ve if it does not.
77
*
78
* NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
79
* and has_capability() functions. That is, it has the reverse semantics:
80
* cap_has_capability() returns 0 when a task has a capability, but the
81
* kernel's capable() and has_capability() returns 1 for this case.
82
*/
83
int cap_capable(struct task_struct *tsk, const struct cred *cred,
84
struct user_namespace *targ_ns, int cap, int audit)
85
{
86
for (;;) {
87
/* The creator of the user namespace has all caps. */
88
if (targ_ns != &init_user_ns && targ_ns->creator == cred->user)
89
return 0;
90
91
/* Do we have the necessary capabilities? */
92
if (targ_ns == cred->user->user_ns)
93
return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
94
95
/* Have we tried all of the parent namespaces? */
96
if (targ_ns == &init_user_ns)
97
return -EPERM;
98
99
/*
100
*If you have a capability in a parent user ns, then you have
101
* it over all children user namespaces as well.
102
*/
103
targ_ns = targ_ns->creator->user_ns;
104
}
105
106
/* We never get here */
107
}
108
109
/**
110
* cap_settime - Determine whether the current process may set the system clock
111
* @ts: The time to set
112
* @tz: The timezone to set
113
*
114
* Determine whether the current process may set the system clock and timezone
115
* information, returning 0 if permission granted, -ve if denied.
116
*/
117
int cap_settime(const struct timespec *ts, const struct timezone *tz)
118
{
119
if (!capable(CAP_SYS_TIME))
120
return -EPERM;
121
return 0;
122
}
123
124
/**
125
* cap_ptrace_access_check - Determine whether the current process may access
126
* another
127
* @child: The process to be accessed
128
* @mode: The mode of attachment.
129
*
130
* If we are in the same or an ancestor user_ns and have all the target
131
* task's capabilities, then ptrace access is allowed.
132
* If we have the ptrace capability to the target user_ns, then ptrace
133
* access is allowed.
134
* Else denied.
135
*
136
* Determine whether a process may access another, returning 0 if permission
137
* granted, -ve if denied.
138
*/
139
int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
140
{
141
int ret = 0;
142
const struct cred *cred, *child_cred;
143
144
rcu_read_lock();
145
cred = current_cred();
146
child_cred = __task_cred(child);
147
if (cred->user->user_ns == child_cred->user->user_ns &&
148
cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
149
goto out;
150
if (ns_capable(child_cred->user->user_ns, CAP_SYS_PTRACE))
151
goto out;
152
ret = -EPERM;
153
out:
154
rcu_read_unlock();
155
return ret;
156
}
157
158
/**
159
* cap_ptrace_traceme - Determine whether another process may trace the current
160
* @parent: The task proposed to be the tracer
161
*
162
* If parent is in the same or an ancestor user_ns and has all current's
163
* capabilities, then ptrace access is allowed.
164
* If parent has the ptrace capability to current's user_ns, then ptrace
165
* access is allowed.
166
* Else denied.
167
*
168
* Determine whether the nominated task is permitted to trace the current
169
* process, returning 0 if permission is granted, -ve if denied.
170
*/
171
int cap_ptrace_traceme(struct task_struct *parent)
172
{
173
int ret = 0;
174
const struct cred *cred, *child_cred;
175
176
rcu_read_lock();
177
cred = __task_cred(parent);
178
child_cred = current_cred();
179
if (cred->user->user_ns == child_cred->user->user_ns &&
180
cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
181
goto out;
182
if (has_ns_capability(parent, child_cred->user->user_ns, CAP_SYS_PTRACE))
183
goto out;
184
ret = -EPERM;
185
out:
186
rcu_read_unlock();
187
return ret;
188
}
189
190
/**
191
* cap_capget - Retrieve a task's capability sets
192
* @target: The task from which to retrieve the capability sets
193
* @effective: The place to record the effective set
194
* @inheritable: The place to record the inheritable set
195
* @permitted: The place to record the permitted set
196
*
197
* This function retrieves the capabilities of the nominated task and returns
198
* them to the caller.
199
*/
200
int cap_capget(struct task_struct *target, kernel_cap_t *effective,
201
kernel_cap_t *inheritable, kernel_cap_t *permitted)
202
{
203
const struct cred *cred;
204
205
/* Derived from kernel/capability.c:sys_capget. */
206
rcu_read_lock();
207
cred = __task_cred(target);
208
*effective = cred->cap_effective;
209
*inheritable = cred->cap_inheritable;
210
*permitted = cred->cap_permitted;
211
rcu_read_unlock();
212
return 0;
213
}
214
215
/*
216
* Determine whether the inheritable capabilities are limited to the old
217
* permitted set. Returns 1 if they are limited, 0 if they are not.
218
*/
219
static inline int cap_inh_is_capped(void)
220
{
221
222
/* they are so limited unless the current task has the CAP_SETPCAP
223
* capability
224
*/
225
if (cap_capable(current, current_cred(),
226
current_cred()->user->user_ns, CAP_SETPCAP,
227
SECURITY_CAP_AUDIT) == 0)
228
return 0;
229
return 1;
230
}
231
232
/**
233
* cap_capset - Validate and apply proposed changes to current's capabilities
234
* @new: The proposed new credentials; alterations should be made here
235
* @old: The current task's current credentials
236
* @effective: A pointer to the proposed new effective capabilities set
237
* @inheritable: A pointer to the proposed new inheritable capabilities set
238
* @permitted: A pointer to the proposed new permitted capabilities set
239
*
240
* This function validates and applies a proposed mass change to the current
241
* process's capability sets. The changes are made to the proposed new
242
* credentials, and assuming no error, will be committed by the caller of LSM.
243
*/
244
int cap_capset(struct cred *new,
245
const struct cred *old,
246
const kernel_cap_t *effective,
247
const kernel_cap_t *inheritable,
248
const kernel_cap_t *permitted)
249
{
250
if (cap_inh_is_capped() &&
251
!cap_issubset(*inheritable,
252
cap_combine(old->cap_inheritable,
253
old->cap_permitted)))
254
/* incapable of using this inheritable set */
255
return -EPERM;
256
257
if (!cap_issubset(*inheritable,
258
cap_combine(old->cap_inheritable,
259
old->cap_bset)))
260
/* no new pI capabilities outside bounding set */
261
return -EPERM;
262
263
/* verify restrictions on target's new Permitted set */
264
if (!cap_issubset(*permitted, old->cap_permitted))
265
return -EPERM;
266
267
/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
268
if (!cap_issubset(*effective, *permitted))
269
return -EPERM;
270
271
new->cap_effective = *effective;
272
new->cap_inheritable = *inheritable;
273
new->cap_permitted = *permitted;
274
return 0;
275
}
276
277
/*
278
* Clear proposed capability sets for execve().
279
*/
280
static inline void bprm_clear_caps(struct linux_binprm *bprm)
281
{
282
cap_clear(bprm->cred->cap_permitted);
283
bprm->cap_effective = false;
284
}
285
286
/**
287
* cap_inode_need_killpriv - Determine if inode change affects privileges
288
* @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
289
*
290
* Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
291
* affects the security markings on that inode, and if it is, should
292
* inode_killpriv() be invoked or the change rejected?
293
*
294
* Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
295
* -ve to deny the change.
296
*/
297
int cap_inode_need_killpriv(struct dentry *dentry)
298
{
299
struct inode *inode = dentry->d_inode;
300
int error;
301
302
if (!inode->i_op->getxattr)
303
return 0;
304
305
error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
306
if (error <= 0)
307
return 0;
308
return 1;
309
}
310
311
/**
312
* cap_inode_killpriv - Erase the security markings on an inode
313
* @dentry: The inode/dentry to alter
314
*
315
* Erase the privilege-enhancing security markings on an inode.
316
*
317
* Returns 0 if successful, -ve on error.
318
*/
319
int cap_inode_killpriv(struct dentry *dentry)
320
{
321
struct inode *inode = dentry->d_inode;
322
323
if (!inode->i_op->removexattr)
324
return 0;
325
326
return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
327
}
328
329
/*
330
* Calculate the new process capability sets from the capability sets attached
331
* to a file.
332
*/
333
static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
334
struct linux_binprm *bprm,
335
bool *effective)
336
{
337
struct cred *new = bprm->cred;
338
unsigned i;
339
int ret = 0;
340
341
if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
342
*effective = true;
343
344
CAP_FOR_EACH_U32(i) {
345
__u32 permitted = caps->permitted.cap[i];
346
__u32 inheritable = caps->inheritable.cap[i];
347
348
/*
349
* pP' = (X & fP) | (pI & fI)
350
*/
351
new->cap_permitted.cap[i] =
352
(new->cap_bset.cap[i] & permitted) |
353
(new->cap_inheritable.cap[i] & inheritable);
354
355
if (permitted & ~new->cap_permitted.cap[i])
356
/* insufficient to execute correctly */
357
ret = -EPERM;
358
}
359
360
/*
361
* For legacy apps, with no internal support for recognizing they
362
* do not have enough capabilities, we return an error if they are
363
* missing some "forced" (aka file-permitted) capabilities.
364
*/
365
return *effective ? ret : 0;
366
}
367
368
/*
369
* Extract the on-exec-apply capability sets for an executable file.
370
*/
371
int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
372
{
373
struct inode *inode = dentry->d_inode;
374
__u32 magic_etc;
375
unsigned tocopy, i;
376
int size;
377
struct vfs_cap_data caps;
378
379
memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
380
381
if (!inode || !inode->i_op->getxattr)
382
return -ENODATA;
383
384
size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
385
XATTR_CAPS_SZ);
386
if (size == -ENODATA || size == -EOPNOTSUPP)
387
/* no data, that's ok */
388
return -ENODATA;
389
if (size < 0)
390
return size;
391
392
if (size < sizeof(magic_etc))
393
return -EINVAL;
394
395
cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
396
397
switch (magic_etc & VFS_CAP_REVISION_MASK) {
398
case VFS_CAP_REVISION_1:
399
if (size != XATTR_CAPS_SZ_1)
400
return -EINVAL;
401
tocopy = VFS_CAP_U32_1;
402
break;
403
case VFS_CAP_REVISION_2:
404
if (size != XATTR_CAPS_SZ_2)
405
return -EINVAL;
406
tocopy = VFS_CAP_U32_2;
407
break;
408
default:
409
return -EINVAL;
410
}
411
412
CAP_FOR_EACH_U32(i) {
413
if (i >= tocopy)
414
break;
415
cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
416
cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
417
}
418
419
return 0;
420
}
421
422
/*
423
* Attempt to get the on-exec apply capability sets for an executable file from
424
* its xattrs and, if present, apply them to the proposed credentials being
425
* constructed by execve().
426
*/
427
static int get_file_caps(struct linux_binprm *bprm, bool *effective)
428
{
429
struct dentry *dentry;
430
int rc = 0;
431
struct cpu_vfs_cap_data vcaps;
432
433
bprm_clear_caps(bprm);
434
435
if (!file_caps_enabled)
436
return 0;
437
438
if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
439
return 0;
440
441
dentry = dget(bprm->file->f_dentry);
442
443
rc = get_vfs_caps_from_disk(dentry, &vcaps);
444
if (rc < 0) {
445
if (rc == -EINVAL)
446
printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
447
__func__, rc, bprm->filename);
448
else if (rc == -ENODATA)
449
rc = 0;
450
goto out;
451
}
452
453
rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective);
454
if (rc == -EINVAL)
455
printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
456
__func__, rc, bprm->filename);
457
458
out:
459
dput(dentry);
460
if (rc)
461
bprm_clear_caps(bprm);
462
463
return rc;
464
}
465
466
/**
467
* cap_bprm_set_creds - Set up the proposed credentials for execve().
468
* @bprm: The execution parameters, including the proposed creds
469
*
470
* Set up the proposed credentials for a new execution context being
471
* constructed by execve(). The proposed creds in @bprm->cred is altered,
472
* which won't take effect immediately. Returns 0 if successful, -ve on error.
473
*/
474
int cap_bprm_set_creds(struct linux_binprm *bprm)
475
{
476
const struct cred *old = current_cred();
477
struct cred *new = bprm->cred;
478
bool effective;
479
int ret;
480
481
effective = false;
482
ret = get_file_caps(bprm, &effective);
483
if (ret < 0)
484
return ret;
485
486
if (!issecure(SECURE_NOROOT)) {
487
/*
488
* If the legacy file capability is set, then don't set privs
489
* for a setuid root binary run by a non-root user. Do set it
490
* for a root user just to cause least surprise to an admin.
491
*/
492
if (effective && new->uid != 0 && new->euid == 0) {
493
warn_setuid_and_fcaps_mixed(bprm->filename);
494
goto skip;
495
}
496
/*
497
* To support inheritance of root-permissions and suid-root
498
* executables under compatibility mode, we override the
499
* capability sets for the file.
500
*
501
* If only the real uid is 0, we do not set the effective bit.
502
*/
503
if (new->euid == 0 || new->uid == 0) {
504
/* pP' = (cap_bset & ~0) | (pI & ~0) */
505
new->cap_permitted = cap_combine(old->cap_bset,
506
old->cap_inheritable);
507
}
508
if (new->euid == 0)
509
effective = true;
510
}
511
skip:
512
513
/* Don't let someone trace a set[ug]id/setpcap binary with the revised
514
* credentials unless they have the appropriate permit
515
*/
516
if ((new->euid != old->uid ||
517
new->egid != old->gid ||
518
!cap_issubset(new->cap_permitted, old->cap_permitted)) &&
519
bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
520
/* downgrade; they get no more than they had, and maybe less */
521
if (!capable(CAP_SETUID)) {
522
new->euid = new->uid;
523
new->egid = new->gid;
524
}
525
new->cap_permitted = cap_intersect(new->cap_permitted,
526
old->cap_permitted);
527
}
528
529
new->suid = new->fsuid = new->euid;
530
new->sgid = new->fsgid = new->egid;
531
532
if (effective)
533
new->cap_effective = new->cap_permitted;
534
else
535
cap_clear(new->cap_effective);
536
bprm->cap_effective = effective;
537
538
/*
539
* Audit candidate if current->cap_effective is set
540
*
541
* We do not bother to audit if 3 things are true:
542
* 1) cap_effective has all caps
543
* 2) we are root
544
* 3) root is supposed to have all caps (SECURE_NOROOT)
545
* Since this is just a normal root execing a process.
546
*
547
* Number 1 above might fail if you don't have a full bset, but I think
548
* that is interesting information to audit.
549
*/
550
if (!cap_isclear(new->cap_effective)) {
551
if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
552
new->euid != 0 || new->uid != 0 ||
553
issecure(SECURE_NOROOT)) {
554
ret = audit_log_bprm_fcaps(bprm, new, old);
555
if (ret < 0)
556
return ret;
557
}
558
}
559
560
new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
561
return 0;
562
}
563
564
/**
565
* cap_bprm_secureexec - Determine whether a secure execution is required
566
* @bprm: The execution parameters
567
*
568
* Determine whether a secure execution is required, return 1 if it is, and 0
569
* if it is not.
570
*
571
* The credentials have been committed by this point, and so are no longer
572
* available through @bprm->cred.
573
*/
574
int cap_bprm_secureexec(struct linux_binprm *bprm)
575
{
576
const struct cred *cred = current_cred();
577
578
if (cred->uid != 0) {
579
if (bprm->cap_effective)
580
return 1;
581
if (!cap_isclear(cred->cap_permitted))
582
return 1;
583
}
584
585
return (cred->euid != cred->uid ||
586
cred->egid != cred->gid);
587
}
588
589
/**
590
* cap_inode_setxattr - Determine whether an xattr may be altered
591
* @dentry: The inode/dentry being altered
592
* @name: The name of the xattr to be changed
593
* @value: The value that the xattr will be changed to
594
* @size: The size of value
595
* @flags: The replacement flag
596
*
597
* Determine whether an xattr may be altered or set on an inode, returning 0 if
598
* permission is granted, -ve if denied.
599
*
600
* This is used to make sure security xattrs don't get updated or set by those
601
* who aren't privileged to do so.
602
*/
603
int cap_inode_setxattr(struct dentry *dentry, const char *name,
604
const void *value, size_t size, int flags)
605
{
606
if (!strcmp(name, XATTR_NAME_CAPS)) {
607
if (!capable(CAP_SETFCAP))
608
return -EPERM;
609
return 0;
610
}
611
612
if (!strncmp(name, XATTR_SECURITY_PREFIX,
613
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
614
!capable(CAP_SYS_ADMIN))
615
return -EPERM;
616
return 0;
617
}
618
619
/**
620
* cap_inode_removexattr - Determine whether an xattr may be removed
621
* @dentry: The inode/dentry being altered
622
* @name: The name of the xattr to be changed
623
*
624
* Determine whether an xattr may be removed from an inode, returning 0 if
625
* permission is granted, -ve if denied.
626
*
627
* This is used to make sure security xattrs don't get removed by those who
628
* aren't privileged to remove them.
629
*/
630
int cap_inode_removexattr(struct dentry *dentry, const char *name)
631
{
632
if (!strcmp(name, XATTR_NAME_CAPS)) {
633
if (!capable(CAP_SETFCAP))
634
return -EPERM;
635
return 0;
636
}
637
638
if (!strncmp(name, XATTR_SECURITY_PREFIX,
639
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
640
!capable(CAP_SYS_ADMIN))
641
return -EPERM;
642
return 0;
643
}
644
645
/*
646
* cap_emulate_setxuid() fixes the effective / permitted capabilities of
647
* a process after a call to setuid, setreuid, or setresuid.
648
*
649
* 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
650
* {r,e,s}uid != 0, the permitted and effective capabilities are
651
* cleared.
652
*
653
* 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
654
* capabilities of the process are cleared.
655
*
656
* 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
657
* capabilities are set to the permitted capabilities.
658
*
659
* fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
660
* never happen.
661
*
662
* -astor
663
*
664
* cevans - New behaviour, Oct '99
665
* A process may, via prctl(), elect to keep its capabilities when it
666
* calls setuid() and switches away from uid==0. Both permitted and
667
* effective sets will be retained.
668
* Without this change, it was impossible for a daemon to drop only some
669
* of its privilege. The call to setuid(!=0) would drop all privileges!
670
* Keeping uid 0 is not an option because uid 0 owns too many vital
671
* files..
672
* Thanks to Olaf Kirch and Peter Benie for spotting this.
673
*/
674
static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
675
{
676
if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
677
(new->uid != 0 && new->euid != 0 && new->suid != 0) &&
678
!issecure(SECURE_KEEP_CAPS)) {
679
cap_clear(new->cap_permitted);
680
cap_clear(new->cap_effective);
681
}
682
if (old->euid == 0 && new->euid != 0)
683
cap_clear(new->cap_effective);
684
if (old->euid != 0 && new->euid == 0)
685
new->cap_effective = new->cap_permitted;
686
}
687
688
/**
689
* cap_task_fix_setuid - Fix up the results of setuid() call
690
* @new: The proposed credentials
691
* @old: The current task's current credentials
692
* @flags: Indications of what has changed
693
*
694
* Fix up the results of setuid() call before the credential changes are
695
* actually applied, returning 0 to grant the changes, -ve to deny them.
696
*/
697
int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
698
{
699
switch (flags) {
700
case LSM_SETID_RE:
701
case LSM_SETID_ID:
702
case LSM_SETID_RES:
703
/* juggle the capabilities to follow [RES]UID changes unless
704
* otherwise suppressed */
705
if (!issecure(SECURE_NO_SETUID_FIXUP))
706
cap_emulate_setxuid(new, old);
707
break;
708
709
case LSM_SETID_FS:
710
/* juggle the capabilties to follow FSUID changes, unless
711
* otherwise suppressed
712
*
713
* FIXME - is fsuser used for all CAP_FS_MASK capabilities?
714
* if not, we might be a bit too harsh here.
715
*/
716
if (!issecure(SECURE_NO_SETUID_FIXUP)) {
717
if (old->fsuid == 0 && new->fsuid != 0)
718
new->cap_effective =
719
cap_drop_fs_set(new->cap_effective);
720
721
if (old->fsuid != 0 && new->fsuid == 0)
722
new->cap_effective =
723
cap_raise_fs_set(new->cap_effective,
724
new->cap_permitted);
725
}
726
break;
727
728
default:
729
return -EINVAL;
730
}
731
732
return 0;
733
}
734
735
/*
736
* Rationale: code calling task_setscheduler, task_setioprio, and
737
* task_setnice, assumes that
738
* . if capable(cap_sys_nice), then those actions should be allowed
739
* . if not capable(cap_sys_nice), but acting on your own processes,
740
* then those actions should be allowed
741
* This is insufficient now since you can call code without suid, but
742
* yet with increased caps.
743
* So we check for increased caps on the target process.
744
*/
745
static int cap_safe_nice(struct task_struct *p)
746
{
747
int is_subset;
748
749
rcu_read_lock();
750
is_subset = cap_issubset(__task_cred(p)->cap_permitted,
751
current_cred()->cap_permitted);
752
rcu_read_unlock();
753
754
if (!is_subset && !capable(CAP_SYS_NICE))
755
return -EPERM;
756
return 0;
757
}
758
759
/**
760
* cap_task_setscheduler - Detemine if scheduler policy change is permitted
761
* @p: The task to affect
762
*
763
* Detemine if the requested scheduler policy change is permitted for the
764
* specified task, returning 0 if permission is granted, -ve if denied.
765
*/
766
int cap_task_setscheduler(struct task_struct *p)
767
{
768
return cap_safe_nice(p);
769
}
770
771
/**
772
* cap_task_ioprio - Detemine if I/O priority change is permitted
773
* @p: The task to affect
774
* @ioprio: The I/O priority to set
775
*
776
* Detemine if the requested I/O priority change is permitted for the specified
777
* task, returning 0 if permission is granted, -ve if denied.
778
*/
779
int cap_task_setioprio(struct task_struct *p, int ioprio)
780
{
781
return cap_safe_nice(p);
782
}
783
784
/**
785
* cap_task_ioprio - Detemine if task priority change is permitted
786
* @p: The task to affect
787
* @nice: The nice value to set
788
*
789
* Detemine if the requested task priority change is permitted for the
790
* specified task, returning 0 if permission is granted, -ve if denied.
791
*/
792
int cap_task_setnice(struct task_struct *p, int nice)
793
{
794
return cap_safe_nice(p);
795
}
796
797
/*
798
* Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
799
* the current task's bounding set. Returns 0 on success, -ve on error.
800
*/
801
static long cap_prctl_drop(struct cred *new, unsigned long cap)
802
{
803
if (!capable(CAP_SETPCAP))
804
return -EPERM;
805
if (!cap_valid(cap))
806
return -EINVAL;
807
808
cap_lower(new->cap_bset, cap);
809
return 0;
810
}
811
812
/**
813
* cap_task_prctl - Implement process control functions for this security module
814
* @option: The process control function requested
815
* @arg2, @arg3, @arg4, @arg5: The argument data for this function
816
*
817
* Allow process control functions (sys_prctl()) to alter capabilities; may
818
* also deny access to other functions not otherwise implemented here.
819
*
820
* Returns 0 or +ve on success, -ENOSYS if this function is not implemented
821
* here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
822
* modules will consider performing the function.
823
*/
824
int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
825
unsigned long arg4, unsigned long arg5)
826
{
827
struct cred *new;
828
long error = 0;
829
830
new = prepare_creds();
831
if (!new)
832
return -ENOMEM;
833
834
switch (option) {
835
case PR_CAPBSET_READ:
836
error = -EINVAL;
837
if (!cap_valid(arg2))
838
goto error;
839
error = !!cap_raised(new->cap_bset, arg2);
840
goto no_change;
841
842
case PR_CAPBSET_DROP:
843
error = cap_prctl_drop(new, arg2);
844
if (error < 0)
845
goto error;
846
goto changed;
847
848
/*
849
* The next four prctl's remain to assist with transitioning a
850
* system from legacy UID=0 based privilege (when filesystem
851
* capabilities are not in use) to a system using filesystem
852
* capabilities only - as the POSIX.1e draft intended.
853
*
854
* Note:
855
*
856
* PR_SET_SECUREBITS =
857
* issecure_mask(SECURE_KEEP_CAPS_LOCKED)
858
* | issecure_mask(SECURE_NOROOT)
859
* | issecure_mask(SECURE_NOROOT_LOCKED)
860
* | issecure_mask(SECURE_NO_SETUID_FIXUP)
861
* | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
862
*
863
* will ensure that the current process and all of its
864
* children will be locked into a pure
865
* capability-based-privilege environment.
866
*/
867
case PR_SET_SECUREBITS:
868
error = -EPERM;
869
if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
870
& (new->securebits ^ arg2)) /*[1]*/
871
|| ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
872
|| (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
873
|| (cap_capable(current, current_cred(),
874
current_cred()->user->user_ns, CAP_SETPCAP,
875
SECURITY_CAP_AUDIT) != 0) /*[4]*/
876
/*
877
* [1] no changing of bits that are locked
878
* [2] no unlocking of locks
879
* [3] no setting of unsupported bits
880
* [4] doing anything requires privilege (go read about
881
* the "sendmail capabilities bug")
882
*/
883
)
884
/* cannot change a locked bit */
885
goto error;
886
new->securebits = arg2;
887
goto changed;
888
889
case PR_GET_SECUREBITS:
890
error = new->securebits;
891
goto no_change;
892
893
case PR_GET_KEEPCAPS:
894
if (issecure(SECURE_KEEP_CAPS))
895
error = 1;
896
goto no_change;
897
898
case PR_SET_KEEPCAPS:
899
error = -EINVAL;
900
if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
901
goto error;
902
error = -EPERM;
903
if (issecure(SECURE_KEEP_CAPS_LOCKED))
904
goto error;
905
if (arg2)
906
new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
907
else
908
new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
909
goto changed;
910
911
default:
912
/* No functionality available - continue with default */
913
error = -ENOSYS;
914
goto error;
915
}
916
917
/* Functionality provided */
918
changed:
919
return commit_creds(new);
920
921
no_change:
922
error:
923
abort_creds(new);
924
return error;
925
}
926
927
/**
928
* cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
929
* @mm: The VM space in which the new mapping is to be made
930
* @pages: The size of the mapping
931
*
932
* Determine whether the allocation of a new virtual mapping by the current
933
* task is permitted, returning 0 if permission is granted, -ve if not.
934
*/
935
int cap_vm_enough_memory(struct mm_struct *mm, long pages)
936
{
937
int cap_sys_admin = 0;
938
939
if (cap_capable(current, current_cred(), &init_user_ns, CAP_SYS_ADMIN,
940
SECURITY_CAP_NOAUDIT) == 0)
941
cap_sys_admin = 1;
942
return __vm_enough_memory(mm, pages, cap_sys_admin);
943
}
944
945
/*
946
* cap_file_mmap - check if able to map given addr
947
* @file: unused
948
* @reqprot: unused
949
* @prot: unused
950
* @flags: unused
951
* @addr: address attempting to be mapped
952
* @addr_only: unused
953
*
954
* If the process is attempting to map memory below dac_mmap_min_addr they need
955
* CAP_SYS_RAWIO. The other parameters to this function are unused by the
956
* capability security module. Returns 0 if this mapping should be allowed
957
* -EPERM if not.
958
*/
959
int cap_file_mmap(struct file *file, unsigned long reqprot,
960
unsigned long prot, unsigned long flags,
961
unsigned long addr, unsigned long addr_only)
962
{
963
int ret = 0;
964
965
if (addr < dac_mmap_min_addr) {
966
ret = cap_capable(current, current_cred(), &init_user_ns, CAP_SYS_RAWIO,
967
SECURITY_CAP_AUDIT);
968
/* set PF_SUPERPRIV if it turns out we allow the low mmap */
969
if (ret == 0)
970
current->flags |= PF_SUPERPRIV;
971
}
972
return ret;
973
}
974
975