Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/security/keys/key.c
10814 views
1
/* Basic authentication token and access key management
2
*
3
* Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4
* Written by David Howells ([email protected])
5
*
6
* This program is free software; you can redistribute it and/or
7
* modify it under the terms of the GNU General Public License
8
* as published by the Free Software Foundation; either version
9
* 2 of the License, or (at your option) any later version.
10
*/
11
12
#include <linux/module.h>
13
#include <linux/init.h>
14
#include <linux/poison.h>
15
#include <linux/sched.h>
16
#include <linux/slab.h>
17
#include <linux/security.h>
18
#include <linux/workqueue.h>
19
#include <linux/random.h>
20
#include <linux/err.h>
21
#include <linux/user_namespace.h>
22
#include "internal.h"
23
24
static struct kmem_cache *key_jar;
25
struct rb_root key_serial_tree; /* tree of keys indexed by serial */
26
DEFINE_SPINLOCK(key_serial_lock);
27
28
struct rb_root key_user_tree; /* tree of quota records indexed by UID */
29
DEFINE_SPINLOCK(key_user_lock);
30
31
unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */
32
unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */
33
unsigned int key_quota_maxkeys = 200; /* general key count quota */
34
unsigned int key_quota_maxbytes = 20000; /* general key space quota */
35
36
static LIST_HEAD(key_types_list);
37
static DECLARE_RWSEM(key_types_sem);
38
39
static void key_cleanup(struct work_struct *work);
40
static DECLARE_WORK(key_cleanup_task, key_cleanup);
41
42
/* We serialise key instantiation and link */
43
DEFINE_MUTEX(key_construction_mutex);
44
45
/* Any key who's type gets unegistered will be re-typed to this */
46
static struct key_type key_type_dead = {
47
.name = "dead",
48
};
49
50
#ifdef KEY_DEBUGGING
51
void __key_check(const struct key *key)
52
{
53
printk("__key_check: key %p {%08x} should be {%08x}\n",
54
key, key->magic, KEY_DEBUG_MAGIC);
55
BUG();
56
}
57
#endif
58
59
/*
60
* Get the key quota record for a user, allocating a new record if one doesn't
61
* already exist.
62
*/
63
struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
64
{
65
struct key_user *candidate = NULL, *user;
66
struct rb_node *parent = NULL;
67
struct rb_node **p;
68
69
try_again:
70
p = &key_user_tree.rb_node;
71
spin_lock(&key_user_lock);
72
73
/* search the tree for a user record with a matching UID */
74
while (*p) {
75
parent = *p;
76
user = rb_entry(parent, struct key_user, node);
77
78
if (uid < user->uid)
79
p = &(*p)->rb_left;
80
else if (uid > user->uid)
81
p = &(*p)->rb_right;
82
else if (user_ns < user->user_ns)
83
p = &(*p)->rb_left;
84
else if (user_ns > user->user_ns)
85
p = &(*p)->rb_right;
86
else
87
goto found;
88
}
89
90
/* if we get here, we failed to find a match in the tree */
91
if (!candidate) {
92
/* allocate a candidate user record if we don't already have
93
* one */
94
spin_unlock(&key_user_lock);
95
96
user = NULL;
97
candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
98
if (unlikely(!candidate))
99
goto out;
100
101
/* the allocation may have scheduled, so we need to repeat the
102
* search lest someone else added the record whilst we were
103
* asleep */
104
goto try_again;
105
}
106
107
/* if we get here, then the user record still hadn't appeared on the
108
* second pass - so we use the candidate record */
109
atomic_set(&candidate->usage, 1);
110
atomic_set(&candidate->nkeys, 0);
111
atomic_set(&candidate->nikeys, 0);
112
candidate->uid = uid;
113
candidate->user_ns = get_user_ns(user_ns);
114
candidate->qnkeys = 0;
115
candidate->qnbytes = 0;
116
spin_lock_init(&candidate->lock);
117
mutex_init(&candidate->cons_lock);
118
119
rb_link_node(&candidate->node, parent, p);
120
rb_insert_color(&candidate->node, &key_user_tree);
121
spin_unlock(&key_user_lock);
122
user = candidate;
123
goto out;
124
125
/* okay - we found a user record for this UID */
126
found:
127
atomic_inc(&user->usage);
128
spin_unlock(&key_user_lock);
129
kfree(candidate);
130
out:
131
return user;
132
}
133
134
/*
135
* Dispose of a user structure
136
*/
137
void key_user_put(struct key_user *user)
138
{
139
if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
140
rb_erase(&user->node, &key_user_tree);
141
spin_unlock(&key_user_lock);
142
put_user_ns(user->user_ns);
143
144
kfree(user);
145
}
146
}
147
148
/*
149
* Allocate a serial number for a key. These are assigned randomly to avoid
150
* security issues through covert channel problems.
151
*/
152
static inline void key_alloc_serial(struct key *key)
153
{
154
struct rb_node *parent, **p;
155
struct key *xkey;
156
157
/* propose a random serial number and look for a hole for it in the
158
* serial number tree */
159
do {
160
get_random_bytes(&key->serial, sizeof(key->serial));
161
162
key->serial >>= 1; /* negative numbers are not permitted */
163
} while (key->serial < 3);
164
165
spin_lock(&key_serial_lock);
166
167
attempt_insertion:
168
parent = NULL;
169
p = &key_serial_tree.rb_node;
170
171
while (*p) {
172
parent = *p;
173
xkey = rb_entry(parent, struct key, serial_node);
174
175
if (key->serial < xkey->serial)
176
p = &(*p)->rb_left;
177
else if (key->serial > xkey->serial)
178
p = &(*p)->rb_right;
179
else
180
goto serial_exists;
181
}
182
183
/* we've found a suitable hole - arrange for this key to occupy it */
184
rb_link_node(&key->serial_node, parent, p);
185
rb_insert_color(&key->serial_node, &key_serial_tree);
186
187
spin_unlock(&key_serial_lock);
188
return;
189
190
/* we found a key with the proposed serial number - walk the tree from
191
* that point looking for the next unused serial number */
192
serial_exists:
193
for (;;) {
194
key->serial++;
195
if (key->serial < 3) {
196
key->serial = 3;
197
goto attempt_insertion;
198
}
199
200
parent = rb_next(parent);
201
if (!parent)
202
goto attempt_insertion;
203
204
xkey = rb_entry(parent, struct key, serial_node);
205
if (key->serial < xkey->serial)
206
goto attempt_insertion;
207
}
208
}
209
210
/**
211
* key_alloc - Allocate a key of the specified type.
212
* @type: The type of key to allocate.
213
* @desc: The key description to allow the key to be searched out.
214
* @uid: The owner of the new key.
215
* @gid: The group ID for the new key's group permissions.
216
* @cred: The credentials specifying UID namespace.
217
* @perm: The permissions mask of the new key.
218
* @flags: Flags specifying quota properties.
219
*
220
* Allocate a key of the specified type with the attributes given. The key is
221
* returned in an uninstantiated state and the caller needs to instantiate the
222
* key before returning.
223
*
224
* The user's key count quota is updated to reflect the creation of the key and
225
* the user's key data quota has the default for the key type reserved. The
226
* instantiation function should amend this as necessary. If insufficient
227
* quota is available, -EDQUOT will be returned.
228
*
229
* The LSM security modules can prevent a key being created, in which case
230
* -EACCES will be returned.
231
*
232
* Returns a pointer to the new key if successful and an error code otherwise.
233
*
234
* Note that the caller needs to ensure the key type isn't uninstantiated.
235
* Internally this can be done by locking key_types_sem. Externally, this can
236
* be done by either never unregistering the key type, or making sure
237
* key_alloc() calls don't race with module unloading.
238
*/
239
struct key *key_alloc(struct key_type *type, const char *desc,
240
uid_t uid, gid_t gid, const struct cred *cred,
241
key_perm_t perm, unsigned long flags)
242
{
243
struct key_user *user = NULL;
244
struct key *key;
245
size_t desclen, quotalen;
246
int ret;
247
248
key = ERR_PTR(-EINVAL);
249
if (!desc || !*desc)
250
goto error;
251
252
if (type->vet_description) {
253
ret = type->vet_description(desc);
254
if (ret < 0) {
255
key = ERR_PTR(ret);
256
goto error;
257
}
258
}
259
260
desclen = strlen(desc) + 1;
261
quotalen = desclen + type->def_datalen;
262
263
/* get hold of the key tracking for this user */
264
user = key_user_lookup(uid, cred->user->user_ns);
265
if (!user)
266
goto no_memory_1;
267
268
/* check that the user's quota permits allocation of another key and
269
* its description */
270
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
271
unsigned maxkeys = (uid == 0) ?
272
key_quota_root_maxkeys : key_quota_maxkeys;
273
unsigned maxbytes = (uid == 0) ?
274
key_quota_root_maxbytes : key_quota_maxbytes;
275
276
spin_lock(&user->lock);
277
if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
278
if (user->qnkeys + 1 >= maxkeys ||
279
user->qnbytes + quotalen >= maxbytes ||
280
user->qnbytes + quotalen < user->qnbytes)
281
goto no_quota;
282
}
283
284
user->qnkeys++;
285
user->qnbytes += quotalen;
286
spin_unlock(&user->lock);
287
}
288
289
/* allocate and initialise the key and its description */
290
key = kmem_cache_alloc(key_jar, GFP_KERNEL);
291
if (!key)
292
goto no_memory_2;
293
294
if (desc) {
295
key->description = kmemdup(desc, desclen, GFP_KERNEL);
296
if (!key->description)
297
goto no_memory_3;
298
}
299
300
atomic_set(&key->usage, 1);
301
init_rwsem(&key->sem);
302
key->type = type;
303
key->user = user;
304
key->quotalen = quotalen;
305
key->datalen = type->def_datalen;
306
key->uid = uid;
307
key->gid = gid;
308
key->perm = perm;
309
key->flags = 0;
310
key->expiry = 0;
311
key->payload.data = NULL;
312
key->security = NULL;
313
314
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
315
key->flags |= 1 << KEY_FLAG_IN_QUOTA;
316
317
memset(&key->type_data, 0, sizeof(key->type_data));
318
319
#ifdef KEY_DEBUGGING
320
key->magic = KEY_DEBUG_MAGIC;
321
#endif
322
323
/* let the security module know about the key */
324
ret = security_key_alloc(key, cred, flags);
325
if (ret < 0)
326
goto security_error;
327
328
/* publish the key by giving it a serial number */
329
atomic_inc(&user->nkeys);
330
key_alloc_serial(key);
331
332
error:
333
return key;
334
335
security_error:
336
kfree(key->description);
337
kmem_cache_free(key_jar, key);
338
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
339
spin_lock(&user->lock);
340
user->qnkeys--;
341
user->qnbytes -= quotalen;
342
spin_unlock(&user->lock);
343
}
344
key_user_put(user);
345
key = ERR_PTR(ret);
346
goto error;
347
348
no_memory_3:
349
kmem_cache_free(key_jar, key);
350
no_memory_2:
351
if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
352
spin_lock(&user->lock);
353
user->qnkeys--;
354
user->qnbytes -= quotalen;
355
spin_unlock(&user->lock);
356
}
357
key_user_put(user);
358
no_memory_1:
359
key = ERR_PTR(-ENOMEM);
360
goto error;
361
362
no_quota:
363
spin_unlock(&user->lock);
364
key_user_put(user);
365
key = ERR_PTR(-EDQUOT);
366
goto error;
367
}
368
EXPORT_SYMBOL(key_alloc);
369
370
/**
371
* key_payload_reserve - Adjust data quota reservation for the key's payload
372
* @key: The key to make the reservation for.
373
* @datalen: The amount of data payload the caller now wants.
374
*
375
* Adjust the amount of the owning user's key data quota that a key reserves.
376
* If the amount is increased, then -EDQUOT may be returned if there isn't
377
* enough free quota available.
378
*
379
* If successful, 0 is returned.
380
*/
381
int key_payload_reserve(struct key *key, size_t datalen)
382
{
383
int delta = (int)datalen - key->datalen;
384
int ret = 0;
385
386
key_check(key);
387
388
/* contemplate the quota adjustment */
389
if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
390
unsigned maxbytes = (key->user->uid == 0) ?
391
key_quota_root_maxbytes : key_quota_maxbytes;
392
393
spin_lock(&key->user->lock);
394
395
if (delta > 0 &&
396
(key->user->qnbytes + delta >= maxbytes ||
397
key->user->qnbytes + delta < key->user->qnbytes)) {
398
ret = -EDQUOT;
399
}
400
else {
401
key->user->qnbytes += delta;
402
key->quotalen += delta;
403
}
404
spin_unlock(&key->user->lock);
405
}
406
407
/* change the recorded data length if that didn't generate an error */
408
if (ret == 0)
409
key->datalen = datalen;
410
411
return ret;
412
}
413
EXPORT_SYMBOL(key_payload_reserve);
414
415
/*
416
* Instantiate a key and link it into the target keyring atomically. Must be
417
* called with the target keyring's semaphore writelocked. The target key's
418
* semaphore need not be locked as instantiation is serialised by
419
* key_construction_mutex.
420
*/
421
static int __key_instantiate_and_link(struct key *key,
422
const void *data,
423
size_t datalen,
424
struct key *keyring,
425
struct key *authkey,
426
unsigned long *_prealloc)
427
{
428
int ret, awaken;
429
430
key_check(key);
431
key_check(keyring);
432
433
awaken = 0;
434
ret = -EBUSY;
435
436
mutex_lock(&key_construction_mutex);
437
438
/* can't instantiate twice */
439
if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
440
/* instantiate the key */
441
ret = key->type->instantiate(key, data, datalen);
442
443
if (ret == 0) {
444
/* mark the key as being instantiated */
445
atomic_inc(&key->user->nikeys);
446
set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
447
448
if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
449
awaken = 1;
450
451
/* and link it into the destination keyring */
452
if (keyring)
453
__key_link(keyring, key, _prealloc);
454
455
/* disable the authorisation key */
456
if (authkey)
457
key_revoke(authkey);
458
}
459
}
460
461
mutex_unlock(&key_construction_mutex);
462
463
/* wake up anyone waiting for a key to be constructed */
464
if (awaken)
465
wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
466
467
return ret;
468
}
469
470
/**
471
* key_instantiate_and_link - Instantiate a key and link it into the keyring.
472
* @key: The key to instantiate.
473
* @data: The data to use to instantiate the keyring.
474
* @datalen: The length of @data.
475
* @keyring: Keyring to create a link in on success (or NULL).
476
* @authkey: The authorisation token permitting instantiation.
477
*
478
* Instantiate a key that's in the uninstantiated state using the provided data
479
* and, if successful, link it in to the destination keyring if one is
480
* supplied.
481
*
482
* If successful, 0 is returned, the authorisation token is revoked and anyone
483
* waiting for the key is woken up. If the key was already instantiated,
484
* -EBUSY will be returned.
485
*/
486
int key_instantiate_and_link(struct key *key,
487
const void *data,
488
size_t datalen,
489
struct key *keyring,
490
struct key *authkey)
491
{
492
unsigned long prealloc;
493
int ret;
494
495
if (keyring) {
496
ret = __key_link_begin(keyring, key->type, key->description,
497
&prealloc);
498
if (ret < 0)
499
return ret;
500
}
501
502
ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
503
&prealloc);
504
505
if (keyring)
506
__key_link_end(keyring, key->type, prealloc);
507
508
return ret;
509
}
510
511
EXPORT_SYMBOL(key_instantiate_and_link);
512
513
/**
514
* key_reject_and_link - Negatively instantiate a key and link it into the keyring.
515
* @key: The key to instantiate.
516
* @timeout: The timeout on the negative key.
517
* @error: The error to return when the key is hit.
518
* @keyring: Keyring to create a link in on success (or NULL).
519
* @authkey: The authorisation token permitting instantiation.
520
*
521
* Negatively instantiate a key that's in the uninstantiated state and, if
522
* successful, set its timeout and stored error and link it in to the
523
* destination keyring if one is supplied. The key and any links to the key
524
* will be automatically garbage collected after the timeout expires.
525
*
526
* Negative keys are used to rate limit repeated request_key() calls by causing
527
* them to return the stored error code (typically ENOKEY) until the negative
528
* key expires.
529
*
530
* If successful, 0 is returned, the authorisation token is revoked and anyone
531
* waiting for the key is woken up. If the key was already instantiated,
532
* -EBUSY will be returned.
533
*/
534
int key_reject_and_link(struct key *key,
535
unsigned timeout,
536
unsigned error,
537
struct key *keyring,
538
struct key *authkey)
539
{
540
unsigned long prealloc;
541
struct timespec now;
542
int ret, awaken, link_ret = 0;
543
544
key_check(key);
545
key_check(keyring);
546
547
awaken = 0;
548
ret = -EBUSY;
549
550
if (keyring)
551
link_ret = __key_link_begin(keyring, key->type,
552
key->description, &prealloc);
553
554
mutex_lock(&key_construction_mutex);
555
556
/* can't instantiate twice */
557
if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
558
/* mark the key as being negatively instantiated */
559
atomic_inc(&key->user->nikeys);
560
set_bit(KEY_FLAG_NEGATIVE, &key->flags);
561
set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
562
key->type_data.reject_error = -error;
563
now = current_kernel_time();
564
key->expiry = now.tv_sec + timeout;
565
key_schedule_gc(key->expiry + key_gc_delay);
566
567
if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
568
awaken = 1;
569
570
ret = 0;
571
572
/* and link it into the destination keyring */
573
if (keyring && link_ret == 0)
574
__key_link(keyring, key, &prealloc);
575
576
/* disable the authorisation key */
577
if (authkey)
578
key_revoke(authkey);
579
}
580
581
mutex_unlock(&key_construction_mutex);
582
583
if (keyring)
584
__key_link_end(keyring, key->type, prealloc);
585
586
/* wake up anyone waiting for a key to be constructed */
587
if (awaken)
588
wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
589
590
return ret == 0 ? link_ret : ret;
591
}
592
EXPORT_SYMBOL(key_reject_and_link);
593
594
/*
595
* Garbage collect keys in process context so that we don't have to disable
596
* interrupts all over the place.
597
*
598
* key_put() schedules this rather than trying to do the cleanup itself, which
599
* means key_put() doesn't have to sleep.
600
*/
601
static void key_cleanup(struct work_struct *work)
602
{
603
struct rb_node *_n;
604
struct key *key;
605
606
go_again:
607
/* look for a dead key in the tree */
608
spin_lock(&key_serial_lock);
609
610
for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
611
key = rb_entry(_n, struct key, serial_node);
612
613
if (atomic_read(&key->usage) == 0)
614
goto found_dead_key;
615
}
616
617
spin_unlock(&key_serial_lock);
618
return;
619
620
found_dead_key:
621
/* we found a dead key - once we've removed it from the tree, we can
622
* drop the lock */
623
rb_erase(&key->serial_node, &key_serial_tree);
624
spin_unlock(&key_serial_lock);
625
626
key_check(key);
627
628
security_key_free(key);
629
630
/* deal with the user's key tracking and quota */
631
if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
632
spin_lock(&key->user->lock);
633
key->user->qnkeys--;
634
key->user->qnbytes -= key->quotalen;
635
spin_unlock(&key->user->lock);
636
}
637
638
atomic_dec(&key->user->nkeys);
639
if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
640
atomic_dec(&key->user->nikeys);
641
642
key_user_put(key->user);
643
644
/* now throw away the key memory */
645
if (key->type->destroy)
646
key->type->destroy(key);
647
648
kfree(key->description);
649
650
#ifdef KEY_DEBUGGING
651
key->magic = KEY_DEBUG_MAGIC_X;
652
#endif
653
kmem_cache_free(key_jar, key);
654
655
/* there may, of course, be more than one key to destroy */
656
goto go_again;
657
}
658
659
/**
660
* key_put - Discard a reference to a key.
661
* @key: The key to discard a reference from.
662
*
663
* Discard a reference to a key, and when all the references are gone, we
664
* schedule the cleanup task to come and pull it out of the tree in process
665
* context at some later time.
666
*/
667
void key_put(struct key *key)
668
{
669
if (key) {
670
key_check(key);
671
672
if (atomic_dec_and_test(&key->usage))
673
schedule_work(&key_cleanup_task);
674
}
675
}
676
EXPORT_SYMBOL(key_put);
677
678
/*
679
* Find a key by its serial number.
680
*/
681
struct key *key_lookup(key_serial_t id)
682
{
683
struct rb_node *n;
684
struct key *key;
685
686
spin_lock(&key_serial_lock);
687
688
/* search the tree for the specified key */
689
n = key_serial_tree.rb_node;
690
while (n) {
691
key = rb_entry(n, struct key, serial_node);
692
693
if (id < key->serial)
694
n = n->rb_left;
695
else if (id > key->serial)
696
n = n->rb_right;
697
else
698
goto found;
699
}
700
701
not_found:
702
key = ERR_PTR(-ENOKEY);
703
goto error;
704
705
found:
706
/* pretend it doesn't exist if it is awaiting deletion */
707
if (atomic_read(&key->usage) == 0)
708
goto not_found;
709
710
/* this races with key_put(), but that doesn't matter since key_put()
711
* doesn't actually change the key
712
*/
713
atomic_inc(&key->usage);
714
715
error:
716
spin_unlock(&key_serial_lock);
717
return key;
718
}
719
720
/*
721
* Find and lock the specified key type against removal.
722
*
723
* We return with the sem read-locked if successful. If the type wasn't
724
* available -ENOKEY is returned instead.
725
*/
726
struct key_type *key_type_lookup(const char *type)
727
{
728
struct key_type *ktype;
729
730
down_read(&key_types_sem);
731
732
/* look up the key type to see if it's one of the registered kernel
733
* types */
734
list_for_each_entry(ktype, &key_types_list, link) {
735
if (strcmp(ktype->name, type) == 0)
736
goto found_kernel_type;
737
}
738
739
up_read(&key_types_sem);
740
ktype = ERR_PTR(-ENOKEY);
741
742
found_kernel_type:
743
return ktype;
744
}
745
746
/*
747
* Unlock a key type locked by key_type_lookup().
748
*/
749
void key_type_put(struct key_type *ktype)
750
{
751
up_read(&key_types_sem);
752
}
753
754
/*
755
* Attempt to update an existing key.
756
*
757
* The key is given to us with an incremented refcount that we need to discard
758
* if we get an error.
759
*/
760
static inline key_ref_t __key_update(key_ref_t key_ref,
761
const void *payload, size_t plen)
762
{
763
struct key *key = key_ref_to_ptr(key_ref);
764
int ret;
765
766
/* need write permission on the key to update it */
767
ret = key_permission(key_ref, KEY_WRITE);
768
if (ret < 0)
769
goto error;
770
771
ret = -EEXIST;
772
if (!key->type->update)
773
goto error;
774
775
down_write(&key->sem);
776
777
ret = key->type->update(key, payload, plen);
778
if (ret == 0)
779
/* updating a negative key instantiates it */
780
clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
781
782
up_write(&key->sem);
783
784
if (ret < 0)
785
goto error;
786
out:
787
return key_ref;
788
789
error:
790
key_put(key);
791
key_ref = ERR_PTR(ret);
792
goto out;
793
}
794
795
/**
796
* key_create_or_update - Update or create and instantiate a key.
797
* @keyring_ref: A pointer to the destination keyring with possession flag.
798
* @type: The type of key.
799
* @description: The searchable description for the key.
800
* @payload: The data to use to instantiate or update the key.
801
* @plen: The length of @payload.
802
* @perm: The permissions mask for a new key.
803
* @flags: The quota flags for a new key.
804
*
805
* Search the destination keyring for a key of the same description and if one
806
* is found, update it, otherwise create and instantiate a new one and create a
807
* link to it from that keyring.
808
*
809
* If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
810
* concocted.
811
*
812
* Returns a pointer to the new key if successful, -ENODEV if the key type
813
* wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
814
* caller isn't permitted to modify the keyring or the LSM did not permit
815
* creation of the key.
816
*
817
* On success, the possession flag from the keyring ref will be tacked on to
818
* the key ref before it is returned.
819
*/
820
key_ref_t key_create_or_update(key_ref_t keyring_ref,
821
const char *type,
822
const char *description,
823
const void *payload,
824
size_t plen,
825
key_perm_t perm,
826
unsigned long flags)
827
{
828
unsigned long prealloc;
829
const struct cred *cred = current_cred();
830
struct key_type *ktype;
831
struct key *keyring, *key = NULL;
832
key_ref_t key_ref;
833
int ret;
834
835
/* look up the key type to see if it's one of the registered kernel
836
* types */
837
ktype = key_type_lookup(type);
838
if (IS_ERR(ktype)) {
839
key_ref = ERR_PTR(-ENODEV);
840
goto error;
841
}
842
843
key_ref = ERR_PTR(-EINVAL);
844
if (!ktype->match || !ktype->instantiate)
845
goto error_2;
846
847
keyring = key_ref_to_ptr(keyring_ref);
848
849
key_check(keyring);
850
851
key_ref = ERR_PTR(-ENOTDIR);
852
if (keyring->type != &key_type_keyring)
853
goto error_2;
854
855
ret = __key_link_begin(keyring, ktype, description, &prealloc);
856
if (ret < 0)
857
goto error_2;
858
859
/* if we're going to allocate a new key, we're going to have
860
* to modify the keyring */
861
ret = key_permission(keyring_ref, KEY_WRITE);
862
if (ret < 0) {
863
key_ref = ERR_PTR(ret);
864
goto error_3;
865
}
866
867
/* if it's possible to update this type of key, search for an existing
868
* key of the same type and description in the destination keyring and
869
* update that instead if possible
870
*/
871
if (ktype->update) {
872
key_ref = __keyring_search_one(keyring_ref, ktype, description,
873
0);
874
if (!IS_ERR(key_ref))
875
goto found_matching_key;
876
}
877
878
/* if the client doesn't provide, decide on the permissions we want */
879
if (perm == KEY_PERM_UNDEF) {
880
perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
881
perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
882
883
if (ktype->read)
884
perm |= KEY_POS_READ | KEY_USR_READ;
885
886
if (ktype == &key_type_keyring || ktype->update)
887
perm |= KEY_USR_WRITE;
888
}
889
890
/* allocate a new key */
891
key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
892
perm, flags);
893
if (IS_ERR(key)) {
894
key_ref = ERR_CAST(key);
895
goto error_3;
896
}
897
898
/* instantiate it and link it into the target keyring */
899
ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
900
&prealloc);
901
if (ret < 0) {
902
key_put(key);
903
key_ref = ERR_PTR(ret);
904
goto error_3;
905
}
906
907
key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
908
909
error_3:
910
__key_link_end(keyring, ktype, prealloc);
911
error_2:
912
key_type_put(ktype);
913
error:
914
return key_ref;
915
916
found_matching_key:
917
/* we found a matching key, so we're going to try to update it
918
* - we can drop the locks first as we have the key pinned
919
*/
920
__key_link_end(keyring, ktype, prealloc);
921
key_type_put(ktype);
922
923
key_ref = __key_update(key_ref, payload, plen);
924
goto error;
925
}
926
EXPORT_SYMBOL(key_create_or_update);
927
928
/**
929
* key_update - Update a key's contents.
930
* @key_ref: The pointer (plus possession flag) to the key.
931
* @payload: The data to be used to update the key.
932
* @plen: The length of @payload.
933
*
934
* Attempt to update the contents of a key with the given payload data. The
935
* caller must be granted Write permission on the key. Negative keys can be
936
* instantiated by this method.
937
*
938
* Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
939
* type does not support updating. The key type may return other errors.
940
*/
941
int key_update(key_ref_t key_ref, const void *payload, size_t plen)
942
{
943
struct key *key = key_ref_to_ptr(key_ref);
944
int ret;
945
946
key_check(key);
947
948
/* the key must be writable */
949
ret = key_permission(key_ref, KEY_WRITE);
950
if (ret < 0)
951
goto error;
952
953
/* attempt to update it if supported */
954
ret = -EOPNOTSUPP;
955
if (key->type->update) {
956
down_write(&key->sem);
957
958
ret = key->type->update(key, payload, plen);
959
if (ret == 0)
960
/* updating a negative key instantiates it */
961
clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
962
963
up_write(&key->sem);
964
}
965
966
error:
967
return ret;
968
}
969
EXPORT_SYMBOL(key_update);
970
971
/**
972
* key_revoke - Revoke a key.
973
* @key: The key to be revoked.
974
*
975
* Mark a key as being revoked and ask the type to free up its resources. The
976
* revocation timeout is set and the key and all its links will be
977
* automatically garbage collected after key_gc_delay amount of time if they
978
* are not manually dealt with first.
979
*/
980
void key_revoke(struct key *key)
981
{
982
struct timespec now;
983
time_t time;
984
985
key_check(key);
986
987
/* make sure no one's trying to change or use the key when we mark it
988
* - we tell lockdep that we might nest because we might be revoking an
989
* authorisation key whilst holding the sem on a key we've just
990
* instantiated
991
*/
992
down_write_nested(&key->sem, 1);
993
if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
994
key->type->revoke)
995
key->type->revoke(key);
996
997
/* set the death time to no more than the expiry time */
998
now = current_kernel_time();
999
time = now.tv_sec;
1000
if (key->revoked_at == 0 || key->revoked_at > time) {
1001
key->revoked_at = time;
1002
key_schedule_gc(key->revoked_at + key_gc_delay);
1003
}
1004
1005
up_write(&key->sem);
1006
}
1007
EXPORT_SYMBOL(key_revoke);
1008
1009
/**
1010
* register_key_type - Register a type of key.
1011
* @ktype: The new key type.
1012
*
1013
* Register a new key type.
1014
*
1015
* Returns 0 on success or -EEXIST if a type of this name already exists.
1016
*/
1017
int register_key_type(struct key_type *ktype)
1018
{
1019
struct key_type *p;
1020
int ret;
1021
1022
ret = -EEXIST;
1023
down_write(&key_types_sem);
1024
1025
/* disallow key types with the same name */
1026
list_for_each_entry(p, &key_types_list, link) {
1027
if (strcmp(p->name, ktype->name) == 0)
1028
goto out;
1029
}
1030
1031
/* store the type */
1032
list_add(&ktype->link, &key_types_list);
1033
ret = 0;
1034
1035
out:
1036
up_write(&key_types_sem);
1037
return ret;
1038
}
1039
EXPORT_SYMBOL(register_key_type);
1040
1041
/**
1042
* unregister_key_type - Unregister a type of key.
1043
* @ktype: The key type.
1044
*
1045
* Unregister a key type and mark all the extant keys of this type as dead.
1046
* Those keys of this type are then destroyed to get rid of their payloads and
1047
* they and their links will be garbage collected as soon as possible.
1048
*/
1049
void unregister_key_type(struct key_type *ktype)
1050
{
1051
struct rb_node *_n;
1052
struct key *key;
1053
1054
down_write(&key_types_sem);
1055
1056
/* withdraw the key type */
1057
list_del_init(&ktype->link);
1058
1059
/* mark all the keys of this type dead */
1060
spin_lock(&key_serial_lock);
1061
1062
for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1063
key = rb_entry(_n, struct key, serial_node);
1064
1065
if (key->type == ktype) {
1066
key->type = &key_type_dead;
1067
set_bit(KEY_FLAG_DEAD, &key->flags);
1068
}
1069
}
1070
1071
spin_unlock(&key_serial_lock);
1072
1073
/* make sure everyone revalidates their keys */
1074
synchronize_rcu();
1075
1076
/* we should now be able to destroy the payloads of all the keys of
1077
* this type with impunity */
1078
spin_lock(&key_serial_lock);
1079
1080
for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1081
key = rb_entry(_n, struct key, serial_node);
1082
1083
if (key->type == ktype) {
1084
if (ktype->destroy)
1085
ktype->destroy(key);
1086
memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
1087
}
1088
}
1089
1090
spin_unlock(&key_serial_lock);
1091
up_write(&key_types_sem);
1092
1093
key_schedule_gc(0);
1094
}
1095
EXPORT_SYMBOL(unregister_key_type);
1096
1097
/*
1098
* Initialise the key management state.
1099
*/
1100
void __init key_init(void)
1101
{
1102
/* allocate a slab in which we can store keys */
1103
key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1104
0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1105
1106
/* add the special key types */
1107
list_add_tail(&key_type_keyring.link, &key_types_list);
1108
list_add_tail(&key_type_dead.link, &key_types_list);
1109
list_add_tail(&key_type_user.link, &key_types_list);
1110
1111
/* record the root user tracking */
1112
rb_link_node(&root_key_user.node,
1113
NULL,
1114
&key_user_tree.rb_node);
1115
1116
rb_insert_color(&root_key_user.node,
1117
&key_user_tree);
1118
}
1119
1120