Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/security/security.c
10811 views
1
/*
2
* Security plug functions
3
*
4
* Copyright (C) 2001 WireX Communications, Inc <[email protected]>
5
* Copyright (C) 2001-2002 Greg Kroah-Hartman <[email protected]>
6
* Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU General Public License as published by
10
* the Free Software Foundation; either version 2 of the License, or
11
* (at your option) any later version.
12
*/
13
14
#include <linux/capability.h>
15
#include <linux/module.h>
16
#include <linux/init.h>
17
#include <linux/kernel.h>
18
#include <linux/security.h>
19
#include <linux/ima.h>
20
21
/* Boot-time LSM user choice */
22
static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23
CONFIG_DEFAULT_SECURITY;
24
25
/* things that live in capability.c */
26
extern void __init security_fixup_ops(struct security_operations *ops);
27
28
static struct security_operations *security_ops;
29
static struct security_operations default_security_ops = {
30
.name = "default",
31
};
32
33
static inline int __init verify(struct security_operations *ops)
34
{
35
/* verify the security_operations structure exists */
36
if (!ops)
37
return -EINVAL;
38
security_fixup_ops(ops);
39
return 0;
40
}
41
42
static void __init do_security_initcalls(void)
43
{
44
initcall_t *call;
45
call = __security_initcall_start;
46
while (call < __security_initcall_end) {
47
(*call) ();
48
call++;
49
}
50
}
51
52
/**
53
* security_init - initializes the security framework
54
*
55
* This should be called early in the kernel initialization sequence.
56
*/
57
int __init security_init(void)
58
{
59
printk(KERN_INFO "Security Framework initialized\n");
60
61
security_fixup_ops(&default_security_ops);
62
security_ops = &default_security_ops;
63
do_security_initcalls();
64
65
return 0;
66
}
67
68
void reset_security_ops(void)
69
{
70
security_ops = &default_security_ops;
71
}
72
73
/* Save user chosen LSM */
74
static int __init choose_lsm(char *str)
75
{
76
strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77
return 1;
78
}
79
__setup("security=", choose_lsm);
80
81
/**
82
* security_module_enable - Load given security module on boot ?
83
* @ops: a pointer to the struct security_operations that is to be checked.
84
*
85
* Each LSM must pass this method before registering its own operations
86
* to avoid security registration races. This method may also be used
87
* to check if your LSM is currently loaded during kernel initialization.
88
*
89
* Return true if:
90
* -The passed LSM is the one chosen by user at boot time,
91
* -or the passed LSM is configured as the default and the user did not
92
* choose an alternate LSM at boot time.
93
* Otherwise, return false.
94
*/
95
int __init security_module_enable(struct security_operations *ops)
96
{
97
return !strcmp(ops->name, chosen_lsm);
98
}
99
100
/**
101
* register_security - registers a security framework with the kernel
102
* @ops: a pointer to the struct security_options that is to be registered
103
*
104
* This function allows a security module to register itself with the
105
* kernel security subsystem. Some rudimentary checking is done on the @ops
106
* value passed to this function. You'll need to check first if your LSM
107
* is allowed to register its @ops by calling security_module_enable(@ops).
108
*
109
* If there is already a security module registered with the kernel,
110
* an error will be returned. Otherwise %0 is returned on success.
111
*/
112
int __init register_security(struct security_operations *ops)
113
{
114
if (verify(ops)) {
115
printk(KERN_DEBUG "%s could not verify "
116
"security_operations structure.\n", __func__);
117
return -EINVAL;
118
}
119
120
if (security_ops != &default_security_ops)
121
return -EAGAIN;
122
123
security_ops = ops;
124
125
return 0;
126
}
127
128
/* Security operations */
129
130
int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131
{
132
return security_ops->ptrace_access_check(child, mode);
133
}
134
135
int security_ptrace_traceme(struct task_struct *parent)
136
{
137
return security_ops->ptrace_traceme(parent);
138
}
139
140
int security_capget(struct task_struct *target,
141
kernel_cap_t *effective,
142
kernel_cap_t *inheritable,
143
kernel_cap_t *permitted)
144
{
145
return security_ops->capget(target, effective, inheritable, permitted);
146
}
147
148
int security_capset(struct cred *new, const struct cred *old,
149
const kernel_cap_t *effective,
150
const kernel_cap_t *inheritable,
151
const kernel_cap_t *permitted)
152
{
153
return security_ops->capset(new, old,
154
effective, inheritable, permitted);
155
}
156
157
int security_capable(struct user_namespace *ns, const struct cred *cred,
158
int cap)
159
{
160
return security_ops->capable(current, cred, ns, cap,
161
SECURITY_CAP_AUDIT);
162
}
163
164
int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
165
int cap)
166
{
167
const struct cred *cred;
168
int ret;
169
170
cred = get_task_cred(tsk);
171
ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
172
put_cred(cred);
173
return ret;
174
}
175
176
int security_real_capable_noaudit(struct task_struct *tsk,
177
struct user_namespace *ns, int cap)
178
{
179
const struct cred *cred;
180
int ret;
181
182
cred = get_task_cred(tsk);
183
ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
184
put_cred(cred);
185
return ret;
186
}
187
188
int security_quotactl(int cmds, int type, int id, struct super_block *sb)
189
{
190
return security_ops->quotactl(cmds, type, id, sb);
191
}
192
193
int security_quota_on(struct dentry *dentry)
194
{
195
return security_ops->quota_on(dentry);
196
}
197
198
int security_syslog(int type)
199
{
200
return security_ops->syslog(type);
201
}
202
203
int security_settime(const struct timespec *ts, const struct timezone *tz)
204
{
205
return security_ops->settime(ts, tz);
206
}
207
208
int security_vm_enough_memory(long pages)
209
{
210
WARN_ON(current->mm == NULL);
211
return security_ops->vm_enough_memory(current->mm, pages);
212
}
213
214
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
215
{
216
WARN_ON(mm == NULL);
217
return security_ops->vm_enough_memory(mm, pages);
218
}
219
220
int security_vm_enough_memory_kern(long pages)
221
{
222
/* If current->mm is a kernel thread then we will pass NULL,
223
for this specific case that is fine */
224
return security_ops->vm_enough_memory(current->mm, pages);
225
}
226
227
int security_bprm_set_creds(struct linux_binprm *bprm)
228
{
229
return security_ops->bprm_set_creds(bprm);
230
}
231
232
int security_bprm_check(struct linux_binprm *bprm)
233
{
234
int ret;
235
236
ret = security_ops->bprm_check_security(bprm);
237
if (ret)
238
return ret;
239
return ima_bprm_check(bprm);
240
}
241
242
void security_bprm_committing_creds(struct linux_binprm *bprm)
243
{
244
security_ops->bprm_committing_creds(bprm);
245
}
246
247
void security_bprm_committed_creds(struct linux_binprm *bprm)
248
{
249
security_ops->bprm_committed_creds(bprm);
250
}
251
252
int security_bprm_secureexec(struct linux_binprm *bprm)
253
{
254
return security_ops->bprm_secureexec(bprm);
255
}
256
257
int security_sb_alloc(struct super_block *sb)
258
{
259
return security_ops->sb_alloc_security(sb);
260
}
261
262
void security_sb_free(struct super_block *sb)
263
{
264
security_ops->sb_free_security(sb);
265
}
266
267
int security_sb_copy_data(char *orig, char *copy)
268
{
269
return security_ops->sb_copy_data(orig, copy);
270
}
271
EXPORT_SYMBOL(security_sb_copy_data);
272
273
int security_sb_remount(struct super_block *sb, void *data)
274
{
275
return security_ops->sb_remount(sb, data);
276
}
277
278
int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
279
{
280
return security_ops->sb_kern_mount(sb, flags, data);
281
}
282
283
int security_sb_show_options(struct seq_file *m, struct super_block *sb)
284
{
285
return security_ops->sb_show_options(m, sb);
286
}
287
288
int security_sb_statfs(struct dentry *dentry)
289
{
290
return security_ops->sb_statfs(dentry);
291
}
292
293
int security_sb_mount(char *dev_name, struct path *path,
294
char *type, unsigned long flags, void *data)
295
{
296
return security_ops->sb_mount(dev_name, path, type, flags, data);
297
}
298
299
int security_sb_umount(struct vfsmount *mnt, int flags)
300
{
301
return security_ops->sb_umount(mnt, flags);
302
}
303
304
int security_sb_pivotroot(struct path *old_path, struct path *new_path)
305
{
306
return security_ops->sb_pivotroot(old_path, new_path);
307
}
308
309
int security_sb_set_mnt_opts(struct super_block *sb,
310
struct security_mnt_opts *opts)
311
{
312
return security_ops->sb_set_mnt_opts(sb, opts);
313
}
314
EXPORT_SYMBOL(security_sb_set_mnt_opts);
315
316
void security_sb_clone_mnt_opts(const struct super_block *oldsb,
317
struct super_block *newsb)
318
{
319
security_ops->sb_clone_mnt_opts(oldsb, newsb);
320
}
321
EXPORT_SYMBOL(security_sb_clone_mnt_opts);
322
323
int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
324
{
325
return security_ops->sb_parse_opts_str(options, opts);
326
}
327
EXPORT_SYMBOL(security_sb_parse_opts_str);
328
329
int security_inode_alloc(struct inode *inode)
330
{
331
inode->i_security = NULL;
332
return security_ops->inode_alloc_security(inode);
333
}
334
335
void security_inode_free(struct inode *inode)
336
{
337
ima_inode_free(inode);
338
security_ops->inode_free_security(inode);
339
}
340
341
int security_inode_init_security(struct inode *inode, struct inode *dir,
342
const struct qstr *qstr, char **name,
343
void **value, size_t *len)
344
{
345
if (unlikely(IS_PRIVATE(inode)))
346
return -EOPNOTSUPP;
347
return security_ops->inode_init_security(inode, dir, qstr, name, value,
348
len);
349
}
350
EXPORT_SYMBOL(security_inode_init_security);
351
352
#ifdef CONFIG_SECURITY_PATH
353
int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
354
unsigned int dev)
355
{
356
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
357
return 0;
358
return security_ops->path_mknod(dir, dentry, mode, dev);
359
}
360
EXPORT_SYMBOL(security_path_mknod);
361
362
int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
363
{
364
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
365
return 0;
366
return security_ops->path_mkdir(dir, dentry, mode);
367
}
368
EXPORT_SYMBOL(security_path_mkdir);
369
370
int security_path_rmdir(struct path *dir, struct dentry *dentry)
371
{
372
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
373
return 0;
374
return security_ops->path_rmdir(dir, dentry);
375
}
376
377
int security_path_unlink(struct path *dir, struct dentry *dentry)
378
{
379
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
380
return 0;
381
return security_ops->path_unlink(dir, dentry);
382
}
383
EXPORT_SYMBOL(security_path_unlink);
384
385
int security_path_symlink(struct path *dir, struct dentry *dentry,
386
const char *old_name)
387
{
388
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
389
return 0;
390
return security_ops->path_symlink(dir, dentry, old_name);
391
}
392
393
int security_path_link(struct dentry *old_dentry, struct path *new_dir,
394
struct dentry *new_dentry)
395
{
396
if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
397
return 0;
398
return security_ops->path_link(old_dentry, new_dir, new_dentry);
399
}
400
401
int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
402
struct path *new_dir, struct dentry *new_dentry)
403
{
404
if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
405
(new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
406
return 0;
407
return security_ops->path_rename(old_dir, old_dentry, new_dir,
408
new_dentry);
409
}
410
EXPORT_SYMBOL(security_path_rename);
411
412
int security_path_truncate(struct path *path)
413
{
414
if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
415
return 0;
416
return security_ops->path_truncate(path);
417
}
418
419
int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
420
mode_t mode)
421
{
422
if (unlikely(IS_PRIVATE(dentry->d_inode)))
423
return 0;
424
return security_ops->path_chmod(dentry, mnt, mode);
425
}
426
427
int security_path_chown(struct path *path, uid_t uid, gid_t gid)
428
{
429
if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
430
return 0;
431
return security_ops->path_chown(path, uid, gid);
432
}
433
434
int security_path_chroot(struct path *path)
435
{
436
return security_ops->path_chroot(path);
437
}
438
#endif
439
440
int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
441
{
442
if (unlikely(IS_PRIVATE(dir)))
443
return 0;
444
return security_ops->inode_create(dir, dentry, mode);
445
}
446
EXPORT_SYMBOL_GPL(security_inode_create);
447
448
int security_inode_link(struct dentry *old_dentry, struct inode *dir,
449
struct dentry *new_dentry)
450
{
451
if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
452
return 0;
453
return security_ops->inode_link(old_dentry, dir, new_dentry);
454
}
455
456
int security_inode_unlink(struct inode *dir, struct dentry *dentry)
457
{
458
if (unlikely(IS_PRIVATE(dentry->d_inode)))
459
return 0;
460
return security_ops->inode_unlink(dir, dentry);
461
}
462
463
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
464
const char *old_name)
465
{
466
if (unlikely(IS_PRIVATE(dir)))
467
return 0;
468
return security_ops->inode_symlink(dir, dentry, old_name);
469
}
470
471
int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
472
{
473
if (unlikely(IS_PRIVATE(dir)))
474
return 0;
475
return security_ops->inode_mkdir(dir, dentry, mode);
476
}
477
EXPORT_SYMBOL_GPL(security_inode_mkdir);
478
479
int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
480
{
481
if (unlikely(IS_PRIVATE(dentry->d_inode)))
482
return 0;
483
return security_ops->inode_rmdir(dir, dentry);
484
}
485
486
int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
487
{
488
if (unlikely(IS_PRIVATE(dir)))
489
return 0;
490
return security_ops->inode_mknod(dir, dentry, mode, dev);
491
}
492
493
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
494
struct inode *new_dir, struct dentry *new_dentry)
495
{
496
if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
497
(new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
498
return 0;
499
return security_ops->inode_rename(old_dir, old_dentry,
500
new_dir, new_dentry);
501
}
502
503
int security_inode_readlink(struct dentry *dentry)
504
{
505
if (unlikely(IS_PRIVATE(dentry->d_inode)))
506
return 0;
507
return security_ops->inode_readlink(dentry);
508
}
509
510
int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
511
{
512
if (unlikely(IS_PRIVATE(dentry->d_inode)))
513
return 0;
514
return security_ops->inode_follow_link(dentry, nd);
515
}
516
517
int security_inode_permission(struct inode *inode, int mask)
518
{
519
if (unlikely(IS_PRIVATE(inode)))
520
return 0;
521
return security_ops->inode_permission(inode, mask, 0);
522
}
523
524
int security_inode_exec_permission(struct inode *inode, unsigned int flags)
525
{
526
if (unlikely(IS_PRIVATE(inode)))
527
return 0;
528
return security_ops->inode_permission(inode, MAY_EXEC, flags);
529
}
530
531
int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
532
{
533
if (unlikely(IS_PRIVATE(dentry->d_inode)))
534
return 0;
535
return security_ops->inode_setattr(dentry, attr);
536
}
537
EXPORT_SYMBOL_GPL(security_inode_setattr);
538
539
int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
540
{
541
if (unlikely(IS_PRIVATE(dentry->d_inode)))
542
return 0;
543
return security_ops->inode_getattr(mnt, dentry);
544
}
545
546
int security_inode_setxattr(struct dentry *dentry, const char *name,
547
const void *value, size_t size, int flags)
548
{
549
if (unlikely(IS_PRIVATE(dentry->d_inode)))
550
return 0;
551
return security_ops->inode_setxattr(dentry, name, value, size, flags);
552
}
553
554
void security_inode_post_setxattr(struct dentry *dentry, const char *name,
555
const void *value, size_t size, int flags)
556
{
557
if (unlikely(IS_PRIVATE(dentry->d_inode)))
558
return;
559
security_ops->inode_post_setxattr(dentry, name, value, size, flags);
560
}
561
562
int security_inode_getxattr(struct dentry *dentry, const char *name)
563
{
564
if (unlikely(IS_PRIVATE(dentry->d_inode)))
565
return 0;
566
return security_ops->inode_getxattr(dentry, name);
567
}
568
569
int security_inode_listxattr(struct dentry *dentry)
570
{
571
if (unlikely(IS_PRIVATE(dentry->d_inode)))
572
return 0;
573
return security_ops->inode_listxattr(dentry);
574
}
575
576
int security_inode_removexattr(struct dentry *dentry, const char *name)
577
{
578
if (unlikely(IS_PRIVATE(dentry->d_inode)))
579
return 0;
580
return security_ops->inode_removexattr(dentry, name);
581
}
582
583
int security_inode_need_killpriv(struct dentry *dentry)
584
{
585
return security_ops->inode_need_killpriv(dentry);
586
}
587
588
int security_inode_killpriv(struct dentry *dentry)
589
{
590
return security_ops->inode_killpriv(dentry);
591
}
592
593
int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
594
{
595
if (unlikely(IS_PRIVATE(inode)))
596
return -EOPNOTSUPP;
597
return security_ops->inode_getsecurity(inode, name, buffer, alloc);
598
}
599
600
int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
601
{
602
if (unlikely(IS_PRIVATE(inode)))
603
return -EOPNOTSUPP;
604
return security_ops->inode_setsecurity(inode, name, value, size, flags);
605
}
606
607
int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
608
{
609
if (unlikely(IS_PRIVATE(inode)))
610
return 0;
611
return security_ops->inode_listsecurity(inode, buffer, buffer_size);
612
}
613
614
void security_inode_getsecid(const struct inode *inode, u32 *secid)
615
{
616
security_ops->inode_getsecid(inode, secid);
617
}
618
619
int security_file_permission(struct file *file, int mask)
620
{
621
int ret;
622
623
ret = security_ops->file_permission(file, mask);
624
if (ret)
625
return ret;
626
627
return fsnotify_perm(file, mask);
628
}
629
630
int security_file_alloc(struct file *file)
631
{
632
return security_ops->file_alloc_security(file);
633
}
634
635
void security_file_free(struct file *file)
636
{
637
security_ops->file_free_security(file);
638
}
639
640
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
641
{
642
return security_ops->file_ioctl(file, cmd, arg);
643
}
644
645
int security_file_mmap(struct file *file, unsigned long reqprot,
646
unsigned long prot, unsigned long flags,
647
unsigned long addr, unsigned long addr_only)
648
{
649
int ret;
650
651
ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
652
if (ret)
653
return ret;
654
return ima_file_mmap(file, prot);
655
}
656
657
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
658
unsigned long prot)
659
{
660
return security_ops->file_mprotect(vma, reqprot, prot);
661
}
662
663
int security_file_lock(struct file *file, unsigned int cmd)
664
{
665
return security_ops->file_lock(file, cmd);
666
}
667
668
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
669
{
670
return security_ops->file_fcntl(file, cmd, arg);
671
}
672
673
int security_file_set_fowner(struct file *file)
674
{
675
return security_ops->file_set_fowner(file);
676
}
677
678
int security_file_send_sigiotask(struct task_struct *tsk,
679
struct fown_struct *fown, int sig)
680
{
681
return security_ops->file_send_sigiotask(tsk, fown, sig);
682
}
683
684
int security_file_receive(struct file *file)
685
{
686
return security_ops->file_receive(file);
687
}
688
689
int security_dentry_open(struct file *file, const struct cred *cred)
690
{
691
int ret;
692
693
ret = security_ops->dentry_open(file, cred);
694
if (ret)
695
return ret;
696
697
return fsnotify_perm(file, MAY_OPEN);
698
}
699
700
int security_task_create(unsigned long clone_flags)
701
{
702
return security_ops->task_create(clone_flags);
703
}
704
705
int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
706
{
707
return security_ops->cred_alloc_blank(cred, gfp);
708
}
709
710
void security_cred_free(struct cred *cred)
711
{
712
security_ops->cred_free(cred);
713
}
714
715
int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
716
{
717
return security_ops->cred_prepare(new, old, gfp);
718
}
719
720
void security_transfer_creds(struct cred *new, const struct cred *old)
721
{
722
security_ops->cred_transfer(new, old);
723
}
724
725
int security_kernel_act_as(struct cred *new, u32 secid)
726
{
727
return security_ops->kernel_act_as(new, secid);
728
}
729
730
int security_kernel_create_files_as(struct cred *new, struct inode *inode)
731
{
732
return security_ops->kernel_create_files_as(new, inode);
733
}
734
735
int security_kernel_module_request(char *kmod_name)
736
{
737
return security_ops->kernel_module_request(kmod_name);
738
}
739
740
int security_task_fix_setuid(struct cred *new, const struct cred *old,
741
int flags)
742
{
743
return security_ops->task_fix_setuid(new, old, flags);
744
}
745
746
int security_task_setpgid(struct task_struct *p, pid_t pgid)
747
{
748
return security_ops->task_setpgid(p, pgid);
749
}
750
751
int security_task_getpgid(struct task_struct *p)
752
{
753
return security_ops->task_getpgid(p);
754
}
755
756
int security_task_getsid(struct task_struct *p)
757
{
758
return security_ops->task_getsid(p);
759
}
760
761
void security_task_getsecid(struct task_struct *p, u32 *secid)
762
{
763
security_ops->task_getsecid(p, secid);
764
}
765
EXPORT_SYMBOL(security_task_getsecid);
766
767
int security_task_setnice(struct task_struct *p, int nice)
768
{
769
return security_ops->task_setnice(p, nice);
770
}
771
772
int security_task_setioprio(struct task_struct *p, int ioprio)
773
{
774
return security_ops->task_setioprio(p, ioprio);
775
}
776
777
int security_task_getioprio(struct task_struct *p)
778
{
779
return security_ops->task_getioprio(p);
780
}
781
782
int security_task_setrlimit(struct task_struct *p, unsigned int resource,
783
struct rlimit *new_rlim)
784
{
785
return security_ops->task_setrlimit(p, resource, new_rlim);
786
}
787
788
int security_task_setscheduler(struct task_struct *p)
789
{
790
return security_ops->task_setscheduler(p);
791
}
792
793
int security_task_getscheduler(struct task_struct *p)
794
{
795
return security_ops->task_getscheduler(p);
796
}
797
798
int security_task_movememory(struct task_struct *p)
799
{
800
return security_ops->task_movememory(p);
801
}
802
803
int security_task_kill(struct task_struct *p, struct siginfo *info,
804
int sig, u32 secid)
805
{
806
return security_ops->task_kill(p, info, sig, secid);
807
}
808
809
int security_task_wait(struct task_struct *p)
810
{
811
return security_ops->task_wait(p);
812
}
813
814
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
815
unsigned long arg4, unsigned long arg5)
816
{
817
return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
818
}
819
820
void security_task_to_inode(struct task_struct *p, struct inode *inode)
821
{
822
security_ops->task_to_inode(p, inode);
823
}
824
825
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
826
{
827
return security_ops->ipc_permission(ipcp, flag);
828
}
829
830
void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
831
{
832
security_ops->ipc_getsecid(ipcp, secid);
833
}
834
835
int security_msg_msg_alloc(struct msg_msg *msg)
836
{
837
return security_ops->msg_msg_alloc_security(msg);
838
}
839
840
void security_msg_msg_free(struct msg_msg *msg)
841
{
842
security_ops->msg_msg_free_security(msg);
843
}
844
845
int security_msg_queue_alloc(struct msg_queue *msq)
846
{
847
return security_ops->msg_queue_alloc_security(msq);
848
}
849
850
void security_msg_queue_free(struct msg_queue *msq)
851
{
852
security_ops->msg_queue_free_security(msq);
853
}
854
855
int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
856
{
857
return security_ops->msg_queue_associate(msq, msqflg);
858
}
859
860
int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
861
{
862
return security_ops->msg_queue_msgctl(msq, cmd);
863
}
864
865
int security_msg_queue_msgsnd(struct msg_queue *msq,
866
struct msg_msg *msg, int msqflg)
867
{
868
return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
869
}
870
871
int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
872
struct task_struct *target, long type, int mode)
873
{
874
return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
875
}
876
877
int security_shm_alloc(struct shmid_kernel *shp)
878
{
879
return security_ops->shm_alloc_security(shp);
880
}
881
882
void security_shm_free(struct shmid_kernel *shp)
883
{
884
security_ops->shm_free_security(shp);
885
}
886
887
int security_shm_associate(struct shmid_kernel *shp, int shmflg)
888
{
889
return security_ops->shm_associate(shp, shmflg);
890
}
891
892
int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
893
{
894
return security_ops->shm_shmctl(shp, cmd);
895
}
896
897
int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
898
{
899
return security_ops->shm_shmat(shp, shmaddr, shmflg);
900
}
901
902
int security_sem_alloc(struct sem_array *sma)
903
{
904
return security_ops->sem_alloc_security(sma);
905
}
906
907
void security_sem_free(struct sem_array *sma)
908
{
909
security_ops->sem_free_security(sma);
910
}
911
912
int security_sem_associate(struct sem_array *sma, int semflg)
913
{
914
return security_ops->sem_associate(sma, semflg);
915
}
916
917
int security_sem_semctl(struct sem_array *sma, int cmd)
918
{
919
return security_ops->sem_semctl(sma, cmd);
920
}
921
922
int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
923
unsigned nsops, int alter)
924
{
925
return security_ops->sem_semop(sma, sops, nsops, alter);
926
}
927
928
void security_d_instantiate(struct dentry *dentry, struct inode *inode)
929
{
930
if (unlikely(inode && IS_PRIVATE(inode)))
931
return;
932
security_ops->d_instantiate(dentry, inode);
933
}
934
EXPORT_SYMBOL(security_d_instantiate);
935
936
int security_getprocattr(struct task_struct *p, char *name, char **value)
937
{
938
return security_ops->getprocattr(p, name, value);
939
}
940
941
int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
942
{
943
return security_ops->setprocattr(p, name, value, size);
944
}
945
946
int security_netlink_send(struct sock *sk, struct sk_buff *skb)
947
{
948
return security_ops->netlink_send(sk, skb);
949
}
950
951
int security_netlink_recv(struct sk_buff *skb, int cap)
952
{
953
return security_ops->netlink_recv(skb, cap);
954
}
955
EXPORT_SYMBOL(security_netlink_recv);
956
957
int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
958
{
959
return security_ops->secid_to_secctx(secid, secdata, seclen);
960
}
961
EXPORT_SYMBOL(security_secid_to_secctx);
962
963
int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
964
{
965
return security_ops->secctx_to_secid(secdata, seclen, secid);
966
}
967
EXPORT_SYMBOL(security_secctx_to_secid);
968
969
void security_release_secctx(char *secdata, u32 seclen)
970
{
971
security_ops->release_secctx(secdata, seclen);
972
}
973
EXPORT_SYMBOL(security_release_secctx);
974
975
int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
976
{
977
return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
978
}
979
EXPORT_SYMBOL(security_inode_notifysecctx);
980
981
int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
982
{
983
return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
984
}
985
EXPORT_SYMBOL(security_inode_setsecctx);
986
987
int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
988
{
989
return security_ops->inode_getsecctx(inode, ctx, ctxlen);
990
}
991
EXPORT_SYMBOL(security_inode_getsecctx);
992
993
#ifdef CONFIG_SECURITY_NETWORK
994
995
int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
996
{
997
return security_ops->unix_stream_connect(sock, other, newsk);
998
}
999
EXPORT_SYMBOL(security_unix_stream_connect);
1000
1001
int security_unix_may_send(struct socket *sock, struct socket *other)
1002
{
1003
return security_ops->unix_may_send(sock, other);
1004
}
1005
EXPORT_SYMBOL(security_unix_may_send);
1006
1007
int security_socket_create(int family, int type, int protocol, int kern)
1008
{
1009
return security_ops->socket_create(family, type, protocol, kern);
1010
}
1011
1012
int security_socket_post_create(struct socket *sock, int family,
1013
int type, int protocol, int kern)
1014
{
1015
return security_ops->socket_post_create(sock, family, type,
1016
protocol, kern);
1017
}
1018
1019
int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1020
{
1021
return security_ops->socket_bind(sock, address, addrlen);
1022
}
1023
1024
int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1025
{
1026
return security_ops->socket_connect(sock, address, addrlen);
1027
}
1028
1029
int security_socket_listen(struct socket *sock, int backlog)
1030
{
1031
return security_ops->socket_listen(sock, backlog);
1032
}
1033
1034
int security_socket_accept(struct socket *sock, struct socket *newsock)
1035
{
1036
return security_ops->socket_accept(sock, newsock);
1037
}
1038
1039
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1040
{
1041
return security_ops->socket_sendmsg(sock, msg, size);
1042
}
1043
1044
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1045
int size, int flags)
1046
{
1047
return security_ops->socket_recvmsg(sock, msg, size, flags);
1048
}
1049
1050
int security_socket_getsockname(struct socket *sock)
1051
{
1052
return security_ops->socket_getsockname(sock);
1053
}
1054
1055
int security_socket_getpeername(struct socket *sock)
1056
{
1057
return security_ops->socket_getpeername(sock);
1058
}
1059
1060
int security_socket_getsockopt(struct socket *sock, int level, int optname)
1061
{
1062
return security_ops->socket_getsockopt(sock, level, optname);
1063
}
1064
1065
int security_socket_setsockopt(struct socket *sock, int level, int optname)
1066
{
1067
return security_ops->socket_setsockopt(sock, level, optname);
1068
}
1069
1070
int security_socket_shutdown(struct socket *sock, int how)
1071
{
1072
return security_ops->socket_shutdown(sock, how);
1073
}
1074
1075
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1076
{
1077
return security_ops->socket_sock_rcv_skb(sk, skb);
1078
}
1079
EXPORT_SYMBOL(security_sock_rcv_skb);
1080
1081
int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1082
int __user *optlen, unsigned len)
1083
{
1084
return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1085
}
1086
1087
int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1088
{
1089
return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1090
}
1091
EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1092
1093
int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1094
{
1095
return security_ops->sk_alloc_security(sk, family, priority);
1096
}
1097
1098
void security_sk_free(struct sock *sk)
1099
{
1100
security_ops->sk_free_security(sk);
1101
}
1102
1103
void security_sk_clone(const struct sock *sk, struct sock *newsk)
1104
{
1105
security_ops->sk_clone_security(sk, newsk);
1106
}
1107
1108
void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1109
{
1110
security_ops->sk_getsecid(sk, &fl->flowi_secid);
1111
}
1112
EXPORT_SYMBOL(security_sk_classify_flow);
1113
1114
void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1115
{
1116
security_ops->req_classify_flow(req, fl);
1117
}
1118
EXPORT_SYMBOL(security_req_classify_flow);
1119
1120
void security_sock_graft(struct sock *sk, struct socket *parent)
1121
{
1122
security_ops->sock_graft(sk, parent);
1123
}
1124
EXPORT_SYMBOL(security_sock_graft);
1125
1126
int security_inet_conn_request(struct sock *sk,
1127
struct sk_buff *skb, struct request_sock *req)
1128
{
1129
return security_ops->inet_conn_request(sk, skb, req);
1130
}
1131
EXPORT_SYMBOL(security_inet_conn_request);
1132
1133
void security_inet_csk_clone(struct sock *newsk,
1134
const struct request_sock *req)
1135
{
1136
security_ops->inet_csk_clone(newsk, req);
1137
}
1138
1139
void security_inet_conn_established(struct sock *sk,
1140
struct sk_buff *skb)
1141
{
1142
security_ops->inet_conn_established(sk, skb);
1143
}
1144
1145
int security_secmark_relabel_packet(u32 secid)
1146
{
1147
return security_ops->secmark_relabel_packet(secid);
1148
}
1149
EXPORT_SYMBOL(security_secmark_relabel_packet);
1150
1151
void security_secmark_refcount_inc(void)
1152
{
1153
security_ops->secmark_refcount_inc();
1154
}
1155
EXPORT_SYMBOL(security_secmark_refcount_inc);
1156
1157
void security_secmark_refcount_dec(void)
1158
{
1159
security_ops->secmark_refcount_dec();
1160
}
1161
EXPORT_SYMBOL(security_secmark_refcount_dec);
1162
1163
int security_tun_dev_create(void)
1164
{
1165
return security_ops->tun_dev_create();
1166
}
1167
EXPORT_SYMBOL(security_tun_dev_create);
1168
1169
void security_tun_dev_post_create(struct sock *sk)
1170
{
1171
return security_ops->tun_dev_post_create(sk);
1172
}
1173
EXPORT_SYMBOL(security_tun_dev_post_create);
1174
1175
int security_tun_dev_attach(struct sock *sk)
1176
{
1177
return security_ops->tun_dev_attach(sk);
1178
}
1179
EXPORT_SYMBOL(security_tun_dev_attach);
1180
1181
#endif /* CONFIG_SECURITY_NETWORK */
1182
1183
#ifdef CONFIG_SECURITY_NETWORK_XFRM
1184
1185
int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1186
{
1187
return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1188
}
1189
EXPORT_SYMBOL(security_xfrm_policy_alloc);
1190
1191
int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1192
struct xfrm_sec_ctx **new_ctxp)
1193
{
1194
return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1195
}
1196
1197
void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1198
{
1199
security_ops->xfrm_policy_free_security(ctx);
1200
}
1201
EXPORT_SYMBOL(security_xfrm_policy_free);
1202
1203
int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1204
{
1205
return security_ops->xfrm_policy_delete_security(ctx);
1206
}
1207
1208
int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1209
{
1210
return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1211
}
1212
EXPORT_SYMBOL(security_xfrm_state_alloc);
1213
1214
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1215
struct xfrm_sec_ctx *polsec, u32 secid)
1216
{
1217
if (!polsec)
1218
return 0;
1219
/*
1220
* We want the context to be taken from secid which is usually
1221
* from the sock.
1222
*/
1223
return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1224
}
1225
1226
int security_xfrm_state_delete(struct xfrm_state *x)
1227
{
1228
return security_ops->xfrm_state_delete_security(x);
1229
}
1230
EXPORT_SYMBOL(security_xfrm_state_delete);
1231
1232
void security_xfrm_state_free(struct xfrm_state *x)
1233
{
1234
security_ops->xfrm_state_free_security(x);
1235
}
1236
1237
int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1238
{
1239
return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1240
}
1241
1242
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1243
struct xfrm_policy *xp,
1244
const struct flowi *fl)
1245
{
1246
return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1247
}
1248
1249
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1250
{
1251
return security_ops->xfrm_decode_session(skb, secid, 1);
1252
}
1253
1254
void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1255
{
1256
int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1257
1258
BUG_ON(rc);
1259
}
1260
EXPORT_SYMBOL(security_skb_classify_flow);
1261
1262
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1263
1264
#ifdef CONFIG_KEYS
1265
1266
int security_key_alloc(struct key *key, const struct cred *cred,
1267
unsigned long flags)
1268
{
1269
return security_ops->key_alloc(key, cred, flags);
1270
}
1271
1272
void security_key_free(struct key *key)
1273
{
1274
security_ops->key_free(key);
1275
}
1276
1277
int security_key_permission(key_ref_t key_ref,
1278
const struct cred *cred, key_perm_t perm)
1279
{
1280
return security_ops->key_permission(key_ref, cred, perm);
1281
}
1282
1283
int security_key_getsecurity(struct key *key, char **_buffer)
1284
{
1285
return security_ops->key_getsecurity(key, _buffer);
1286
}
1287
1288
#endif /* CONFIG_KEYS */
1289
1290
#ifdef CONFIG_AUDIT
1291
1292
int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1293
{
1294
return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1295
}
1296
1297
int security_audit_rule_known(struct audit_krule *krule)
1298
{
1299
return security_ops->audit_rule_known(krule);
1300
}
1301
1302
void security_audit_rule_free(void *lsmrule)
1303
{
1304
security_ops->audit_rule_free(lsmrule);
1305
}
1306
1307
int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1308
struct audit_context *actx)
1309
{
1310
return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1311
}
1312
1313
#endif /* CONFIG_AUDIT */
1314
1315