Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/security/keys/keyring.c
10814 views
1
/* Keyring handling
2
*
3
* Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved.
4
* Written by David Howells ([email protected])
5
*
6
* This program is free software; you can redistribute it and/or
7
* modify it under the terms of the GNU General Public License
8
* as published by the Free Software Foundation; either version
9
* 2 of the License, or (at your option) any later version.
10
*/
11
12
#include <linux/module.h>
13
#include <linux/init.h>
14
#include <linux/sched.h>
15
#include <linux/slab.h>
16
#include <linux/security.h>
17
#include <linux/seq_file.h>
18
#include <linux/err.h>
19
#include <keys/keyring-type.h>
20
#include <linux/uaccess.h>
21
#include "internal.h"
22
23
#define rcu_dereference_locked_keyring(keyring) \
24
(rcu_dereference_protected( \
25
(keyring)->payload.subscriptions, \
26
rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem)))
27
28
#define KEY_LINK_FIXQUOTA 1UL
29
30
/*
31
* When plumbing the depths of the key tree, this sets a hard limit
32
* set on how deep we're willing to go.
33
*/
34
#define KEYRING_SEARCH_MAX_DEPTH 6
35
36
/*
37
* We keep all named keyrings in a hash to speed looking them up.
38
*/
39
#define KEYRING_NAME_HASH_SIZE (1 << 5)
40
41
static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
42
static DEFINE_RWLOCK(keyring_name_lock);
43
44
static inline unsigned keyring_hash(const char *desc)
45
{
46
unsigned bucket = 0;
47
48
for (; *desc; desc++)
49
bucket += (unsigned char)*desc;
50
51
return bucket & (KEYRING_NAME_HASH_SIZE - 1);
52
}
53
54
/*
55
* The keyring key type definition. Keyrings are simply keys of this type and
56
* can be treated as ordinary keys in addition to having their own special
57
* operations.
58
*/
59
static int keyring_instantiate(struct key *keyring,
60
const void *data, size_t datalen);
61
static int keyring_match(const struct key *keyring, const void *criterion);
62
static void keyring_revoke(struct key *keyring);
63
static void keyring_destroy(struct key *keyring);
64
static void keyring_describe(const struct key *keyring, struct seq_file *m);
65
static long keyring_read(const struct key *keyring,
66
char __user *buffer, size_t buflen);
67
68
struct key_type key_type_keyring = {
69
.name = "keyring",
70
.def_datalen = sizeof(struct keyring_list),
71
.instantiate = keyring_instantiate,
72
.match = keyring_match,
73
.revoke = keyring_revoke,
74
.destroy = keyring_destroy,
75
.describe = keyring_describe,
76
.read = keyring_read,
77
};
78
EXPORT_SYMBOL(key_type_keyring);
79
80
/*
81
* Semaphore to serialise link/link calls to prevent two link calls in parallel
82
* introducing a cycle.
83
*/
84
static DECLARE_RWSEM(keyring_serialise_link_sem);
85
86
/*
87
* Publish the name of a keyring so that it can be found by name (if it has
88
* one).
89
*/
90
static void keyring_publish_name(struct key *keyring)
91
{
92
int bucket;
93
94
if (keyring->description) {
95
bucket = keyring_hash(keyring->description);
96
97
write_lock(&keyring_name_lock);
98
99
if (!keyring_name_hash[bucket].next)
100
INIT_LIST_HEAD(&keyring_name_hash[bucket]);
101
102
list_add_tail(&keyring->type_data.link,
103
&keyring_name_hash[bucket]);
104
105
write_unlock(&keyring_name_lock);
106
}
107
}
108
109
/*
110
* Initialise a keyring.
111
*
112
* Returns 0 on success, -EINVAL if given any data.
113
*/
114
static int keyring_instantiate(struct key *keyring,
115
const void *data, size_t datalen)
116
{
117
int ret;
118
119
ret = -EINVAL;
120
if (datalen == 0) {
121
/* make the keyring available by name if it has one */
122
keyring_publish_name(keyring);
123
ret = 0;
124
}
125
126
return ret;
127
}
128
129
/*
130
* Match keyrings on their name
131
*/
132
static int keyring_match(const struct key *keyring, const void *description)
133
{
134
return keyring->description &&
135
strcmp(keyring->description, description) == 0;
136
}
137
138
/*
139
* Clean up a keyring when it is destroyed. Unpublish its name if it had one
140
* and dispose of its data.
141
*/
142
static void keyring_destroy(struct key *keyring)
143
{
144
struct keyring_list *klist;
145
int loop;
146
147
if (keyring->description) {
148
write_lock(&keyring_name_lock);
149
150
if (keyring->type_data.link.next != NULL &&
151
!list_empty(&keyring->type_data.link))
152
list_del(&keyring->type_data.link);
153
154
write_unlock(&keyring_name_lock);
155
}
156
157
klist = rcu_dereference_check(keyring->payload.subscriptions,
158
rcu_read_lock_held() ||
159
atomic_read(&keyring->usage) == 0);
160
if (klist) {
161
for (loop = klist->nkeys - 1; loop >= 0; loop--)
162
key_put(klist->keys[loop]);
163
kfree(klist);
164
}
165
}
166
167
/*
168
* Describe a keyring for /proc.
169
*/
170
static void keyring_describe(const struct key *keyring, struct seq_file *m)
171
{
172
struct keyring_list *klist;
173
174
if (keyring->description)
175
seq_puts(m, keyring->description);
176
else
177
seq_puts(m, "[anon]");
178
179
if (key_is_instantiated(keyring)) {
180
rcu_read_lock();
181
klist = rcu_dereference(keyring->payload.subscriptions);
182
if (klist)
183
seq_printf(m, ": %u/%u", klist->nkeys, klist->maxkeys);
184
else
185
seq_puts(m, ": empty");
186
rcu_read_unlock();
187
}
188
}
189
190
/*
191
* Read a list of key IDs from the keyring's contents in binary form
192
*
193
* The keyring's semaphore is read-locked by the caller.
194
*/
195
static long keyring_read(const struct key *keyring,
196
char __user *buffer, size_t buflen)
197
{
198
struct keyring_list *klist;
199
struct key *key;
200
size_t qty, tmp;
201
int loop, ret;
202
203
ret = 0;
204
klist = rcu_dereference_locked_keyring(keyring);
205
if (klist) {
206
/* calculate how much data we could return */
207
qty = klist->nkeys * sizeof(key_serial_t);
208
209
if (buffer && buflen > 0) {
210
if (buflen > qty)
211
buflen = qty;
212
213
/* copy the IDs of the subscribed keys into the
214
* buffer */
215
ret = -EFAULT;
216
217
for (loop = 0; loop < klist->nkeys; loop++) {
218
key = klist->keys[loop];
219
220
tmp = sizeof(key_serial_t);
221
if (tmp > buflen)
222
tmp = buflen;
223
224
if (copy_to_user(buffer,
225
&key->serial,
226
tmp) != 0)
227
goto error;
228
229
buflen -= tmp;
230
if (buflen == 0)
231
break;
232
buffer += tmp;
233
}
234
}
235
236
ret = qty;
237
}
238
239
error:
240
return ret;
241
}
242
243
/*
244
* Allocate a keyring and link into the destination keyring.
245
*/
246
struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid,
247
const struct cred *cred, unsigned long flags,
248
struct key *dest)
249
{
250
struct key *keyring;
251
int ret;
252
253
keyring = key_alloc(&key_type_keyring, description,
254
uid, gid, cred,
255
(KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_ALL,
256
flags);
257
258
if (!IS_ERR(keyring)) {
259
ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
260
if (ret < 0) {
261
key_put(keyring);
262
keyring = ERR_PTR(ret);
263
}
264
}
265
266
return keyring;
267
}
268
269
/**
270
* keyring_search_aux - Search a keyring tree for a key matching some criteria
271
* @keyring_ref: A pointer to the keyring with possession indicator.
272
* @cred: The credentials to use for permissions checks.
273
* @type: The type of key to search for.
274
* @description: Parameter for @match.
275
* @match: Function to rule on whether or not a key is the one required.
276
* @no_state_check: Don't check if a matching key is bad
277
*
278
* Search the supplied keyring tree for a key that matches the criteria given.
279
* The root keyring and any linked keyrings must grant Search permission to the
280
* caller to be searchable and keys can only be found if they too grant Search
281
* to the caller. The possession flag on the root keyring pointer controls use
282
* of the possessor bits in permissions checking of the entire tree. In
283
* addition, the LSM gets to forbid keyring searches and key matches.
284
*
285
* The search is performed as a breadth-then-depth search up to the prescribed
286
* limit (KEYRING_SEARCH_MAX_DEPTH).
287
*
288
* Keys are matched to the type provided and are then filtered by the match
289
* function, which is given the description to use in any way it sees fit. The
290
* match function may use any attributes of a key that it wishes to to
291
* determine the match. Normally the match function from the key type would be
292
* used.
293
*
294
* RCU is used to prevent the keyring key lists from disappearing without the
295
* need to take lots of locks.
296
*
297
* Returns a pointer to the found key and increments the key usage count if
298
* successful; -EAGAIN if no matching keys were found, or if expired or revoked
299
* keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
300
* specified keyring wasn't a keyring.
301
*
302
* In the case of a successful return, the possession attribute from
303
* @keyring_ref is propagated to the returned key reference.
304
*/
305
key_ref_t keyring_search_aux(key_ref_t keyring_ref,
306
const struct cred *cred,
307
struct key_type *type,
308
const void *description,
309
key_match_func_t match,
310
bool no_state_check)
311
{
312
struct {
313
struct keyring_list *keylist;
314
int kix;
315
} stack[KEYRING_SEARCH_MAX_DEPTH];
316
317
struct keyring_list *keylist;
318
struct timespec now;
319
unsigned long possessed, kflags;
320
struct key *keyring, *key;
321
key_ref_t key_ref;
322
long err;
323
int sp, kix;
324
325
keyring = key_ref_to_ptr(keyring_ref);
326
possessed = is_key_possessed(keyring_ref);
327
key_check(keyring);
328
329
/* top keyring must have search permission to begin the search */
330
err = key_task_permission(keyring_ref, cred, KEY_SEARCH);
331
if (err < 0) {
332
key_ref = ERR_PTR(err);
333
goto error;
334
}
335
336
key_ref = ERR_PTR(-ENOTDIR);
337
if (keyring->type != &key_type_keyring)
338
goto error;
339
340
rcu_read_lock();
341
342
now = current_kernel_time();
343
err = -EAGAIN;
344
sp = 0;
345
346
/* firstly we should check to see if this top-level keyring is what we
347
* are looking for */
348
key_ref = ERR_PTR(-EAGAIN);
349
kflags = keyring->flags;
350
if (keyring->type == type && match(keyring, description)) {
351
key = keyring;
352
if (no_state_check)
353
goto found;
354
355
/* check it isn't negative and hasn't expired or been
356
* revoked */
357
if (kflags & (1 << KEY_FLAG_REVOKED))
358
goto error_2;
359
if (key->expiry && now.tv_sec >= key->expiry)
360
goto error_2;
361
key_ref = ERR_PTR(key->type_data.reject_error);
362
if (kflags & (1 << KEY_FLAG_NEGATIVE))
363
goto error_2;
364
goto found;
365
}
366
367
/* otherwise, the top keyring must not be revoked, expired, or
368
* negatively instantiated if we are to search it */
369
key_ref = ERR_PTR(-EAGAIN);
370
if (kflags & ((1 << KEY_FLAG_REVOKED) | (1 << KEY_FLAG_NEGATIVE)) ||
371
(keyring->expiry && now.tv_sec >= keyring->expiry))
372
goto error_2;
373
374
/* start processing a new keyring */
375
descend:
376
if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
377
goto not_this_keyring;
378
379
keylist = rcu_dereference(keyring->payload.subscriptions);
380
if (!keylist)
381
goto not_this_keyring;
382
383
/* iterate through the keys in this keyring first */
384
for (kix = 0; kix < keylist->nkeys; kix++) {
385
key = keylist->keys[kix];
386
kflags = key->flags;
387
388
/* ignore keys not of this type */
389
if (key->type != type)
390
continue;
391
392
/* skip revoked keys and expired keys */
393
if (!no_state_check) {
394
if (kflags & (1 << KEY_FLAG_REVOKED))
395
continue;
396
397
if (key->expiry && now.tv_sec >= key->expiry)
398
continue;
399
}
400
401
/* keys that don't match */
402
if (!match(key, description))
403
continue;
404
405
/* key must have search permissions */
406
if (key_task_permission(make_key_ref(key, possessed),
407
cred, KEY_SEARCH) < 0)
408
continue;
409
410
if (no_state_check)
411
goto found;
412
413
/* we set a different error code if we pass a negative key */
414
if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
415
err = key->type_data.reject_error;
416
continue;
417
}
418
419
goto found;
420
}
421
422
/* search through the keyrings nested in this one */
423
kix = 0;
424
ascend:
425
for (; kix < keylist->nkeys; kix++) {
426
key = keylist->keys[kix];
427
if (key->type != &key_type_keyring)
428
continue;
429
430
/* recursively search nested keyrings
431
* - only search keyrings for which we have search permission
432
*/
433
if (sp >= KEYRING_SEARCH_MAX_DEPTH)
434
continue;
435
436
if (key_task_permission(make_key_ref(key, possessed),
437
cred, KEY_SEARCH) < 0)
438
continue;
439
440
/* stack the current position */
441
stack[sp].keylist = keylist;
442
stack[sp].kix = kix;
443
sp++;
444
445
/* begin again with the new keyring */
446
keyring = key;
447
goto descend;
448
}
449
450
/* the keyring we're looking at was disqualified or didn't contain a
451
* matching key */
452
not_this_keyring:
453
if (sp > 0) {
454
/* resume the processing of a keyring higher up in the tree */
455
sp--;
456
keylist = stack[sp].keylist;
457
kix = stack[sp].kix + 1;
458
goto ascend;
459
}
460
461
key_ref = ERR_PTR(err);
462
goto error_2;
463
464
/* we found a viable match */
465
found:
466
atomic_inc(&key->usage);
467
key_check(key);
468
key_ref = make_key_ref(key, possessed);
469
error_2:
470
rcu_read_unlock();
471
error:
472
return key_ref;
473
}
474
475
/**
476
* keyring_search - Search the supplied keyring tree for a matching key
477
* @keyring: The root of the keyring tree to be searched.
478
* @type: The type of keyring we want to find.
479
* @description: The name of the keyring we want to find.
480
*
481
* As keyring_search_aux() above, but using the current task's credentials and
482
* type's default matching function.
483
*/
484
key_ref_t keyring_search(key_ref_t keyring,
485
struct key_type *type,
486
const char *description)
487
{
488
if (!type->match)
489
return ERR_PTR(-ENOKEY);
490
491
return keyring_search_aux(keyring, current->cred,
492
type, description, type->match, false);
493
}
494
EXPORT_SYMBOL(keyring_search);
495
496
/*
497
* Search the given keyring only (no recursion).
498
*
499
* The caller must guarantee that the keyring is a keyring and that the
500
* permission is granted to search the keyring as no check is made here.
501
*
502
* RCU is used to make it unnecessary to lock the keyring key list here.
503
*
504
* Returns a pointer to the found key with usage count incremented if
505
* successful and returns -ENOKEY if not found. Revoked keys and keys not
506
* providing the requested permission are skipped over.
507
*
508
* If successful, the possession indicator is propagated from the keyring ref
509
* to the returned key reference.
510
*/
511
key_ref_t __keyring_search_one(key_ref_t keyring_ref,
512
const struct key_type *ktype,
513
const char *description,
514
key_perm_t perm)
515
{
516
struct keyring_list *klist;
517
unsigned long possessed;
518
struct key *keyring, *key;
519
int loop;
520
521
keyring = key_ref_to_ptr(keyring_ref);
522
possessed = is_key_possessed(keyring_ref);
523
524
rcu_read_lock();
525
526
klist = rcu_dereference(keyring->payload.subscriptions);
527
if (klist) {
528
for (loop = 0; loop < klist->nkeys; loop++) {
529
key = klist->keys[loop];
530
531
if (key->type == ktype &&
532
(!key->type->match ||
533
key->type->match(key, description)) &&
534
key_permission(make_key_ref(key, possessed),
535
perm) == 0 &&
536
!test_bit(KEY_FLAG_REVOKED, &key->flags)
537
)
538
goto found;
539
}
540
}
541
542
rcu_read_unlock();
543
return ERR_PTR(-ENOKEY);
544
545
found:
546
atomic_inc(&key->usage);
547
rcu_read_unlock();
548
return make_key_ref(key, possessed);
549
}
550
551
/*
552
* Find a keyring with the specified name.
553
*
554
* All named keyrings in the current user namespace are searched, provided they
555
* grant Search permission directly to the caller (unless this check is
556
* skipped). Keyrings whose usage points have reached zero or who have been
557
* revoked are skipped.
558
*
559
* Returns a pointer to the keyring with the keyring's refcount having being
560
* incremented on success. -ENOKEY is returned if a key could not be found.
561
*/
562
struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
563
{
564
struct key *keyring;
565
int bucket;
566
567
if (!name)
568
return ERR_PTR(-EINVAL);
569
570
bucket = keyring_hash(name);
571
572
read_lock(&keyring_name_lock);
573
574
if (keyring_name_hash[bucket].next) {
575
/* search this hash bucket for a keyring with a matching name
576
* that's readable and that hasn't been revoked */
577
list_for_each_entry(keyring,
578
&keyring_name_hash[bucket],
579
type_data.link
580
) {
581
if (keyring->user->user_ns != current_user_ns())
582
continue;
583
584
if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
585
continue;
586
587
if (strcmp(keyring->description, name) != 0)
588
continue;
589
590
if (!skip_perm_check &&
591
key_permission(make_key_ref(keyring, 0),
592
KEY_SEARCH) < 0)
593
continue;
594
595
/* we've got a match but we might end up racing with
596
* key_cleanup() if the keyring is currently 'dead'
597
* (ie. it has a zero usage count) */
598
if (!atomic_inc_not_zero(&keyring->usage))
599
continue;
600
goto out;
601
}
602
}
603
604
keyring = ERR_PTR(-ENOKEY);
605
out:
606
read_unlock(&keyring_name_lock);
607
return keyring;
608
}
609
610
/*
611
* See if a cycle will will be created by inserting acyclic tree B in acyclic
612
* tree A at the topmost level (ie: as a direct child of A).
613
*
614
* Since we are adding B to A at the top level, checking for cycles should just
615
* be a matter of seeing if node A is somewhere in tree B.
616
*/
617
static int keyring_detect_cycle(struct key *A, struct key *B)
618
{
619
struct {
620
struct keyring_list *keylist;
621
int kix;
622
} stack[KEYRING_SEARCH_MAX_DEPTH];
623
624
struct keyring_list *keylist;
625
struct key *subtree, *key;
626
int sp, kix, ret;
627
628
rcu_read_lock();
629
630
ret = -EDEADLK;
631
if (A == B)
632
goto cycle_detected;
633
634
subtree = B;
635
sp = 0;
636
637
/* start processing a new keyring */
638
descend:
639
if (test_bit(KEY_FLAG_REVOKED, &subtree->flags))
640
goto not_this_keyring;
641
642
keylist = rcu_dereference(subtree->payload.subscriptions);
643
if (!keylist)
644
goto not_this_keyring;
645
kix = 0;
646
647
ascend:
648
/* iterate through the remaining keys in this keyring */
649
for (; kix < keylist->nkeys; kix++) {
650
key = keylist->keys[kix];
651
652
if (key == A)
653
goto cycle_detected;
654
655
/* recursively check nested keyrings */
656
if (key->type == &key_type_keyring) {
657
if (sp >= KEYRING_SEARCH_MAX_DEPTH)
658
goto too_deep;
659
660
/* stack the current position */
661
stack[sp].keylist = keylist;
662
stack[sp].kix = kix;
663
sp++;
664
665
/* begin again with the new keyring */
666
subtree = key;
667
goto descend;
668
}
669
}
670
671
/* the keyring we're looking at was disqualified or didn't contain a
672
* matching key */
673
not_this_keyring:
674
if (sp > 0) {
675
/* resume the checking of a keyring higher up in the tree */
676
sp--;
677
keylist = stack[sp].keylist;
678
kix = stack[sp].kix + 1;
679
goto ascend;
680
}
681
682
ret = 0; /* no cycles detected */
683
684
error:
685
rcu_read_unlock();
686
return ret;
687
688
too_deep:
689
ret = -ELOOP;
690
goto error;
691
692
cycle_detected:
693
ret = -EDEADLK;
694
goto error;
695
}
696
697
/*
698
* Dispose of a keyring list after the RCU grace period, freeing the unlinked
699
* key
700
*/
701
static void keyring_unlink_rcu_disposal(struct rcu_head *rcu)
702
{
703
struct keyring_list *klist =
704
container_of(rcu, struct keyring_list, rcu);
705
706
if (klist->delkey != USHRT_MAX)
707
key_put(klist->keys[klist->delkey]);
708
kfree(klist);
709
}
710
711
/*
712
* Preallocate memory so that a key can be linked into to a keyring.
713
*/
714
int __key_link_begin(struct key *keyring, const struct key_type *type,
715
const char *description, unsigned long *_prealloc)
716
__acquires(&keyring->sem)
717
{
718
struct keyring_list *klist, *nklist;
719
unsigned long prealloc;
720
unsigned max;
721
size_t size;
722
int loop, ret;
723
724
kenter("%d,%s,%s,", key_serial(keyring), type->name, description);
725
726
if (keyring->type != &key_type_keyring)
727
return -ENOTDIR;
728
729
down_write(&keyring->sem);
730
731
ret = -EKEYREVOKED;
732
if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
733
goto error_krsem;
734
735
/* serialise link/link calls to prevent parallel calls causing a cycle
736
* when linking two keyring in opposite orders */
737
if (type == &key_type_keyring)
738
down_write(&keyring_serialise_link_sem);
739
740
klist = rcu_dereference_locked_keyring(keyring);
741
742
/* see if there's a matching key we can displace */
743
if (klist && klist->nkeys > 0) {
744
for (loop = klist->nkeys - 1; loop >= 0; loop--) {
745
if (klist->keys[loop]->type == type &&
746
strcmp(klist->keys[loop]->description,
747
description) == 0
748
) {
749
/* found a match - we'll replace this one with
750
* the new key */
751
size = sizeof(struct key *) * klist->maxkeys;
752
size += sizeof(*klist);
753
BUG_ON(size > PAGE_SIZE);
754
755
ret = -ENOMEM;
756
nklist = kmemdup(klist, size, GFP_KERNEL);
757
if (!nklist)
758
goto error_sem;
759
760
/* note replacement slot */
761
klist->delkey = nklist->delkey = loop;
762
prealloc = (unsigned long)nklist;
763
goto done;
764
}
765
}
766
}
767
768
/* check that we aren't going to overrun the user's quota */
769
ret = key_payload_reserve(keyring,
770
keyring->datalen + KEYQUOTA_LINK_BYTES);
771
if (ret < 0)
772
goto error_sem;
773
774
if (klist && klist->nkeys < klist->maxkeys) {
775
/* there's sufficient slack space to append directly */
776
nklist = NULL;
777
prealloc = KEY_LINK_FIXQUOTA;
778
} else {
779
/* grow the key list */
780
max = 4;
781
if (klist)
782
max += klist->maxkeys;
783
784
ret = -ENFILE;
785
if (max > USHRT_MAX - 1)
786
goto error_quota;
787
size = sizeof(*klist) + sizeof(struct key *) * max;
788
if (size > PAGE_SIZE)
789
goto error_quota;
790
791
ret = -ENOMEM;
792
nklist = kmalloc(size, GFP_KERNEL);
793
if (!nklist)
794
goto error_quota;
795
796
nklist->maxkeys = max;
797
if (klist) {
798
memcpy(nklist->keys, klist->keys,
799
sizeof(struct key *) * klist->nkeys);
800
nklist->delkey = klist->nkeys;
801
nklist->nkeys = klist->nkeys + 1;
802
klist->delkey = USHRT_MAX;
803
} else {
804
nklist->nkeys = 1;
805
nklist->delkey = 0;
806
}
807
808
/* add the key into the new space */
809
nklist->keys[nklist->delkey] = NULL;
810
}
811
812
prealloc = (unsigned long)nklist | KEY_LINK_FIXQUOTA;
813
done:
814
*_prealloc = prealloc;
815
kleave(" = 0");
816
return 0;
817
818
error_quota:
819
/* undo the quota changes */
820
key_payload_reserve(keyring,
821
keyring->datalen - KEYQUOTA_LINK_BYTES);
822
error_sem:
823
if (type == &key_type_keyring)
824
up_write(&keyring_serialise_link_sem);
825
error_krsem:
826
up_write(&keyring->sem);
827
kleave(" = %d", ret);
828
return ret;
829
}
830
831
/*
832
* Check already instantiated keys aren't going to be a problem.
833
*
834
* The caller must have called __key_link_begin(). Don't need to call this for
835
* keys that were created since __key_link_begin() was called.
836
*/
837
int __key_link_check_live_key(struct key *keyring, struct key *key)
838
{
839
if (key->type == &key_type_keyring)
840
/* check that we aren't going to create a cycle by linking one
841
* keyring to another */
842
return keyring_detect_cycle(keyring, key);
843
return 0;
844
}
845
846
/*
847
* Link a key into to a keyring.
848
*
849
* Must be called with __key_link_begin() having being called. Discards any
850
* already extant link to matching key if there is one, so that each keyring
851
* holds at most one link to any given key of a particular type+description
852
* combination.
853
*/
854
void __key_link(struct key *keyring, struct key *key,
855
unsigned long *_prealloc)
856
{
857
struct keyring_list *klist, *nklist;
858
859
nklist = (struct keyring_list *)(*_prealloc & ~KEY_LINK_FIXQUOTA);
860
*_prealloc = 0;
861
862
kenter("%d,%d,%p", keyring->serial, key->serial, nklist);
863
864
klist = rcu_dereference_protected(keyring->payload.subscriptions,
865
rwsem_is_locked(&keyring->sem));
866
867
atomic_inc(&key->usage);
868
869
/* there's a matching key we can displace or an empty slot in a newly
870
* allocated list we can fill */
871
if (nklist) {
872
kdebug("replace %hu/%hu/%hu",
873
nklist->delkey, nklist->nkeys, nklist->maxkeys);
874
875
nklist->keys[nklist->delkey] = key;
876
877
rcu_assign_pointer(keyring->payload.subscriptions, nklist);
878
879
/* dispose of the old keyring list and, if there was one, the
880
* displaced key */
881
if (klist) {
882
kdebug("dispose %hu/%hu/%hu",
883
klist->delkey, klist->nkeys, klist->maxkeys);
884
call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
885
}
886
} else {
887
/* there's sufficient slack space to append directly */
888
klist->keys[klist->nkeys] = key;
889
smp_wmb();
890
klist->nkeys++;
891
}
892
}
893
894
/*
895
* Finish linking a key into to a keyring.
896
*
897
* Must be called with __key_link_begin() having being called.
898
*/
899
void __key_link_end(struct key *keyring, struct key_type *type,
900
unsigned long prealloc)
901
__releases(&keyring->sem)
902
{
903
BUG_ON(type == NULL);
904
BUG_ON(type->name == NULL);
905
kenter("%d,%s,%lx", keyring->serial, type->name, prealloc);
906
907
if (type == &key_type_keyring)
908
up_write(&keyring_serialise_link_sem);
909
910
if (prealloc) {
911
if (prealloc & KEY_LINK_FIXQUOTA)
912
key_payload_reserve(keyring,
913
keyring->datalen -
914
KEYQUOTA_LINK_BYTES);
915
kfree((struct keyring_list *)(prealloc & ~KEY_LINK_FIXQUOTA));
916
}
917
up_write(&keyring->sem);
918
}
919
920
/**
921
* key_link - Link a key to a keyring
922
* @keyring: The keyring to make the link in.
923
* @key: The key to link to.
924
*
925
* Make a link in a keyring to a key, such that the keyring holds a reference
926
* on that key and the key can potentially be found by searching that keyring.
927
*
928
* This function will write-lock the keyring's semaphore and will consume some
929
* of the user's key data quota to hold the link.
930
*
931
* Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
932
* -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
933
* full, -EDQUOT if there is insufficient key data quota remaining to add
934
* another link or -ENOMEM if there's insufficient memory.
935
*
936
* It is assumed that the caller has checked that it is permitted for a link to
937
* be made (the keyring should have Write permission and the key Link
938
* permission).
939
*/
940
int key_link(struct key *keyring, struct key *key)
941
{
942
unsigned long prealloc;
943
int ret;
944
945
key_check(keyring);
946
key_check(key);
947
948
ret = __key_link_begin(keyring, key->type, key->description, &prealloc);
949
if (ret == 0) {
950
ret = __key_link_check_live_key(keyring, key);
951
if (ret == 0)
952
__key_link(keyring, key, &prealloc);
953
__key_link_end(keyring, key->type, prealloc);
954
}
955
956
return ret;
957
}
958
EXPORT_SYMBOL(key_link);
959
960
/**
961
* key_unlink - Unlink the first link to a key from a keyring.
962
* @keyring: The keyring to remove the link from.
963
* @key: The key the link is to.
964
*
965
* Remove a link from a keyring to a key.
966
*
967
* This function will write-lock the keyring's semaphore.
968
*
969
* Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
970
* the key isn't linked to by the keyring or -ENOMEM if there's insufficient
971
* memory.
972
*
973
* It is assumed that the caller has checked that it is permitted for a link to
974
* be removed (the keyring should have Write permission; no permissions are
975
* required on the key).
976
*/
977
int key_unlink(struct key *keyring, struct key *key)
978
{
979
struct keyring_list *klist, *nklist;
980
int loop, ret;
981
982
key_check(keyring);
983
key_check(key);
984
985
ret = -ENOTDIR;
986
if (keyring->type != &key_type_keyring)
987
goto error;
988
989
down_write(&keyring->sem);
990
991
klist = rcu_dereference_locked_keyring(keyring);
992
if (klist) {
993
/* search the keyring for the key */
994
for (loop = 0; loop < klist->nkeys; loop++)
995
if (klist->keys[loop] == key)
996
goto key_is_present;
997
}
998
999
up_write(&keyring->sem);
1000
ret = -ENOENT;
1001
goto error;
1002
1003
key_is_present:
1004
/* we need to copy the key list for RCU purposes */
1005
nklist = kmalloc(sizeof(*klist) +
1006
sizeof(struct key *) * klist->maxkeys,
1007
GFP_KERNEL);
1008
if (!nklist)
1009
goto nomem;
1010
nklist->maxkeys = klist->maxkeys;
1011
nklist->nkeys = klist->nkeys - 1;
1012
1013
if (loop > 0)
1014
memcpy(&nklist->keys[0],
1015
&klist->keys[0],
1016
loop * sizeof(struct key *));
1017
1018
if (loop < nklist->nkeys)
1019
memcpy(&nklist->keys[loop],
1020
&klist->keys[loop + 1],
1021
(nklist->nkeys - loop) * sizeof(struct key *));
1022
1023
/* adjust the user's quota */
1024
key_payload_reserve(keyring,
1025
keyring->datalen - KEYQUOTA_LINK_BYTES);
1026
1027
rcu_assign_pointer(keyring->payload.subscriptions, nklist);
1028
1029
up_write(&keyring->sem);
1030
1031
/* schedule for later cleanup */
1032
klist->delkey = loop;
1033
call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
1034
1035
ret = 0;
1036
1037
error:
1038
return ret;
1039
nomem:
1040
ret = -ENOMEM;
1041
up_write(&keyring->sem);
1042
goto error;
1043
}
1044
EXPORT_SYMBOL(key_unlink);
1045
1046
/*
1047
* Dispose of a keyring list after the RCU grace period, releasing the keys it
1048
* links to.
1049
*/
1050
static void keyring_clear_rcu_disposal(struct rcu_head *rcu)
1051
{
1052
struct keyring_list *klist;
1053
int loop;
1054
1055
klist = container_of(rcu, struct keyring_list, rcu);
1056
1057
for (loop = klist->nkeys - 1; loop >= 0; loop--)
1058
key_put(klist->keys[loop]);
1059
1060
kfree(klist);
1061
}
1062
1063
/**
1064
* keyring_clear - Clear a keyring
1065
* @keyring: The keyring to clear.
1066
*
1067
* Clear the contents of the specified keyring.
1068
*
1069
* Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1070
*/
1071
int keyring_clear(struct key *keyring)
1072
{
1073
struct keyring_list *klist;
1074
int ret;
1075
1076
ret = -ENOTDIR;
1077
if (keyring->type == &key_type_keyring) {
1078
/* detach the pointer block with the locks held */
1079
down_write(&keyring->sem);
1080
1081
klist = rcu_dereference_locked_keyring(keyring);
1082
if (klist) {
1083
/* adjust the quota */
1084
key_payload_reserve(keyring,
1085
sizeof(struct keyring_list));
1086
1087
rcu_assign_pointer(keyring->payload.subscriptions,
1088
NULL);
1089
}
1090
1091
up_write(&keyring->sem);
1092
1093
/* free the keys after the locks have been dropped */
1094
if (klist)
1095
call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1096
1097
ret = 0;
1098
}
1099
1100
return ret;
1101
}
1102
EXPORT_SYMBOL(keyring_clear);
1103
1104
/*
1105
* Dispose of the links from a revoked keyring.
1106
*
1107
* This is called with the key sem write-locked.
1108
*/
1109
static void keyring_revoke(struct key *keyring)
1110
{
1111
struct keyring_list *klist;
1112
1113
klist = rcu_dereference_locked_keyring(keyring);
1114
1115
/* adjust the quota */
1116
key_payload_reserve(keyring, 0);
1117
1118
if (klist) {
1119
rcu_assign_pointer(keyring->payload.subscriptions, NULL);
1120
call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1121
}
1122
}
1123
1124
/*
1125
* Determine whether a key is dead.
1126
*/
1127
static bool key_is_dead(struct key *key, time_t limit)
1128
{
1129
return test_bit(KEY_FLAG_DEAD, &key->flags) ||
1130
(key->expiry > 0 && key->expiry <= limit);
1131
}
1132
1133
/*
1134
* Collect garbage from the contents of a keyring, replacing the old list with
1135
* a new one with the pointers all shuffled down.
1136
*
1137
* Dead keys are classed as oned that are flagged as being dead or are revoked,
1138
* expired or negative keys that were revoked or expired before the specified
1139
* limit.
1140
*/
1141
void keyring_gc(struct key *keyring, time_t limit)
1142
{
1143
struct keyring_list *klist, *new;
1144
struct key *key;
1145
int loop, keep, max;
1146
1147
kenter("{%x,%s}", key_serial(keyring), keyring->description);
1148
1149
down_write(&keyring->sem);
1150
1151
klist = rcu_dereference_locked_keyring(keyring);
1152
if (!klist)
1153
goto no_klist;
1154
1155
/* work out how many subscriptions we're keeping */
1156
keep = 0;
1157
for (loop = klist->nkeys - 1; loop >= 0; loop--)
1158
if (!key_is_dead(klist->keys[loop], limit))
1159
keep++;
1160
1161
if (keep == klist->nkeys)
1162
goto just_return;
1163
1164
/* allocate a new keyring payload */
1165
max = roundup(keep, 4);
1166
new = kmalloc(sizeof(struct keyring_list) + max * sizeof(struct key *),
1167
GFP_KERNEL);
1168
if (!new)
1169
goto nomem;
1170
new->maxkeys = max;
1171
new->nkeys = 0;
1172
new->delkey = 0;
1173
1174
/* install the live keys
1175
* - must take care as expired keys may be updated back to life
1176
*/
1177
keep = 0;
1178
for (loop = klist->nkeys - 1; loop >= 0; loop--) {
1179
key = klist->keys[loop];
1180
if (!key_is_dead(key, limit)) {
1181
if (keep >= max)
1182
goto discard_new;
1183
new->keys[keep++] = key_get(key);
1184
}
1185
}
1186
new->nkeys = keep;
1187
1188
/* adjust the quota */
1189
key_payload_reserve(keyring,
1190
sizeof(struct keyring_list) +
1191
KEYQUOTA_LINK_BYTES * keep);
1192
1193
if (keep == 0) {
1194
rcu_assign_pointer(keyring->payload.subscriptions, NULL);
1195
kfree(new);
1196
} else {
1197
rcu_assign_pointer(keyring->payload.subscriptions, new);
1198
}
1199
1200
up_write(&keyring->sem);
1201
1202
call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1203
kleave(" [yes]");
1204
return;
1205
1206
discard_new:
1207
new->nkeys = keep;
1208
keyring_clear_rcu_disposal(&new->rcu);
1209
up_write(&keyring->sem);
1210
kleave(" [discard]");
1211
return;
1212
1213
just_return:
1214
up_write(&keyring->sem);
1215
kleave(" [no dead]");
1216
return;
1217
1218
no_klist:
1219
up_write(&keyring->sem);
1220
kleave(" [no_klist]");
1221
return;
1222
1223
nomem:
1224
up_write(&keyring->sem);
1225
kleave(" [oom]");
1226
}
1227
1228