Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/security/keys/encrypted.c
10814 views
1
/*
2
* Copyright (C) 2010 IBM Corporation
3
*
4
* Author:
5
* Mimi Zohar <[email protected]>
6
*
7
* This program is free software; you can redistribute it and/or modify
8
* it under the terms of the GNU General Public License as published by
9
* the Free Software Foundation, version 2 of the License.
10
*
11
* See Documentation/security/keys-trusted-encrypted.txt
12
*/
13
14
#include <linux/uaccess.h>
15
#include <linux/module.h>
16
#include <linux/init.h>
17
#include <linux/slab.h>
18
#include <linux/parser.h>
19
#include <linux/string.h>
20
#include <linux/err.h>
21
#include <keys/user-type.h>
22
#include <keys/trusted-type.h>
23
#include <keys/encrypted-type.h>
24
#include <linux/key-type.h>
25
#include <linux/random.h>
26
#include <linux/rcupdate.h>
27
#include <linux/scatterlist.h>
28
#include <linux/crypto.h>
29
#include <crypto/hash.h>
30
#include <crypto/sha.h>
31
#include <crypto/aes.h>
32
33
#include "encrypted.h"
34
35
static const char KEY_TRUSTED_PREFIX[] = "trusted:";
36
static const char KEY_USER_PREFIX[] = "user:";
37
static const char hash_alg[] = "sha256";
38
static const char hmac_alg[] = "hmac(sha256)";
39
static const char blkcipher_alg[] = "cbc(aes)";
40
static unsigned int ivsize;
41
static int blksize;
42
43
#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
44
#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
45
#define HASH_SIZE SHA256_DIGEST_SIZE
46
#define MAX_DATA_SIZE 4096
47
#define MIN_DATA_SIZE 20
48
49
struct sdesc {
50
struct shash_desc shash;
51
char ctx[];
52
};
53
54
static struct crypto_shash *hashalg;
55
static struct crypto_shash *hmacalg;
56
57
enum {
58
Opt_err = -1, Opt_new, Opt_load, Opt_update
59
};
60
61
static const match_table_t key_tokens = {
62
{Opt_new, "new"},
63
{Opt_load, "load"},
64
{Opt_update, "update"},
65
{Opt_err, NULL}
66
};
67
68
static int aes_get_sizes(void)
69
{
70
struct crypto_blkcipher *tfm;
71
72
tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
73
if (IS_ERR(tfm)) {
74
pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
75
PTR_ERR(tfm));
76
return PTR_ERR(tfm);
77
}
78
ivsize = crypto_blkcipher_ivsize(tfm);
79
blksize = crypto_blkcipher_blocksize(tfm);
80
crypto_free_blkcipher(tfm);
81
return 0;
82
}
83
84
/*
85
* valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
86
*
87
* key-type:= "trusted:" | "encrypted:"
88
* desc:= master-key description
89
*
90
* Verify that 'key-type' is valid and that 'desc' exists. On key update,
91
* only the master key description is permitted to change, not the key-type.
92
* The key-type remains constant.
93
*
94
* On success returns 0, otherwise -EINVAL.
95
*/
96
static int valid_master_desc(const char *new_desc, const char *orig_desc)
97
{
98
if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
99
if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
100
goto out;
101
if (orig_desc)
102
if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
103
goto out;
104
} else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
105
if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
106
goto out;
107
if (orig_desc)
108
if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
109
goto out;
110
} else
111
goto out;
112
return 0;
113
out:
114
return -EINVAL;
115
}
116
117
/*
118
* datablob_parse - parse the keyctl data
119
*
120
* datablob format:
121
* new <master-key name> <decrypted data length>
122
* load <master-key name> <decrypted data length> <encrypted iv + data>
123
* update <new-master-key name>
124
*
125
* Tokenizes a copy of the keyctl data, returning a pointer to each token,
126
* which is null terminated.
127
*
128
* On success returns 0, otherwise -EINVAL.
129
*/
130
static int datablob_parse(char *datablob, char **master_desc,
131
char **decrypted_datalen, char **hex_encoded_iv)
132
{
133
substring_t args[MAX_OPT_ARGS];
134
int ret = -EINVAL;
135
int key_cmd;
136
char *p;
137
138
p = strsep(&datablob, " \t");
139
if (!p)
140
return ret;
141
key_cmd = match_token(p, key_tokens, args);
142
143
*master_desc = strsep(&datablob, " \t");
144
if (!*master_desc)
145
goto out;
146
147
if (valid_master_desc(*master_desc, NULL) < 0)
148
goto out;
149
150
if (decrypted_datalen) {
151
*decrypted_datalen = strsep(&datablob, " \t");
152
if (!*decrypted_datalen)
153
goto out;
154
}
155
156
switch (key_cmd) {
157
case Opt_new:
158
if (!decrypted_datalen)
159
break;
160
ret = 0;
161
break;
162
case Opt_load:
163
if (!decrypted_datalen)
164
break;
165
*hex_encoded_iv = strsep(&datablob, " \t");
166
if (!*hex_encoded_iv)
167
break;
168
ret = 0;
169
break;
170
case Opt_update:
171
if (decrypted_datalen)
172
break;
173
ret = 0;
174
break;
175
case Opt_err:
176
break;
177
}
178
out:
179
return ret;
180
}
181
182
/*
183
* datablob_format - format as an ascii string, before copying to userspace
184
*/
185
static char *datablob_format(struct encrypted_key_payload *epayload,
186
size_t asciiblob_len)
187
{
188
char *ascii_buf, *bufp;
189
u8 *iv = epayload->iv;
190
int len;
191
int i;
192
193
ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
194
if (!ascii_buf)
195
goto out;
196
197
ascii_buf[asciiblob_len] = '\0';
198
199
/* copy datablob master_desc and datalen strings */
200
len = sprintf(ascii_buf, "%s %s ", epayload->master_desc,
201
epayload->datalen);
202
203
/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
204
bufp = &ascii_buf[len];
205
for (i = 0; i < (asciiblob_len - len) / 2; i++)
206
bufp = pack_hex_byte(bufp, iv[i]);
207
out:
208
return ascii_buf;
209
}
210
211
/*
212
* request_trusted_key - request the trusted key
213
*
214
* Trusted keys are sealed to PCRs and other metadata. Although userspace
215
* manages both trusted/encrypted key-types, like the encrypted key type
216
* data, trusted key type data is not visible decrypted from userspace.
217
*/
218
static struct key *request_trusted_key(const char *trusted_desc,
219
u8 **master_key, size_t *master_keylen)
220
{
221
struct trusted_key_payload *tpayload;
222
struct key *tkey;
223
224
tkey = request_key(&key_type_trusted, trusted_desc, NULL);
225
if (IS_ERR(tkey))
226
goto error;
227
228
down_read(&tkey->sem);
229
tpayload = rcu_dereference(tkey->payload.data);
230
*master_key = tpayload->key;
231
*master_keylen = tpayload->key_len;
232
error:
233
return tkey;
234
}
235
236
/*
237
* request_user_key - request the user key
238
*
239
* Use a user provided key to encrypt/decrypt an encrypted-key.
240
*/
241
static struct key *request_user_key(const char *master_desc, u8 **master_key,
242
size_t *master_keylen)
243
{
244
struct user_key_payload *upayload;
245
struct key *ukey;
246
247
ukey = request_key(&key_type_user, master_desc, NULL);
248
if (IS_ERR(ukey))
249
goto error;
250
251
down_read(&ukey->sem);
252
upayload = rcu_dereference(ukey->payload.data);
253
*master_key = upayload->data;
254
*master_keylen = upayload->datalen;
255
error:
256
return ukey;
257
}
258
259
static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
260
{
261
struct sdesc *sdesc;
262
int size;
263
264
size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
265
sdesc = kmalloc(size, GFP_KERNEL);
266
if (!sdesc)
267
return ERR_PTR(-ENOMEM);
268
sdesc->shash.tfm = alg;
269
sdesc->shash.flags = 0x0;
270
return sdesc;
271
}
272
273
static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
274
const u8 *buf, unsigned int buflen)
275
{
276
struct sdesc *sdesc;
277
int ret;
278
279
sdesc = alloc_sdesc(hmacalg);
280
if (IS_ERR(sdesc)) {
281
pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
282
return PTR_ERR(sdesc);
283
}
284
285
ret = crypto_shash_setkey(hmacalg, key, keylen);
286
if (!ret)
287
ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
288
kfree(sdesc);
289
return ret;
290
}
291
292
static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
293
{
294
struct sdesc *sdesc;
295
int ret;
296
297
sdesc = alloc_sdesc(hashalg);
298
if (IS_ERR(sdesc)) {
299
pr_info("encrypted_key: can't alloc %s\n", hash_alg);
300
return PTR_ERR(sdesc);
301
}
302
303
ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
304
kfree(sdesc);
305
return ret;
306
}
307
308
enum derived_key_type { ENC_KEY, AUTH_KEY };
309
310
/* Derive authentication/encryption key from trusted key */
311
static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
312
const u8 *master_key, size_t master_keylen)
313
{
314
u8 *derived_buf;
315
unsigned int derived_buf_len;
316
int ret;
317
318
derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
319
if (derived_buf_len < HASH_SIZE)
320
derived_buf_len = HASH_SIZE;
321
322
derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
323
if (!derived_buf) {
324
pr_err("encrypted_key: out of memory\n");
325
return -ENOMEM;
326
}
327
if (key_type)
328
strcpy(derived_buf, "AUTH_KEY");
329
else
330
strcpy(derived_buf, "ENC_KEY");
331
332
memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
333
master_keylen);
334
ret = calc_hash(derived_key, derived_buf, derived_buf_len);
335
kfree(derived_buf);
336
return ret;
337
}
338
339
static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key,
340
unsigned int key_len, const u8 *iv,
341
unsigned int ivsize)
342
{
343
int ret;
344
345
desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
346
if (IS_ERR(desc->tfm)) {
347
pr_err("encrypted_key: failed to load %s transform (%ld)\n",
348
blkcipher_alg, PTR_ERR(desc->tfm));
349
return PTR_ERR(desc->tfm);
350
}
351
desc->flags = 0;
352
353
ret = crypto_blkcipher_setkey(desc->tfm, key, key_len);
354
if (ret < 0) {
355
pr_err("encrypted_key: failed to setkey (%d)\n", ret);
356
crypto_free_blkcipher(desc->tfm);
357
return ret;
358
}
359
crypto_blkcipher_set_iv(desc->tfm, iv, ivsize);
360
return 0;
361
}
362
363
static struct key *request_master_key(struct encrypted_key_payload *epayload,
364
u8 **master_key, size_t *master_keylen)
365
{
366
struct key *mkey = NULL;
367
368
if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
369
KEY_TRUSTED_PREFIX_LEN)) {
370
mkey = request_trusted_key(epayload->master_desc +
371
KEY_TRUSTED_PREFIX_LEN,
372
master_key, master_keylen);
373
} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
374
KEY_USER_PREFIX_LEN)) {
375
mkey = request_user_key(epayload->master_desc +
376
KEY_USER_PREFIX_LEN,
377
master_key, master_keylen);
378
} else
379
goto out;
380
381
if (IS_ERR(mkey))
382
pr_info("encrypted_key: key %s not found",
383
epayload->master_desc);
384
if (mkey)
385
dump_master_key(*master_key, *master_keylen);
386
out:
387
return mkey;
388
}
389
390
/* Before returning data to userspace, encrypt decrypted data. */
391
static int derived_key_encrypt(struct encrypted_key_payload *epayload,
392
const u8 *derived_key,
393
unsigned int derived_keylen)
394
{
395
struct scatterlist sg_in[2];
396
struct scatterlist sg_out[1];
397
struct blkcipher_desc desc;
398
unsigned int encrypted_datalen;
399
unsigned int padlen;
400
char pad[16];
401
int ret;
402
403
encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
404
padlen = encrypted_datalen - epayload->decrypted_datalen;
405
406
ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
407
epayload->iv, ivsize);
408
if (ret < 0)
409
goto out;
410
dump_decrypted_data(epayload);
411
412
memset(pad, 0, sizeof pad);
413
sg_init_table(sg_in, 2);
414
sg_set_buf(&sg_in[0], epayload->decrypted_data,
415
epayload->decrypted_datalen);
416
sg_set_buf(&sg_in[1], pad, padlen);
417
418
sg_init_table(sg_out, 1);
419
sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
420
421
ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen);
422
crypto_free_blkcipher(desc.tfm);
423
if (ret < 0)
424
pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
425
else
426
dump_encrypted_data(epayload, encrypted_datalen);
427
out:
428
return ret;
429
}
430
431
static int datablob_hmac_append(struct encrypted_key_payload *epayload,
432
const u8 *master_key, size_t master_keylen)
433
{
434
u8 derived_key[HASH_SIZE];
435
u8 *digest;
436
int ret;
437
438
ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
439
if (ret < 0)
440
goto out;
441
442
digest = epayload->master_desc + epayload->datablob_len;
443
ret = calc_hmac(digest, derived_key, sizeof derived_key,
444
epayload->master_desc, epayload->datablob_len);
445
if (!ret)
446
dump_hmac(NULL, digest, HASH_SIZE);
447
out:
448
return ret;
449
}
450
451
/* verify HMAC before decrypting encrypted key */
452
static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
453
const u8 *master_key, size_t master_keylen)
454
{
455
u8 derived_key[HASH_SIZE];
456
u8 digest[HASH_SIZE];
457
int ret;
458
459
ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
460
if (ret < 0)
461
goto out;
462
463
ret = calc_hmac(digest, derived_key, sizeof derived_key,
464
epayload->master_desc, epayload->datablob_len);
465
if (ret < 0)
466
goto out;
467
ret = memcmp(digest, epayload->master_desc + epayload->datablob_len,
468
sizeof digest);
469
if (ret) {
470
ret = -EINVAL;
471
dump_hmac("datablob",
472
epayload->master_desc + epayload->datablob_len,
473
HASH_SIZE);
474
dump_hmac("calc", digest, HASH_SIZE);
475
}
476
out:
477
return ret;
478
}
479
480
static int derived_key_decrypt(struct encrypted_key_payload *epayload,
481
const u8 *derived_key,
482
unsigned int derived_keylen)
483
{
484
struct scatterlist sg_in[1];
485
struct scatterlist sg_out[2];
486
struct blkcipher_desc desc;
487
unsigned int encrypted_datalen;
488
char pad[16];
489
int ret;
490
491
encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
492
ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
493
epayload->iv, ivsize);
494
if (ret < 0)
495
goto out;
496
dump_encrypted_data(epayload, encrypted_datalen);
497
498
memset(pad, 0, sizeof pad);
499
sg_init_table(sg_in, 1);
500
sg_init_table(sg_out, 2);
501
sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
502
sg_set_buf(&sg_out[0], epayload->decrypted_data,
503
epayload->decrypted_datalen);
504
sg_set_buf(&sg_out[1], pad, sizeof pad);
505
506
ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen);
507
crypto_free_blkcipher(desc.tfm);
508
if (ret < 0)
509
goto out;
510
dump_decrypted_data(epayload);
511
out:
512
return ret;
513
}
514
515
/* Allocate memory for decrypted key and datablob. */
516
static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
517
const char *master_desc,
518
const char *datalen)
519
{
520
struct encrypted_key_payload *epayload = NULL;
521
unsigned short datablob_len;
522
unsigned short decrypted_datalen;
523
unsigned int encrypted_datalen;
524
long dlen;
525
int ret;
526
527
ret = strict_strtol(datalen, 10, &dlen);
528
if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
529
return ERR_PTR(-EINVAL);
530
531
decrypted_datalen = dlen;
532
encrypted_datalen = roundup(decrypted_datalen, blksize);
533
534
datablob_len = strlen(master_desc) + 1 + strlen(datalen) + 1
535
+ ivsize + 1 + encrypted_datalen;
536
537
ret = key_payload_reserve(key, decrypted_datalen + datablob_len
538
+ HASH_SIZE + 1);
539
if (ret < 0)
540
return ERR_PTR(ret);
541
542
epayload = kzalloc(sizeof(*epayload) + decrypted_datalen +
543
datablob_len + HASH_SIZE + 1, GFP_KERNEL);
544
if (!epayload)
545
return ERR_PTR(-ENOMEM);
546
547
epayload->decrypted_datalen = decrypted_datalen;
548
epayload->datablob_len = datablob_len;
549
return epayload;
550
}
551
552
static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
553
const char *hex_encoded_iv)
554
{
555
struct key *mkey;
556
u8 derived_key[HASH_SIZE];
557
u8 *master_key;
558
u8 *hmac;
559
const char *hex_encoded_data;
560
unsigned int encrypted_datalen;
561
size_t master_keylen;
562
size_t asciilen;
563
int ret;
564
565
encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
566
asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
567
if (strlen(hex_encoded_iv) != asciilen)
568
return -EINVAL;
569
570
hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
571
hex2bin(epayload->iv, hex_encoded_iv, ivsize);
572
hex2bin(epayload->encrypted_data, hex_encoded_data, encrypted_datalen);
573
574
hmac = epayload->master_desc + epayload->datablob_len;
575
hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), HASH_SIZE);
576
577
mkey = request_master_key(epayload, &master_key, &master_keylen);
578
if (IS_ERR(mkey))
579
return PTR_ERR(mkey);
580
581
ret = datablob_hmac_verify(epayload, master_key, master_keylen);
582
if (ret < 0) {
583
pr_err("encrypted_key: bad hmac (%d)\n", ret);
584
goto out;
585
}
586
587
ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
588
if (ret < 0)
589
goto out;
590
591
ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
592
if (ret < 0)
593
pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
594
out:
595
up_read(&mkey->sem);
596
key_put(mkey);
597
return ret;
598
}
599
600
static void __ekey_init(struct encrypted_key_payload *epayload,
601
const char *master_desc, const char *datalen)
602
{
603
epayload->master_desc = epayload->decrypted_data
604
+ epayload->decrypted_datalen;
605
epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
606
epayload->iv = epayload->datalen + strlen(datalen) + 1;
607
epayload->encrypted_data = epayload->iv + ivsize + 1;
608
609
memcpy(epayload->master_desc, master_desc, strlen(master_desc));
610
memcpy(epayload->datalen, datalen, strlen(datalen));
611
}
612
613
/*
614
* encrypted_init - initialize an encrypted key
615
*
616
* For a new key, use a random number for both the iv and data
617
* itself. For an old key, decrypt the hex encoded data.
618
*/
619
static int encrypted_init(struct encrypted_key_payload *epayload,
620
const char *master_desc, const char *datalen,
621
const char *hex_encoded_iv)
622
{
623
int ret = 0;
624
625
__ekey_init(epayload, master_desc, datalen);
626
if (!hex_encoded_iv) {
627
get_random_bytes(epayload->iv, ivsize);
628
629
get_random_bytes(epayload->decrypted_data,
630
epayload->decrypted_datalen);
631
} else
632
ret = encrypted_key_decrypt(epayload, hex_encoded_iv);
633
return ret;
634
}
635
636
/*
637
* encrypted_instantiate - instantiate an encrypted key
638
*
639
* Decrypt an existing encrypted datablob or create a new encrypted key
640
* based on a kernel random number.
641
*
642
* On success, return 0. Otherwise return errno.
643
*/
644
static int encrypted_instantiate(struct key *key, const void *data,
645
size_t datalen)
646
{
647
struct encrypted_key_payload *epayload = NULL;
648
char *datablob = NULL;
649
char *master_desc = NULL;
650
char *decrypted_datalen = NULL;
651
char *hex_encoded_iv = NULL;
652
int ret;
653
654
if (datalen <= 0 || datalen > 32767 || !data)
655
return -EINVAL;
656
657
datablob = kmalloc(datalen + 1, GFP_KERNEL);
658
if (!datablob)
659
return -ENOMEM;
660
datablob[datalen] = 0;
661
memcpy(datablob, data, datalen);
662
ret = datablob_parse(datablob, &master_desc, &decrypted_datalen,
663
&hex_encoded_iv);
664
if (ret < 0)
665
goto out;
666
667
epayload = encrypted_key_alloc(key, master_desc, decrypted_datalen);
668
if (IS_ERR(epayload)) {
669
ret = PTR_ERR(epayload);
670
goto out;
671
}
672
ret = encrypted_init(epayload, master_desc, decrypted_datalen,
673
hex_encoded_iv);
674
if (ret < 0) {
675
kfree(epayload);
676
goto out;
677
}
678
679
rcu_assign_pointer(key->payload.data, epayload);
680
out:
681
kfree(datablob);
682
return ret;
683
}
684
685
static void encrypted_rcu_free(struct rcu_head *rcu)
686
{
687
struct encrypted_key_payload *epayload;
688
689
epayload = container_of(rcu, struct encrypted_key_payload, rcu);
690
memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
691
kfree(epayload);
692
}
693
694
/*
695
* encrypted_update - update the master key description
696
*
697
* Change the master key description for an existing encrypted key.
698
* The next read will return an encrypted datablob using the new
699
* master key description.
700
*
701
* On success, return 0. Otherwise return errno.
702
*/
703
static int encrypted_update(struct key *key, const void *data, size_t datalen)
704
{
705
struct encrypted_key_payload *epayload = key->payload.data;
706
struct encrypted_key_payload *new_epayload;
707
char *buf;
708
char *new_master_desc = NULL;
709
int ret = 0;
710
711
if (datalen <= 0 || datalen > 32767 || !data)
712
return -EINVAL;
713
714
buf = kmalloc(datalen + 1, GFP_KERNEL);
715
if (!buf)
716
return -ENOMEM;
717
718
buf[datalen] = 0;
719
memcpy(buf, data, datalen);
720
ret = datablob_parse(buf, &new_master_desc, NULL, NULL);
721
if (ret < 0)
722
goto out;
723
724
ret = valid_master_desc(new_master_desc, epayload->master_desc);
725
if (ret < 0)
726
goto out;
727
728
new_epayload = encrypted_key_alloc(key, new_master_desc,
729
epayload->datalen);
730
if (IS_ERR(new_epayload)) {
731
ret = PTR_ERR(new_epayload);
732
goto out;
733
}
734
735
__ekey_init(new_epayload, new_master_desc, epayload->datalen);
736
737
memcpy(new_epayload->iv, epayload->iv, ivsize);
738
memcpy(new_epayload->decrypted_data, epayload->decrypted_data,
739
epayload->decrypted_datalen);
740
741
rcu_assign_pointer(key->payload.data, new_epayload);
742
call_rcu(&epayload->rcu, encrypted_rcu_free);
743
out:
744
kfree(buf);
745
return ret;
746
}
747
748
/*
749
* encrypted_read - format and copy the encrypted data to userspace
750
*
751
* The resulting datablob format is:
752
* <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
753
*
754
* On success, return to userspace the encrypted key datablob size.
755
*/
756
static long encrypted_read(const struct key *key, char __user *buffer,
757
size_t buflen)
758
{
759
struct encrypted_key_payload *epayload;
760
struct key *mkey;
761
u8 *master_key;
762
size_t master_keylen;
763
char derived_key[HASH_SIZE];
764
char *ascii_buf;
765
size_t asciiblob_len;
766
int ret;
767
768
epayload = rcu_dereference_key(key);
769
770
/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
771
asciiblob_len = epayload->datablob_len + ivsize + 1
772
+ roundup(epayload->decrypted_datalen, blksize)
773
+ (HASH_SIZE * 2);
774
775
if (!buffer || buflen < asciiblob_len)
776
return asciiblob_len;
777
778
mkey = request_master_key(epayload, &master_key, &master_keylen);
779
if (IS_ERR(mkey))
780
return PTR_ERR(mkey);
781
782
ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
783
if (ret < 0)
784
goto out;
785
786
ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
787
if (ret < 0)
788
goto out;
789
790
ret = datablob_hmac_append(epayload, master_key, master_keylen);
791
if (ret < 0)
792
goto out;
793
794
ascii_buf = datablob_format(epayload, asciiblob_len);
795
if (!ascii_buf) {
796
ret = -ENOMEM;
797
goto out;
798
}
799
800
up_read(&mkey->sem);
801
key_put(mkey);
802
803
if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
804
ret = -EFAULT;
805
kfree(ascii_buf);
806
807
return asciiblob_len;
808
out:
809
up_read(&mkey->sem);
810
key_put(mkey);
811
return ret;
812
}
813
814
/*
815
* encrypted_destroy - before freeing the key, clear the decrypted data
816
*
817
* Before freeing the key, clear the memory containing the decrypted
818
* key data.
819
*/
820
static void encrypted_destroy(struct key *key)
821
{
822
struct encrypted_key_payload *epayload = key->payload.data;
823
824
if (!epayload)
825
return;
826
827
memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
828
kfree(key->payload.data);
829
}
830
831
struct key_type key_type_encrypted = {
832
.name = "encrypted",
833
.instantiate = encrypted_instantiate,
834
.update = encrypted_update,
835
.match = user_match,
836
.destroy = encrypted_destroy,
837
.describe = user_describe,
838
.read = encrypted_read,
839
};
840
EXPORT_SYMBOL_GPL(key_type_encrypted);
841
842
static void encrypted_shash_release(void)
843
{
844
if (hashalg)
845
crypto_free_shash(hashalg);
846
if (hmacalg)
847
crypto_free_shash(hmacalg);
848
}
849
850
static int __init encrypted_shash_alloc(void)
851
{
852
int ret;
853
854
hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
855
if (IS_ERR(hmacalg)) {
856
pr_info("encrypted_key: could not allocate crypto %s\n",
857
hmac_alg);
858
return PTR_ERR(hmacalg);
859
}
860
861
hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
862
if (IS_ERR(hashalg)) {
863
pr_info("encrypted_key: could not allocate crypto %s\n",
864
hash_alg);
865
ret = PTR_ERR(hashalg);
866
goto hashalg_fail;
867
}
868
869
return 0;
870
871
hashalg_fail:
872
crypto_free_shash(hmacalg);
873
return ret;
874
}
875
876
static int __init init_encrypted(void)
877
{
878
int ret;
879
880
ret = encrypted_shash_alloc();
881
if (ret < 0)
882
return ret;
883
ret = register_key_type(&key_type_encrypted);
884
if (ret < 0)
885
goto out;
886
return aes_get_sizes();
887
out:
888
encrypted_shash_release();
889
return ret;
890
891
}
892
893
static void __exit cleanup_encrypted(void)
894
{
895
encrypted_shash_release();
896
unregister_key_type(&key_type_encrypted);
897
}
898
899
late_initcall(init_encrypted);
900
module_exit(cleanup_encrypted);
901
902
MODULE_LICENSE("GPL");
903
904