Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/security/keys/trusted.c
10814 views
1
/*
2
* Copyright (C) 2010 IBM Corporation
3
*
4
* Author:
5
* David Safford <[email protected]>
6
*
7
* This program is free software; you can redistribute it and/or modify
8
* it under the terms of the GNU General Public License as published by
9
* the Free Software Foundation, version 2 of the License.
10
*
11
* See Documentation/security/keys-trusted-encrypted.txt
12
*/
13
14
#include <linux/uaccess.h>
15
#include <linux/module.h>
16
#include <linux/init.h>
17
#include <linux/slab.h>
18
#include <linux/parser.h>
19
#include <linux/string.h>
20
#include <linux/err.h>
21
#include <keys/user-type.h>
22
#include <keys/trusted-type.h>
23
#include <linux/key-type.h>
24
#include <linux/rcupdate.h>
25
#include <linux/crypto.h>
26
#include <crypto/hash.h>
27
#include <crypto/sha.h>
28
#include <linux/capability.h>
29
#include <linux/tpm.h>
30
#include <linux/tpm_command.h>
31
32
#include "trusted.h"
33
34
static const char hmac_alg[] = "hmac(sha1)";
35
static const char hash_alg[] = "sha1";
36
37
struct sdesc {
38
struct shash_desc shash;
39
char ctx[];
40
};
41
42
static struct crypto_shash *hashalg;
43
static struct crypto_shash *hmacalg;
44
45
static struct sdesc *init_sdesc(struct crypto_shash *alg)
46
{
47
struct sdesc *sdesc;
48
int size;
49
50
size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
51
sdesc = kmalloc(size, GFP_KERNEL);
52
if (!sdesc)
53
return ERR_PTR(-ENOMEM);
54
sdesc->shash.tfm = alg;
55
sdesc->shash.flags = 0x0;
56
return sdesc;
57
}
58
59
static int TSS_sha1(const unsigned char *data, unsigned int datalen,
60
unsigned char *digest)
61
{
62
struct sdesc *sdesc;
63
int ret;
64
65
sdesc = init_sdesc(hashalg);
66
if (IS_ERR(sdesc)) {
67
pr_info("trusted_key: can't alloc %s\n", hash_alg);
68
return PTR_ERR(sdesc);
69
}
70
71
ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
72
kfree(sdesc);
73
return ret;
74
}
75
76
static int TSS_rawhmac(unsigned char *digest, const unsigned char *key,
77
unsigned int keylen, ...)
78
{
79
struct sdesc *sdesc;
80
va_list argp;
81
unsigned int dlen;
82
unsigned char *data;
83
int ret;
84
85
sdesc = init_sdesc(hmacalg);
86
if (IS_ERR(sdesc)) {
87
pr_info("trusted_key: can't alloc %s\n", hmac_alg);
88
return PTR_ERR(sdesc);
89
}
90
91
ret = crypto_shash_setkey(hmacalg, key, keylen);
92
if (ret < 0)
93
goto out;
94
ret = crypto_shash_init(&sdesc->shash);
95
if (ret < 0)
96
goto out;
97
98
va_start(argp, keylen);
99
for (;;) {
100
dlen = va_arg(argp, unsigned int);
101
if (dlen == 0)
102
break;
103
data = va_arg(argp, unsigned char *);
104
if (data == NULL) {
105
ret = -EINVAL;
106
break;
107
}
108
ret = crypto_shash_update(&sdesc->shash, data, dlen);
109
if (ret < 0)
110
break;
111
}
112
va_end(argp);
113
if (!ret)
114
ret = crypto_shash_final(&sdesc->shash, digest);
115
out:
116
kfree(sdesc);
117
return ret;
118
}
119
120
/*
121
* calculate authorization info fields to send to TPM
122
*/
123
static int TSS_authhmac(unsigned char *digest, const unsigned char *key,
124
unsigned int keylen, unsigned char *h1,
125
unsigned char *h2, unsigned char h3, ...)
126
{
127
unsigned char paramdigest[SHA1_DIGEST_SIZE];
128
struct sdesc *sdesc;
129
unsigned int dlen;
130
unsigned char *data;
131
unsigned char c;
132
int ret;
133
va_list argp;
134
135
sdesc = init_sdesc(hashalg);
136
if (IS_ERR(sdesc)) {
137
pr_info("trusted_key: can't alloc %s\n", hash_alg);
138
return PTR_ERR(sdesc);
139
}
140
141
c = h3;
142
ret = crypto_shash_init(&sdesc->shash);
143
if (ret < 0)
144
goto out;
145
va_start(argp, h3);
146
for (;;) {
147
dlen = va_arg(argp, unsigned int);
148
if (dlen == 0)
149
break;
150
data = va_arg(argp, unsigned char *);
151
if (!data) {
152
ret = -EINVAL;
153
break;
154
}
155
ret = crypto_shash_update(&sdesc->shash, data, dlen);
156
if (ret < 0)
157
break;
158
}
159
va_end(argp);
160
if (!ret)
161
ret = crypto_shash_final(&sdesc->shash, paramdigest);
162
if (!ret)
163
ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE,
164
paramdigest, TPM_NONCE_SIZE, h1,
165
TPM_NONCE_SIZE, h2, 1, &c, 0, 0);
166
out:
167
kfree(sdesc);
168
return ret;
169
}
170
171
/*
172
* verify the AUTH1_COMMAND (Seal) result from TPM
173
*/
174
static int TSS_checkhmac1(unsigned char *buffer,
175
const uint32_t command,
176
const unsigned char *ononce,
177
const unsigned char *key,
178
unsigned int keylen, ...)
179
{
180
uint32_t bufsize;
181
uint16_t tag;
182
uint32_t ordinal;
183
uint32_t result;
184
unsigned char *enonce;
185
unsigned char *continueflag;
186
unsigned char *authdata;
187
unsigned char testhmac[SHA1_DIGEST_SIZE];
188
unsigned char paramdigest[SHA1_DIGEST_SIZE];
189
struct sdesc *sdesc;
190
unsigned int dlen;
191
unsigned int dpos;
192
va_list argp;
193
int ret;
194
195
bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
196
tag = LOAD16(buffer, 0);
197
ordinal = command;
198
result = LOAD32N(buffer, TPM_RETURN_OFFSET);
199
if (tag == TPM_TAG_RSP_COMMAND)
200
return 0;
201
if (tag != TPM_TAG_RSP_AUTH1_COMMAND)
202
return -EINVAL;
203
authdata = buffer + bufsize - SHA1_DIGEST_SIZE;
204
continueflag = authdata - 1;
205
enonce = continueflag - TPM_NONCE_SIZE;
206
207
sdesc = init_sdesc(hashalg);
208
if (IS_ERR(sdesc)) {
209
pr_info("trusted_key: can't alloc %s\n", hash_alg);
210
return PTR_ERR(sdesc);
211
}
212
ret = crypto_shash_init(&sdesc->shash);
213
if (ret < 0)
214
goto out;
215
ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
216
sizeof result);
217
if (ret < 0)
218
goto out;
219
ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
220
sizeof ordinal);
221
if (ret < 0)
222
goto out;
223
va_start(argp, keylen);
224
for (;;) {
225
dlen = va_arg(argp, unsigned int);
226
if (dlen == 0)
227
break;
228
dpos = va_arg(argp, unsigned int);
229
ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
230
if (ret < 0)
231
break;
232
}
233
va_end(argp);
234
if (!ret)
235
ret = crypto_shash_final(&sdesc->shash, paramdigest);
236
if (ret < 0)
237
goto out;
238
239
ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest,
240
TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce,
241
1, continueflag, 0, 0);
242
if (ret < 0)
243
goto out;
244
245
if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE))
246
ret = -EINVAL;
247
out:
248
kfree(sdesc);
249
return ret;
250
}
251
252
/*
253
* verify the AUTH2_COMMAND (unseal) result from TPM
254
*/
255
static int TSS_checkhmac2(unsigned char *buffer,
256
const uint32_t command,
257
const unsigned char *ononce,
258
const unsigned char *key1,
259
unsigned int keylen1,
260
const unsigned char *key2,
261
unsigned int keylen2, ...)
262
{
263
uint32_t bufsize;
264
uint16_t tag;
265
uint32_t ordinal;
266
uint32_t result;
267
unsigned char *enonce1;
268
unsigned char *continueflag1;
269
unsigned char *authdata1;
270
unsigned char *enonce2;
271
unsigned char *continueflag2;
272
unsigned char *authdata2;
273
unsigned char testhmac1[SHA1_DIGEST_SIZE];
274
unsigned char testhmac2[SHA1_DIGEST_SIZE];
275
unsigned char paramdigest[SHA1_DIGEST_SIZE];
276
struct sdesc *sdesc;
277
unsigned int dlen;
278
unsigned int dpos;
279
va_list argp;
280
int ret;
281
282
bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
283
tag = LOAD16(buffer, 0);
284
ordinal = command;
285
result = LOAD32N(buffer, TPM_RETURN_OFFSET);
286
287
if (tag == TPM_TAG_RSP_COMMAND)
288
return 0;
289
if (tag != TPM_TAG_RSP_AUTH2_COMMAND)
290
return -EINVAL;
291
authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1
292
+ SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE);
293
authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE);
294
continueflag1 = authdata1 - 1;
295
continueflag2 = authdata2 - 1;
296
enonce1 = continueflag1 - TPM_NONCE_SIZE;
297
enonce2 = continueflag2 - TPM_NONCE_SIZE;
298
299
sdesc = init_sdesc(hashalg);
300
if (IS_ERR(sdesc)) {
301
pr_info("trusted_key: can't alloc %s\n", hash_alg);
302
return PTR_ERR(sdesc);
303
}
304
ret = crypto_shash_init(&sdesc->shash);
305
if (ret < 0)
306
goto out;
307
ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
308
sizeof result);
309
if (ret < 0)
310
goto out;
311
ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
312
sizeof ordinal);
313
if (ret < 0)
314
goto out;
315
316
va_start(argp, keylen2);
317
for (;;) {
318
dlen = va_arg(argp, unsigned int);
319
if (dlen == 0)
320
break;
321
dpos = va_arg(argp, unsigned int);
322
ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
323
if (ret < 0)
324
break;
325
}
326
va_end(argp);
327
if (!ret)
328
ret = crypto_shash_final(&sdesc->shash, paramdigest);
329
if (ret < 0)
330
goto out;
331
332
ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE,
333
paramdigest, TPM_NONCE_SIZE, enonce1,
334
TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0);
335
if (ret < 0)
336
goto out;
337
if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) {
338
ret = -EINVAL;
339
goto out;
340
}
341
ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE,
342
paramdigest, TPM_NONCE_SIZE, enonce2,
343
TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0);
344
if (ret < 0)
345
goto out;
346
if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE))
347
ret = -EINVAL;
348
out:
349
kfree(sdesc);
350
return ret;
351
}
352
353
/*
354
* For key specific tpm requests, we will generate and send our
355
* own TPM command packets using the drivers send function.
356
*/
357
static int trusted_tpm_send(const u32 chip_num, unsigned char *cmd,
358
size_t buflen)
359
{
360
int rc;
361
362
dump_tpm_buf(cmd);
363
rc = tpm_send(chip_num, cmd, buflen);
364
dump_tpm_buf(cmd);
365
if (rc > 0)
366
/* Can't return positive return codes values to keyctl */
367
rc = -EPERM;
368
return rc;
369
}
370
371
/*
372
* get a random value from TPM
373
*/
374
static int tpm_get_random(struct tpm_buf *tb, unsigned char *buf, uint32_t len)
375
{
376
int ret;
377
378
INIT_BUF(tb);
379
store16(tb, TPM_TAG_RQU_COMMAND);
380
store32(tb, TPM_GETRANDOM_SIZE);
381
store32(tb, TPM_ORD_GETRANDOM);
382
store32(tb, len);
383
ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, sizeof tb->data);
384
if (!ret)
385
memcpy(buf, tb->data + TPM_GETRANDOM_SIZE, len);
386
return ret;
387
}
388
389
static int my_get_random(unsigned char *buf, int len)
390
{
391
struct tpm_buf *tb;
392
int ret;
393
394
tb = kmalloc(sizeof *tb, GFP_KERNEL);
395
if (!tb)
396
return -ENOMEM;
397
ret = tpm_get_random(tb, buf, len);
398
399
kfree(tb);
400
return ret;
401
}
402
403
/*
404
* Lock a trusted key, by extending a selected PCR.
405
*
406
* Prevents a trusted key that is sealed to PCRs from being accessed.
407
* This uses the tpm driver's extend function.
408
*/
409
static int pcrlock(const int pcrnum)
410
{
411
unsigned char hash[SHA1_DIGEST_SIZE];
412
int ret;
413
414
if (!capable(CAP_SYS_ADMIN))
415
return -EPERM;
416
ret = my_get_random(hash, SHA1_DIGEST_SIZE);
417
if (ret < 0)
418
return ret;
419
return tpm_pcr_extend(TPM_ANY_NUM, pcrnum, hash) ? -EINVAL : 0;
420
}
421
422
/*
423
* Create an object specific authorisation protocol (OSAP) session
424
*/
425
static int osap(struct tpm_buf *tb, struct osapsess *s,
426
const unsigned char *key, uint16_t type, uint32_t handle)
427
{
428
unsigned char enonce[TPM_NONCE_SIZE];
429
unsigned char ononce[TPM_NONCE_SIZE];
430
int ret;
431
432
ret = tpm_get_random(tb, ononce, TPM_NONCE_SIZE);
433
if (ret < 0)
434
return ret;
435
436
INIT_BUF(tb);
437
store16(tb, TPM_TAG_RQU_COMMAND);
438
store32(tb, TPM_OSAP_SIZE);
439
store32(tb, TPM_ORD_OSAP);
440
store16(tb, type);
441
store32(tb, handle);
442
storebytes(tb, ononce, TPM_NONCE_SIZE);
443
444
ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
445
if (ret < 0)
446
return ret;
447
448
s->handle = LOAD32(tb->data, TPM_DATA_OFFSET);
449
memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]),
450
TPM_NONCE_SIZE);
451
memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) +
452
TPM_NONCE_SIZE]), TPM_NONCE_SIZE);
453
return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE,
454
enonce, TPM_NONCE_SIZE, ononce, 0, 0);
455
}
456
457
/*
458
* Create an object independent authorisation protocol (oiap) session
459
*/
460
static int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce)
461
{
462
int ret;
463
464
INIT_BUF(tb);
465
store16(tb, TPM_TAG_RQU_COMMAND);
466
store32(tb, TPM_OIAP_SIZE);
467
store32(tb, TPM_ORD_OIAP);
468
ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
469
if (ret < 0)
470
return ret;
471
472
*handle = LOAD32(tb->data, TPM_DATA_OFFSET);
473
memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)],
474
TPM_NONCE_SIZE);
475
return 0;
476
}
477
478
struct tpm_digests {
479
unsigned char encauth[SHA1_DIGEST_SIZE];
480
unsigned char pubauth[SHA1_DIGEST_SIZE];
481
unsigned char xorwork[SHA1_DIGEST_SIZE * 2];
482
unsigned char xorhash[SHA1_DIGEST_SIZE];
483
unsigned char nonceodd[TPM_NONCE_SIZE];
484
};
485
486
/*
487
* Have the TPM seal(encrypt) the trusted key, possibly based on
488
* Platform Configuration Registers (PCRs). AUTH1 for sealing key.
489
*/
490
static int tpm_seal(struct tpm_buf *tb, uint16_t keytype,
491
uint32_t keyhandle, const unsigned char *keyauth,
492
const unsigned char *data, uint32_t datalen,
493
unsigned char *blob, uint32_t *bloblen,
494
const unsigned char *blobauth,
495
const unsigned char *pcrinfo, uint32_t pcrinfosize)
496
{
497
struct osapsess sess;
498
struct tpm_digests *td;
499
unsigned char cont;
500
uint32_t ordinal;
501
uint32_t pcrsize;
502
uint32_t datsize;
503
int sealinfosize;
504
int encdatasize;
505
int storedsize;
506
int ret;
507
int i;
508
509
/* alloc some work space for all the hashes */
510
td = kmalloc(sizeof *td, GFP_KERNEL);
511
if (!td)
512
return -ENOMEM;
513
514
/* get session for sealing key */
515
ret = osap(tb, &sess, keyauth, keytype, keyhandle);
516
if (ret < 0)
517
goto out;
518
dump_sess(&sess);
519
520
/* calculate encrypted authorization value */
521
memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE);
522
memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE);
523
ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash);
524
if (ret < 0)
525
goto out;
526
527
ret = tpm_get_random(tb, td->nonceodd, TPM_NONCE_SIZE);
528
if (ret < 0)
529
goto out;
530
ordinal = htonl(TPM_ORD_SEAL);
531
datsize = htonl(datalen);
532
pcrsize = htonl(pcrinfosize);
533
cont = 0;
534
535
/* encrypt data authorization key */
536
for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
537
td->encauth[i] = td->xorhash[i] ^ blobauth[i];
538
539
/* calculate authorization HMAC value */
540
if (pcrinfosize == 0) {
541
/* no pcr info specified */
542
ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
543
sess.enonce, td->nonceodd, cont,
544
sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
545
td->encauth, sizeof(uint32_t), &pcrsize,
546
sizeof(uint32_t), &datsize, datalen, data, 0,
547
0);
548
} else {
549
/* pcr info specified */
550
ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
551
sess.enonce, td->nonceodd, cont,
552
sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
553
td->encauth, sizeof(uint32_t), &pcrsize,
554
pcrinfosize, pcrinfo, sizeof(uint32_t),
555
&datsize, datalen, data, 0, 0);
556
}
557
if (ret < 0)
558
goto out;
559
560
/* build and send the TPM request packet */
561
INIT_BUF(tb);
562
store16(tb, TPM_TAG_RQU_AUTH1_COMMAND);
563
store32(tb, TPM_SEAL_SIZE + pcrinfosize + datalen);
564
store32(tb, TPM_ORD_SEAL);
565
store32(tb, keyhandle);
566
storebytes(tb, td->encauth, SHA1_DIGEST_SIZE);
567
store32(tb, pcrinfosize);
568
storebytes(tb, pcrinfo, pcrinfosize);
569
store32(tb, datalen);
570
storebytes(tb, data, datalen);
571
store32(tb, sess.handle);
572
storebytes(tb, td->nonceodd, TPM_NONCE_SIZE);
573
store8(tb, cont);
574
storebytes(tb, td->pubauth, SHA1_DIGEST_SIZE);
575
576
ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
577
if (ret < 0)
578
goto out;
579
580
/* calculate the size of the returned Blob */
581
sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t));
582
encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) +
583
sizeof(uint32_t) + sealinfosize);
584
storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize +
585
sizeof(uint32_t) + encdatasize;
586
587
/* check the HMAC in the response */
588
ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret,
589
SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0,
590
0);
591
592
/* copy the returned blob to caller */
593
if (!ret) {
594
memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize);
595
*bloblen = storedsize;
596
}
597
out:
598
kfree(td);
599
return ret;
600
}
601
602
/*
603
* use the AUTH2_COMMAND form of unseal, to authorize both key and blob
604
*/
605
static int tpm_unseal(struct tpm_buf *tb,
606
uint32_t keyhandle, const unsigned char *keyauth,
607
const unsigned char *blob, int bloblen,
608
const unsigned char *blobauth,
609
unsigned char *data, unsigned int *datalen)
610
{
611
unsigned char nonceodd[TPM_NONCE_SIZE];
612
unsigned char enonce1[TPM_NONCE_SIZE];
613
unsigned char enonce2[TPM_NONCE_SIZE];
614
unsigned char authdata1[SHA1_DIGEST_SIZE];
615
unsigned char authdata2[SHA1_DIGEST_SIZE];
616
uint32_t authhandle1 = 0;
617
uint32_t authhandle2 = 0;
618
unsigned char cont = 0;
619
uint32_t ordinal;
620
uint32_t keyhndl;
621
int ret;
622
623
/* sessions for unsealing key and data */
624
ret = oiap(tb, &authhandle1, enonce1);
625
if (ret < 0) {
626
pr_info("trusted_key: oiap failed (%d)\n", ret);
627
return ret;
628
}
629
ret = oiap(tb, &authhandle2, enonce2);
630
if (ret < 0) {
631
pr_info("trusted_key: oiap failed (%d)\n", ret);
632
return ret;
633
}
634
635
ordinal = htonl(TPM_ORD_UNSEAL);
636
keyhndl = htonl(SRKHANDLE);
637
ret = tpm_get_random(tb, nonceodd, TPM_NONCE_SIZE);
638
if (ret < 0) {
639
pr_info("trusted_key: tpm_get_random failed (%d)\n", ret);
640
return ret;
641
}
642
ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE,
643
enonce1, nonceodd, cont, sizeof(uint32_t),
644
&ordinal, bloblen, blob, 0, 0);
645
if (ret < 0)
646
return ret;
647
ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE,
648
enonce2, nonceodd, cont, sizeof(uint32_t),
649
&ordinal, bloblen, blob, 0, 0);
650
if (ret < 0)
651
return ret;
652
653
/* build and send TPM request packet */
654
INIT_BUF(tb);
655
store16(tb, TPM_TAG_RQU_AUTH2_COMMAND);
656
store32(tb, TPM_UNSEAL_SIZE + bloblen);
657
store32(tb, TPM_ORD_UNSEAL);
658
store32(tb, keyhandle);
659
storebytes(tb, blob, bloblen);
660
store32(tb, authhandle1);
661
storebytes(tb, nonceodd, TPM_NONCE_SIZE);
662
store8(tb, cont);
663
storebytes(tb, authdata1, SHA1_DIGEST_SIZE);
664
store32(tb, authhandle2);
665
storebytes(tb, nonceodd, TPM_NONCE_SIZE);
666
store8(tb, cont);
667
storebytes(tb, authdata2, SHA1_DIGEST_SIZE);
668
669
ret = trusted_tpm_send(TPM_ANY_NUM, tb->data, MAX_BUF_SIZE);
670
if (ret < 0) {
671
pr_info("trusted_key: authhmac failed (%d)\n", ret);
672
return ret;
673
}
674
675
*datalen = LOAD32(tb->data, TPM_DATA_OFFSET);
676
ret = TSS_checkhmac2(tb->data, ordinal, nonceodd,
677
keyauth, SHA1_DIGEST_SIZE,
678
blobauth, SHA1_DIGEST_SIZE,
679
sizeof(uint32_t), TPM_DATA_OFFSET,
680
*datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0,
681
0);
682
if (ret < 0) {
683
pr_info("trusted_key: TSS_checkhmac2 failed (%d)\n", ret);
684
return ret;
685
}
686
memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen);
687
return 0;
688
}
689
690
/*
691
* Have the TPM seal(encrypt) the symmetric key
692
*/
693
static int key_seal(struct trusted_key_payload *p,
694
struct trusted_key_options *o)
695
{
696
struct tpm_buf *tb;
697
int ret;
698
699
tb = kzalloc(sizeof *tb, GFP_KERNEL);
700
if (!tb)
701
return -ENOMEM;
702
703
/* include migratable flag at end of sealed key */
704
p->key[p->key_len] = p->migratable;
705
706
ret = tpm_seal(tb, o->keytype, o->keyhandle, o->keyauth,
707
p->key, p->key_len + 1, p->blob, &p->blob_len,
708
o->blobauth, o->pcrinfo, o->pcrinfo_len);
709
if (ret < 0)
710
pr_info("trusted_key: srkseal failed (%d)\n", ret);
711
712
kfree(tb);
713
return ret;
714
}
715
716
/*
717
* Have the TPM unseal(decrypt) the symmetric key
718
*/
719
static int key_unseal(struct trusted_key_payload *p,
720
struct trusted_key_options *o)
721
{
722
struct tpm_buf *tb;
723
int ret;
724
725
tb = kzalloc(sizeof *tb, GFP_KERNEL);
726
if (!tb)
727
return -ENOMEM;
728
729
ret = tpm_unseal(tb, o->keyhandle, o->keyauth, p->blob, p->blob_len,
730
o->blobauth, p->key, &p->key_len);
731
if (ret < 0)
732
pr_info("trusted_key: srkunseal failed (%d)\n", ret);
733
else
734
/* pull migratable flag out of sealed key */
735
p->migratable = p->key[--p->key_len];
736
737
kfree(tb);
738
return ret;
739
}
740
741
enum {
742
Opt_err = -1,
743
Opt_new, Opt_load, Opt_update,
744
Opt_keyhandle, Opt_keyauth, Opt_blobauth,
745
Opt_pcrinfo, Opt_pcrlock, Opt_migratable
746
};
747
748
static const match_table_t key_tokens = {
749
{Opt_new, "new"},
750
{Opt_load, "load"},
751
{Opt_update, "update"},
752
{Opt_keyhandle, "keyhandle=%s"},
753
{Opt_keyauth, "keyauth=%s"},
754
{Opt_blobauth, "blobauth=%s"},
755
{Opt_pcrinfo, "pcrinfo=%s"},
756
{Opt_pcrlock, "pcrlock=%s"},
757
{Opt_migratable, "migratable=%s"},
758
{Opt_err, NULL}
759
};
760
761
/* can have zero or more token= options */
762
static int getoptions(char *c, struct trusted_key_payload *pay,
763
struct trusted_key_options *opt)
764
{
765
substring_t args[MAX_OPT_ARGS];
766
char *p = c;
767
int token;
768
int res;
769
unsigned long handle;
770
unsigned long lock;
771
772
while ((p = strsep(&c, " \t"))) {
773
if (*p == '\0' || *p == ' ' || *p == '\t')
774
continue;
775
token = match_token(p, key_tokens, args);
776
777
switch (token) {
778
case Opt_pcrinfo:
779
opt->pcrinfo_len = strlen(args[0].from) / 2;
780
if (opt->pcrinfo_len > MAX_PCRINFO_SIZE)
781
return -EINVAL;
782
hex2bin(opt->pcrinfo, args[0].from, opt->pcrinfo_len);
783
break;
784
case Opt_keyhandle:
785
res = strict_strtoul(args[0].from, 16, &handle);
786
if (res < 0)
787
return -EINVAL;
788
opt->keytype = SEAL_keytype;
789
opt->keyhandle = handle;
790
break;
791
case Opt_keyauth:
792
if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
793
return -EINVAL;
794
hex2bin(opt->keyauth, args[0].from, SHA1_DIGEST_SIZE);
795
break;
796
case Opt_blobauth:
797
if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
798
return -EINVAL;
799
hex2bin(opt->blobauth, args[0].from, SHA1_DIGEST_SIZE);
800
break;
801
case Opt_migratable:
802
if (*args[0].from == '0')
803
pay->migratable = 0;
804
else
805
return -EINVAL;
806
break;
807
case Opt_pcrlock:
808
res = strict_strtoul(args[0].from, 10, &lock);
809
if (res < 0)
810
return -EINVAL;
811
opt->pcrlock = lock;
812
break;
813
default:
814
return -EINVAL;
815
}
816
}
817
return 0;
818
}
819
820
/*
821
* datablob_parse - parse the keyctl data and fill in the
822
* payload and options structures
823
*
824
* On success returns 0, otherwise -EINVAL.
825
*/
826
static int datablob_parse(char *datablob, struct trusted_key_payload *p,
827
struct trusted_key_options *o)
828
{
829
substring_t args[MAX_OPT_ARGS];
830
long keylen;
831
int ret = -EINVAL;
832
int key_cmd;
833
char *c;
834
835
/* main command */
836
c = strsep(&datablob, " \t");
837
if (!c)
838
return -EINVAL;
839
key_cmd = match_token(c, key_tokens, args);
840
switch (key_cmd) {
841
case Opt_new:
842
/* first argument is key size */
843
c = strsep(&datablob, " \t");
844
if (!c)
845
return -EINVAL;
846
ret = strict_strtol(c, 10, &keylen);
847
if (ret < 0 || keylen < MIN_KEY_SIZE || keylen > MAX_KEY_SIZE)
848
return -EINVAL;
849
p->key_len = keylen;
850
ret = getoptions(datablob, p, o);
851
if (ret < 0)
852
return ret;
853
ret = Opt_new;
854
break;
855
case Opt_load:
856
/* first argument is sealed blob */
857
c = strsep(&datablob, " \t");
858
if (!c)
859
return -EINVAL;
860
p->blob_len = strlen(c) / 2;
861
if (p->blob_len > MAX_BLOB_SIZE)
862
return -EINVAL;
863
hex2bin(p->blob, c, p->blob_len);
864
ret = getoptions(datablob, p, o);
865
if (ret < 0)
866
return ret;
867
ret = Opt_load;
868
break;
869
case Opt_update:
870
/* all arguments are options */
871
ret = getoptions(datablob, p, o);
872
if (ret < 0)
873
return ret;
874
ret = Opt_update;
875
break;
876
case Opt_err:
877
return -EINVAL;
878
break;
879
}
880
return ret;
881
}
882
883
static struct trusted_key_options *trusted_options_alloc(void)
884
{
885
struct trusted_key_options *options;
886
887
options = kzalloc(sizeof *options, GFP_KERNEL);
888
if (options) {
889
/* set any non-zero defaults */
890
options->keytype = SRK_keytype;
891
options->keyhandle = SRKHANDLE;
892
}
893
return options;
894
}
895
896
static struct trusted_key_payload *trusted_payload_alloc(struct key *key)
897
{
898
struct trusted_key_payload *p = NULL;
899
int ret;
900
901
ret = key_payload_reserve(key, sizeof *p);
902
if (ret < 0)
903
return p;
904
p = kzalloc(sizeof *p, GFP_KERNEL);
905
if (p)
906
p->migratable = 1; /* migratable by default */
907
return p;
908
}
909
910
/*
911
* trusted_instantiate - create a new trusted key
912
*
913
* Unseal an existing trusted blob or, for a new key, get a
914
* random key, then seal and create a trusted key-type key,
915
* adding it to the specified keyring.
916
*
917
* On success, return 0. Otherwise return errno.
918
*/
919
static int trusted_instantiate(struct key *key, const void *data,
920
size_t datalen)
921
{
922
struct trusted_key_payload *payload = NULL;
923
struct trusted_key_options *options = NULL;
924
char *datablob;
925
int ret = 0;
926
int key_cmd;
927
928
if (datalen <= 0 || datalen > 32767 || !data)
929
return -EINVAL;
930
931
datablob = kmalloc(datalen + 1, GFP_KERNEL);
932
if (!datablob)
933
return -ENOMEM;
934
memcpy(datablob, data, datalen);
935
datablob[datalen] = '\0';
936
937
options = trusted_options_alloc();
938
if (!options) {
939
ret = -ENOMEM;
940
goto out;
941
}
942
payload = trusted_payload_alloc(key);
943
if (!payload) {
944
ret = -ENOMEM;
945
goto out;
946
}
947
948
key_cmd = datablob_parse(datablob, payload, options);
949
if (key_cmd < 0) {
950
ret = key_cmd;
951
goto out;
952
}
953
954
dump_payload(payload);
955
dump_options(options);
956
957
switch (key_cmd) {
958
case Opt_load:
959
ret = key_unseal(payload, options);
960
dump_payload(payload);
961
dump_options(options);
962
if (ret < 0)
963
pr_info("trusted_key: key_unseal failed (%d)\n", ret);
964
break;
965
case Opt_new:
966
ret = my_get_random(payload->key, payload->key_len);
967
if (ret < 0) {
968
pr_info("trusted_key: key_create failed (%d)\n", ret);
969
goto out;
970
}
971
ret = key_seal(payload, options);
972
if (ret < 0)
973
pr_info("trusted_key: key_seal failed (%d)\n", ret);
974
break;
975
default:
976
ret = -EINVAL;
977
goto out;
978
}
979
if (!ret && options->pcrlock)
980
ret = pcrlock(options->pcrlock);
981
out:
982
kfree(datablob);
983
kfree(options);
984
if (!ret)
985
rcu_assign_pointer(key->payload.data, payload);
986
else
987
kfree(payload);
988
return ret;
989
}
990
991
static void trusted_rcu_free(struct rcu_head *rcu)
992
{
993
struct trusted_key_payload *p;
994
995
p = container_of(rcu, struct trusted_key_payload, rcu);
996
memset(p->key, 0, p->key_len);
997
kfree(p);
998
}
999
1000
/*
1001
* trusted_update - reseal an existing key with new PCR values
1002
*/
1003
static int trusted_update(struct key *key, const void *data, size_t datalen)
1004
{
1005
struct trusted_key_payload *p = key->payload.data;
1006
struct trusted_key_payload *new_p;
1007
struct trusted_key_options *new_o;
1008
char *datablob;
1009
int ret = 0;
1010
1011
if (!p->migratable)
1012
return -EPERM;
1013
if (datalen <= 0 || datalen > 32767 || !data)
1014
return -EINVAL;
1015
1016
datablob = kmalloc(datalen + 1, GFP_KERNEL);
1017
if (!datablob)
1018
return -ENOMEM;
1019
new_o = trusted_options_alloc();
1020
if (!new_o) {
1021
ret = -ENOMEM;
1022
goto out;
1023
}
1024
new_p = trusted_payload_alloc(key);
1025
if (!new_p) {
1026
ret = -ENOMEM;
1027
goto out;
1028
}
1029
1030
memcpy(datablob, data, datalen);
1031
datablob[datalen] = '\0';
1032
ret = datablob_parse(datablob, new_p, new_o);
1033
if (ret != Opt_update) {
1034
ret = -EINVAL;
1035
kfree(new_p);
1036
goto out;
1037
}
1038
/* copy old key values, and reseal with new pcrs */
1039
new_p->migratable = p->migratable;
1040
new_p->key_len = p->key_len;
1041
memcpy(new_p->key, p->key, p->key_len);
1042
dump_payload(p);
1043
dump_payload(new_p);
1044
1045
ret = key_seal(new_p, new_o);
1046
if (ret < 0) {
1047
pr_info("trusted_key: key_seal failed (%d)\n", ret);
1048
kfree(new_p);
1049
goto out;
1050
}
1051
if (new_o->pcrlock) {
1052
ret = pcrlock(new_o->pcrlock);
1053
if (ret < 0) {
1054
pr_info("trusted_key: pcrlock failed (%d)\n", ret);
1055
kfree(new_p);
1056
goto out;
1057
}
1058
}
1059
rcu_assign_pointer(key->payload.data, new_p);
1060
call_rcu(&p->rcu, trusted_rcu_free);
1061
out:
1062
kfree(datablob);
1063
kfree(new_o);
1064
return ret;
1065
}
1066
1067
/*
1068
* trusted_read - copy the sealed blob data to userspace in hex.
1069
* On success, return to userspace the trusted key datablob size.
1070
*/
1071
static long trusted_read(const struct key *key, char __user *buffer,
1072
size_t buflen)
1073
{
1074
struct trusted_key_payload *p;
1075
char *ascii_buf;
1076
char *bufp;
1077
int i;
1078
1079
p = rcu_dereference_key(key);
1080
if (!p)
1081
return -EINVAL;
1082
if (!buffer || buflen <= 0)
1083
return 2 * p->blob_len;
1084
ascii_buf = kmalloc(2 * p->blob_len, GFP_KERNEL);
1085
if (!ascii_buf)
1086
return -ENOMEM;
1087
1088
bufp = ascii_buf;
1089
for (i = 0; i < p->blob_len; i++)
1090
bufp = pack_hex_byte(bufp, p->blob[i]);
1091
if ((copy_to_user(buffer, ascii_buf, 2 * p->blob_len)) != 0) {
1092
kfree(ascii_buf);
1093
return -EFAULT;
1094
}
1095
kfree(ascii_buf);
1096
return 2 * p->blob_len;
1097
}
1098
1099
/*
1100
* trusted_destroy - before freeing the key, clear the decrypted data
1101
*/
1102
static void trusted_destroy(struct key *key)
1103
{
1104
struct trusted_key_payload *p = key->payload.data;
1105
1106
if (!p)
1107
return;
1108
memset(p->key, 0, p->key_len);
1109
kfree(key->payload.data);
1110
}
1111
1112
struct key_type key_type_trusted = {
1113
.name = "trusted",
1114
.instantiate = trusted_instantiate,
1115
.update = trusted_update,
1116
.match = user_match,
1117
.destroy = trusted_destroy,
1118
.describe = user_describe,
1119
.read = trusted_read,
1120
};
1121
1122
EXPORT_SYMBOL_GPL(key_type_trusted);
1123
1124
static void trusted_shash_release(void)
1125
{
1126
if (hashalg)
1127
crypto_free_shash(hashalg);
1128
if (hmacalg)
1129
crypto_free_shash(hmacalg);
1130
}
1131
1132
static int __init trusted_shash_alloc(void)
1133
{
1134
int ret;
1135
1136
hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
1137
if (IS_ERR(hmacalg)) {
1138
pr_info("trusted_key: could not allocate crypto %s\n",
1139
hmac_alg);
1140
return PTR_ERR(hmacalg);
1141
}
1142
1143
hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
1144
if (IS_ERR(hashalg)) {
1145
pr_info("trusted_key: could not allocate crypto %s\n",
1146
hash_alg);
1147
ret = PTR_ERR(hashalg);
1148
goto hashalg_fail;
1149
}
1150
1151
return 0;
1152
1153
hashalg_fail:
1154
crypto_free_shash(hmacalg);
1155
return ret;
1156
}
1157
1158
static int __init init_trusted(void)
1159
{
1160
int ret;
1161
1162
ret = trusted_shash_alloc();
1163
if (ret < 0)
1164
return ret;
1165
ret = register_key_type(&key_type_trusted);
1166
if (ret < 0)
1167
trusted_shash_release();
1168
return ret;
1169
}
1170
1171
static void __exit cleanup_trusted(void)
1172
{
1173
trusted_shash_release();
1174
unregister_key_type(&key_type_trusted);
1175
}
1176
1177
late_initcall(init_trusted);
1178
module_exit(cleanup_trusted);
1179
1180
MODULE_LICENSE("GPL");
1181
1182