Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/security/selinux/avc.c
10814 views
1
/*
2
* Implementation of the kernel access vector cache (AVC).
3
*
4
* Authors: Stephen Smalley, <[email protected]>
5
* James Morris <[email protected]>
6
*
7
* Update: KaiGai, Kohei <[email protected]>
8
* Replaced the avc_lock spinlock by RCU.
9
*
10
* Copyright (C) 2003 Red Hat, Inc., James Morris <[email protected]>
11
*
12
* This program is free software; you can redistribute it and/or modify
13
* it under the terms of the GNU General Public License version 2,
14
* as published by the Free Software Foundation.
15
*/
16
#include <linux/types.h>
17
#include <linux/stddef.h>
18
#include <linux/kernel.h>
19
#include <linux/slab.h>
20
#include <linux/fs.h>
21
#include <linux/dcache.h>
22
#include <linux/init.h>
23
#include <linux/skbuff.h>
24
#include <linux/percpu.h>
25
#include <net/sock.h>
26
#include <linux/un.h>
27
#include <net/af_unix.h>
28
#include <linux/ip.h>
29
#include <linux/audit.h>
30
#include <linux/ipv6.h>
31
#include <net/ipv6.h>
32
#include "avc.h"
33
#include "avc_ss.h"
34
#include "classmap.h"
35
36
#define AVC_CACHE_SLOTS 512
37
#define AVC_DEF_CACHE_THRESHOLD 512
38
#define AVC_CACHE_RECLAIM 16
39
40
#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41
#define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
42
#else
43
#define avc_cache_stats_incr(field) do {} while (0)
44
#endif
45
46
struct avc_entry {
47
u32 ssid;
48
u32 tsid;
49
u16 tclass;
50
struct av_decision avd;
51
};
52
53
struct avc_node {
54
struct avc_entry ae;
55
struct hlist_node list; /* anchored in avc_cache->slots[i] */
56
struct rcu_head rhead;
57
};
58
59
struct avc_cache {
60
struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
61
spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
62
atomic_t lru_hint; /* LRU hint for reclaim scan */
63
atomic_t active_nodes;
64
u32 latest_notif; /* latest revocation notification */
65
};
66
67
struct avc_callback_node {
68
int (*callback) (u32 event, u32 ssid, u32 tsid,
69
u16 tclass, u32 perms,
70
u32 *out_retained);
71
u32 events;
72
u32 ssid;
73
u32 tsid;
74
u16 tclass;
75
u32 perms;
76
struct avc_callback_node *next;
77
};
78
79
/* Exported via selinufs */
80
unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
81
82
#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
83
DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
84
#endif
85
86
static struct avc_cache avc_cache;
87
static struct avc_callback_node *avc_callbacks;
88
static struct kmem_cache *avc_node_cachep;
89
90
static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
91
{
92
return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
93
}
94
95
/**
96
* avc_dump_av - Display an access vector in human-readable form.
97
* @tclass: target security class
98
* @av: access vector
99
*/
100
static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
101
{
102
const char **perms;
103
int i, perm;
104
105
if (av == 0) {
106
audit_log_format(ab, " null");
107
return;
108
}
109
110
perms = secclass_map[tclass-1].perms;
111
112
audit_log_format(ab, " {");
113
i = 0;
114
perm = 1;
115
while (i < (sizeof(av) * 8)) {
116
if ((perm & av) && perms[i]) {
117
audit_log_format(ab, " %s", perms[i]);
118
av &= ~perm;
119
}
120
i++;
121
perm <<= 1;
122
}
123
124
if (av)
125
audit_log_format(ab, " 0x%x", av);
126
127
audit_log_format(ab, " }");
128
}
129
130
/**
131
* avc_dump_query - Display a SID pair and a class in human-readable form.
132
* @ssid: source security identifier
133
* @tsid: target security identifier
134
* @tclass: target security class
135
*/
136
static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
137
{
138
int rc;
139
char *scontext;
140
u32 scontext_len;
141
142
rc = security_sid_to_context(ssid, &scontext, &scontext_len);
143
if (rc)
144
audit_log_format(ab, "ssid=%d", ssid);
145
else {
146
audit_log_format(ab, "scontext=%s", scontext);
147
kfree(scontext);
148
}
149
150
rc = security_sid_to_context(tsid, &scontext, &scontext_len);
151
if (rc)
152
audit_log_format(ab, " tsid=%d", tsid);
153
else {
154
audit_log_format(ab, " tcontext=%s", scontext);
155
kfree(scontext);
156
}
157
158
BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
159
audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
160
}
161
162
/**
163
* avc_init - Initialize the AVC.
164
*
165
* Initialize the access vector cache.
166
*/
167
void __init avc_init(void)
168
{
169
int i;
170
171
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
172
INIT_HLIST_HEAD(&avc_cache.slots[i]);
173
spin_lock_init(&avc_cache.slots_lock[i]);
174
}
175
atomic_set(&avc_cache.active_nodes, 0);
176
atomic_set(&avc_cache.lru_hint, 0);
177
178
avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
179
0, SLAB_PANIC, NULL);
180
181
audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
182
}
183
184
int avc_get_hash_stats(char *page)
185
{
186
int i, chain_len, max_chain_len, slots_used;
187
struct avc_node *node;
188
struct hlist_head *head;
189
190
rcu_read_lock();
191
192
slots_used = 0;
193
max_chain_len = 0;
194
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
195
head = &avc_cache.slots[i];
196
if (!hlist_empty(head)) {
197
struct hlist_node *next;
198
199
slots_used++;
200
chain_len = 0;
201
hlist_for_each_entry_rcu(node, next, head, list)
202
chain_len++;
203
if (chain_len > max_chain_len)
204
max_chain_len = chain_len;
205
}
206
}
207
208
rcu_read_unlock();
209
210
return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
211
"longest chain: %d\n",
212
atomic_read(&avc_cache.active_nodes),
213
slots_used, AVC_CACHE_SLOTS, max_chain_len);
214
}
215
216
static void avc_node_free(struct rcu_head *rhead)
217
{
218
struct avc_node *node = container_of(rhead, struct avc_node, rhead);
219
kmem_cache_free(avc_node_cachep, node);
220
avc_cache_stats_incr(frees);
221
}
222
223
static void avc_node_delete(struct avc_node *node)
224
{
225
hlist_del_rcu(&node->list);
226
call_rcu(&node->rhead, avc_node_free);
227
atomic_dec(&avc_cache.active_nodes);
228
}
229
230
static void avc_node_kill(struct avc_node *node)
231
{
232
kmem_cache_free(avc_node_cachep, node);
233
avc_cache_stats_incr(frees);
234
atomic_dec(&avc_cache.active_nodes);
235
}
236
237
static void avc_node_replace(struct avc_node *new, struct avc_node *old)
238
{
239
hlist_replace_rcu(&old->list, &new->list);
240
call_rcu(&old->rhead, avc_node_free);
241
atomic_dec(&avc_cache.active_nodes);
242
}
243
244
static inline int avc_reclaim_node(void)
245
{
246
struct avc_node *node;
247
int hvalue, try, ecx;
248
unsigned long flags;
249
struct hlist_head *head;
250
struct hlist_node *next;
251
spinlock_t *lock;
252
253
for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
254
hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
255
head = &avc_cache.slots[hvalue];
256
lock = &avc_cache.slots_lock[hvalue];
257
258
if (!spin_trylock_irqsave(lock, flags))
259
continue;
260
261
rcu_read_lock();
262
hlist_for_each_entry(node, next, head, list) {
263
avc_node_delete(node);
264
avc_cache_stats_incr(reclaims);
265
ecx++;
266
if (ecx >= AVC_CACHE_RECLAIM) {
267
rcu_read_unlock();
268
spin_unlock_irqrestore(lock, flags);
269
goto out;
270
}
271
}
272
rcu_read_unlock();
273
spin_unlock_irqrestore(lock, flags);
274
}
275
out:
276
return ecx;
277
}
278
279
static struct avc_node *avc_alloc_node(void)
280
{
281
struct avc_node *node;
282
283
node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
284
if (!node)
285
goto out;
286
287
INIT_HLIST_NODE(&node->list);
288
avc_cache_stats_incr(allocations);
289
290
if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
291
avc_reclaim_node();
292
293
out:
294
return node;
295
}
296
297
static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
298
{
299
node->ae.ssid = ssid;
300
node->ae.tsid = tsid;
301
node->ae.tclass = tclass;
302
memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
303
}
304
305
static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
306
{
307
struct avc_node *node, *ret = NULL;
308
int hvalue;
309
struct hlist_head *head;
310
struct hlist_node *next;
311
312
hvalue = avc_hash(ssid, tsid, tclass);
313
head = &avc_cache.slots[hvalue];
314
hlist_for_each_entry_rcu(node, next, head, list) {
315
if (ssid == node->ae.ssid &&
316
tclass == node->ae.tclass &&
317
tsid == node->ae.tsid) {
318
ret = node;
319
break;
320
}
321
}
322
323
return ret;
324
}
325
326
/**
327
* avc_lookup - Look up an AVC entry.
328
* @ssid: source security identifier
329
* @tsid: target security identifier
330
* @tclass: target security class
331
*
332
* Look up an AVC entry that is valid for the
333
* (@ssid, @tsid), interpreting the permissions
334
* based on @tclass. If a valid AVC entry exists,
335
* then this function returns the avc_node.
336
* Otherwise, this function returns NULL.
337
*/
338
static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
339
{
340
struct avc_node *node;
341
342
avc_cache_stats_incr(lookups);
343
node = avc_search_node(ssid, tsid, tclass);
344
345
if (node)
346
return node;
347
348
avc_cache_stats_incr(misses);
349
return NULL;
350
}
351
352
static int avc_latest_notif_update(int seqno, int is_insert)
353
{
354
int ret = 0;
355
static DEFINE_SPINLOCK(notif_lock);
356
unsigned long flag;
357
358
spin_lock_irqsave(&notif_lock, flag);
359
if (is_insert) {
360
if (seqno < avc_cache.latest_notif) {
361
printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
362
seqno, avc_cache.latest_notif);
363
ret = -EAGAIN;
364
}
365
} else {
366
if (seqno > avc_cache.latest_notif)
367
avc_cache.latest_notif = seqno;
368
}
369
spin_unlock_irqrestore(&notif_lock, flag);
370
371
return ret;
372
}
373
374
/**
375
* avc_insert - Insert an AVC entry.
376
* @ssid: source security identifier
377
* @tsid: target security identifier
378
* @tclass: target security class
379
* @avd: resulting av decision
380
*
381
* Insert an AVC entry for the SID pair
382
* (@ssid, @tsid) and class @tclass.
383
* The access vectors and the sequence number are
384
* normally provided by the security server in
385
* response to a security_compute_av() call. If the
386
* sequence number @avd->seqno is not less than the latest
387
* revocation notification, then the function copies
388
* the access vectors into a cache entry, returns
389
* avc_node inserted. Otherwise, this function returns NULL.
390
*/
391
static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
392
{
393
struct avc_node *pos, *node = NULL;
394
int hvalue;
395
unsigned long flag;
396
397
if (avc_latest_notif_update(avd->seqno, 1))
398
goto out;
399
400
node = avc_alloc_node();
401
if (node) {
402
struct hlist_head *head;
403
struct hlist_node *next;
404
spinlock_t *lock;
405
406
hvalue = avc_hash(ssid, tsid, tclass);
407
avc_node_populate(node, ssid, tsid, tclass, avd);
408
409
head = &avc_cache.slots[hvalue];
410
lock = &avc_cache.slots_lock[hvalue];
411
412
spin_lock_irqsave(lock, flag);
413
hlist_for_each_entry(pos, next, head, list) {
414
if (pos->ae.ssid == ssid &&
415
pos->ae.tsid == tsid &&
416
pos->ae.tclass == tclass) {
417
avc_node_replace(node, pos);
418
goto found;
419
}
420
}
421
hlist_add_head_rcu(&node->list, head);
422
found:
423
spin_unlock_irqrestore(lock, flag);
424
}
425
out:
426
return node;
427
}
428
429
/**
430
* avc_audit_pre_callback - SELinux specific information
431
* will be called by generic audit code
432
* @ab: the audit buffer
433
* @a: audit_data
434
*/
435
static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
436
{
437
struct common_audit_data *ad = a;
438
audit_log_format(ab, "avc: %s ",
439
ad->selinux_audit_data.denied ? "denied" : "granted");
440
avc_dump_av(ab, ad->selinux_audit_data.tclass,
441
ad->selinux_audit_data.audited);
442
audit_log_format(ab, " for ");
443
}
444
445
/**
446
* avc_audit_post_callback - SELinux specific information
447
* will be called by generic audit code
448
* @ab: the audit buffer
449
* @a: audit_data
450
*/
451
static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
452
{
453
struct common_audit_data *ad = a;
454
audit_log_format(ab, " ");
455
avc_dump_query(ab, ad->selinux_audit_data.ssid,
456
ad->selinux_audit_data.tsid,
457
ad->selinux_audit_data.tclass);
458
}
459
460
/**
461
* avc_audit - Audit the granting or denial of permissions.
462
* @ssid: source security identifier
463
* @tsid: target security identifier
464
* @tclass: target security class
465
* @requested: requested permissions
466
* @avd: access vector decisions
467
* @result: result from avc_has_perm_noaudit
468
* @a: auxiliary audit data
469
* @flags: VFS walk flags
470
*
471
* Audit the granting or denial of permissions in accordance
472
* with the policy. This function is typically called by
473
* avc_has_perm() after a permission check, but can also be
474
* called directly by callers who use avc_has_perm_noaudit()
475
* in order to separate the permission check from the auditing.
476
* For example, this separation is useful when the permission check must
477
* be performed under a lock, to allow the lock to be released
478
* before calling the auditing code.
479
*/
480
int avc_audit(u32 ssid, u32 tsid,
481
u16 tclass, u32 requested,
482
struct av_decision *avd, int result, struct common_audit_data *a,
483
unsigned flags)
484
{
485
struct common_audit_data stack_data;
486
u32 denied, audited;
487
denied = requested & ~avd->allowed;
488
if (denied) {
489
audited = denied & avd->auditdeny;
490
/*
491
* a->selinux_audit_data.auditdeny is TRICKY! Setting a bit in
492
* this field means that ANY denials should NOT be audited if
493
* the policy contains an explicit dontaudit rule for that
494
* permission. Take notice that this is unrelated to the
495
* actual permissions that were denied. As an example lets
496
* assume:
497
*
498
* denied == READ
499
* avd.auditdeny & ACCESS == 0 (not set means explicit rule)
500
* selinux_audit_data.auditdeny & ACCESS == 1
501
*
502
* We will NOT audit the denial even though the denied
503
* permission was READ and the auditdeny checks were for
504
* ACCESS
505
*/
506
if (a &&
507
a->selinux_audit_data.auditdeny &&
508
!(a->selinux_audit_data.auditdeny & avd->auditdeny))
509
audited = 0;
510
} else if (result)
511
audited = denied = requested;
512
else
513
audited = requested & avd->auditallow;
514
if (!audited)
515
return 0;
516
517
if (!a) {
518
a = &stack_data;
519
COMMON_AUDIT_DATA_INIT(a, NONE);
520
}
521
522
/*
523
* When in a RCU walk do the audit on the RCU retry. This is because
524
* the collection of the dname in an inode audit message is not RCU
525
* safe. Note this may drop some audits when the situation changes
526
* during retry. However this is logically just as if the operation
527
* happened a little later.
528
*/
529
if ((a->type == LSM_AUDIT_DATA_INODE) &&
530
(flags & IPERM_FLAG_RCU))
531
return -ECHILD;
532
533
a->selinux_audit_data.tclass = tclass;
534
a->selinux_audit_data.requested = requested;
535
a->selinux_audit_data.ssid = ssid;
536
a->selinux_audit_data.tsid = tsid;
537
a->selinux_audit_data.audited = audited;
538
a->selinux_audit_data.denied = denied;
539
a->lsm_pre_audit = avc_audit_pre_callback;
540
a->lsm_post_audit = avc_audit_post_callback;
541
common_lsm_audit(a);
542
return 0;
543
}
544
545
/**
546
* avc_add_callback - Register a callback for security events.
547
* @callback: callback function
548
* @events: security events
549
* @ssid: source security identifier or %SECSID_WILD
550
* @tsid: target security identifier or %SECSID_WILD
551
* @tclass: target security class
552
* @perms: permissions
553
*
554
* Register a callback function for events in the set @events
555
* related to the SID pair (@ssid, @tsid)
556
* and the permissions @perms, interpreting
557
* @perms based on @tclass. Returns %0 on success or
558
* -%ENOMEM if insufficient memory exists to add the callback.
559
*/
560
int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
561
u16 tclass, u32 perms,
562
u32 *out_retained),
563
u32 events, u32 ssid, u32 tsid,
564
u16 tclass, u32 perms)
565
{
566
struct avc_callback_node *c;
567
int rc = 0;
568
569
c = kmalloc(sizeof(*c), GFP_ATOMIC);
570
if (!c) {
571
rc = -ENOMEM;
572
goto out;
573
}
574
575
c->callback = callback;
576
c->events = events;
577
c->ssid = ssid;
578
c->tsid = tsid;
579
c->perms = perms;
580
c->next = avc_callbacks;
581
avc_callbacks = c;
582
out:
583
return rc;
584
}
585
586
static inline int avc_sidcmp(u32 x, u32 y)
587
{
588
return (x == y || x == SECSID_WILD || y == SECSID_WILD);
589
}
590
591
/**
592
* avc_update_node Update an AVC entry
593
* @event : Updating event
594
* @perms : Permission mask bits
595
* @ssid,@tsid,@tclass : identifier of an AVC entry
596
* @seqno : sequence number when decision was made
597
*
598
* if a valid AVC entry doesn't exist,this function returns -ENOENT.
599
* if kmalloc() called internal returns NULL, this function returns -ENOMEM.
600
* otherwise, this function updates the AVC entry. The original AVC-entry object
601
* will release later by RCU.
602
*/
603
static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
604
u32 seqno)
605
{
606
int hvalue, rc = 0;
607
unsigned long flag;
608
struct avc_node *pos, *node, *orig = NULL;
609
struct hlist_head *head;
610
struct hlist_node *next;
611
spinlock_t *lock;
612
613
node = avc_alloc_node();
614
if (!node) {
615
rc = -ENOMEM;
616
goto out;
617
}
618
619
/* Lock the target slot */
620
hvalue = avc_hash(ssid, tsid, tclass);
621
622
head = &avc_cache.slots[hvalue];
623
lock = &avc_cache.slots_lock[hvalue];
624
625
spin_lock_irqsave(lock, flag);
626
627
hlist_for_each_entry(pos, next, head, list) {
628
if (ssid == pos->ae.ssid &&
629
tsid == pos->ae.tsid &&
630
tclass == pos->ae.tclass &&
631
seqno == pos->ae.avd.seqno){
632
orig = pos;
633
break;
634
}
635
}
636
637
if (!orig) {
638
rc = -ENOENT;
639
avc_node_kill(node);
640
goto out_unlock;
641
}
642
643
/*
644
* Copy and replace original node.
645
*/
646
647
avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
648
649
switch (event) {
650
case AVC_CALLBACK_GRANT:
651
node->ae.avd.allowed |= perms;
652
break;
653
case AVC_CALLBACK_TRY_REVOKE:
654
case AVC_CALLBACK_REVOKE:
655
node->ae.avd.allowed &= ~perms;
656
break;
657
case AVC_CALLBACK_AUDITALLOW_ENABLE:
658
node->ae.avd.auditallow |= perms;
659
break;
660
case AVC_CALLBACK_AUDITALLOW_DISABLE:
661
node->ae.avd.auditallow &= ~perms;
662
break;
663
case AVC_CALLBACK_AUDITDENY_ENABLE:
664
node->ae.avd.auditdeny |= perms;
665
break;
666
case AVC_CALLBACK_AUDITDENY_DISABLE:
667
node->ae.avd.auditdeny &= ~perms;
668
break;
669
}
670
avc_node_replace(node, orig);
671
out_unlock:
672
spin_unlock_irqrestore(lock, flag);
673
out:
674
return rc;
675
}
676
677
/**
678
* avc_flush - Flush the cache
679
*/
680
static void avc_flush(void)
681
{
682
struct hlist_head *head;
683
struct hlist_node *next;
684
struct avc_node *node;
685
spinlock_t *lock;
686
unsigned long flag;
687
int i;
688
689
for (i = 0; i < AVC_CACHE_SLOTS; i++) {
690
head = &avc_cache.slots[i];
691
lock = &avc_cache.slots_lock[i];
692
693
spin_lock_irqsave(lock, flag);
694
/*
695
* With preemptable RCU, the outer spinlock does not
696
* prevent RCU grace periods from ending.
697
*/
698
rcu_read_lock();
699
hlist_for_each_entry(node, next, head, list)
700
avc_node_delete(node);
701
rcu_read_unlock();
702
spin_unlock_irqrestore(lock, flag);
703
}
704
}
705
706
/**
707
* avc_ss_reset - Flush the cache and revalidate migrated permissions.
708
* @seqno: policy sequence number
709
*/
710
int avc_ss_reset(u32 seqno)
711
{
712
struct avc_callback_node *c;
713
int rc = 0, tmprc;
714
715
avc_flush();
716
717
for (c = avc_callbacks; c; c = c->next) {
718
if (c->events & AVC_CALLBACK_RESET) {
719
tmprc = c->callback(AVC_CALLBACK_RESET,
720
0, 0, 0, 0, NULL);
721
/* save the first error encountered for the return
722
value and continue processing the callbacks */
723
if (!rc)
724
rc = tmprc;
725
}
726
}
727
728
avc_latest_notif_update(seqno, 0);
729
return rc;
730
}
731
732
/**
733
* avc_has_perm_noaudit - Check permissions but perform no auditing.
734
* @ssid: source security identifier
735
* @tsid: target security identifier
736
* @tclass: target security class
737
* @requested: requested permissions, interpreted based on @tclass
738
* @flags: AVC_STRICT or 0
739
* @avd: access vector decisions
740
*
741
* Check the AVC to determine whether the @requested permissions are granted
742
* for the SID pair (@ssid, @tsid), interpreting the permissions
743
* based on @tclass, and call the security server on a cache miss to obtain
744
* a new decision and add it to the cache. Return a copy of the decisions
745
* in @avd. Return %0 if all @requested permissions are granted,
746
* -%EACCES if any permissions are denied, or another -errno upon
747
* other errors. This function is typically called by avc_has_perm(),
748
* but may also be called directly to separate permission checking from
749
* auditing, e.g. in cases where a lock must be held for the check but
750
* should be released for the auditing.
751
*/
752
int avc_has_perm_noaudit(u32 ssid, u32 tsid,
753
u16 tclass, u32 requested,
754
unsigned flags,
755
struct av_decision *avd)
756
{
757
struct avc_node *node;
758
int rc = 0;
759
u32 denied;
760
761
BUG_ON(!requested);
762
763
rcu_read_lock();
764
765
node = avc_lookup(ssid, tsid, tclass);
766
if (unlikely(!node)) {
767
rcu_read_unlock();
768
security_compute_av(ssid, tsid, tclass, avd);
769
rcu_read_lock();
770
node = avc_insert(ssid, tsid, tclass, avd);
771
} else {
772
memcpy(avd, &node->ae.avd, sizeof(*avd));
773
avd = &node->ae.avd;
774
}
775
776
denied = requested & ~(avd->allowed);
777
778
if (denied) {
779
if (flags & AVC_STRICT)
780
rc = -EACCES;
781
else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
782
avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
783
tsid, tclass, avd->seqno);
784
else
785
rc = -EACCES;
786
}
787
788
rcu_read_unlock();
789
return rc;
790
}
791
792
/**
793
* avc_has_perm - Check permissions and perform any appropriate auditing.
794
* @ssid: source security identifier
795
* @tsid: target security identifier
796
* @tclass: target security class
797
* @requested: requested permissions, interpreted based on @tclass
798
* @auditdata: auxiliary audit data
799
* @flags: VFS walk flags
800
*
801
* Check the AVC to determine whether the @requested permissions are granted
802
* for the SID pair (@ssid, @tsid), interpreting the permissions
803
* based on @tclass, and call the security server on a cache miss to obtain
804
* a new decision and add it to the cache. Audit the granting or denial of
805
* permissions in accordance with the policy. Return %0 if all @requested
806
* permissions are granted, -%EACCES if any permissions are denied, or
807
* another -errno upon other errors.
808
*/
809
int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
810
u32 requested, struct common_audit_data *auditdata,
811
unsigned flags)
812
{
813
struct av_decision avd;
814
int rc, rc2;
815
816
rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
817
818
rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
819
flags);
820
if (rc2)
821
return rc2;
822
return rc;
823
}
824
825
u32 avc_policy_seqno(void)
826
{
827
return avc_cache.latest_notif;
828
}
829
830
void avc_disable(void)
831
{
832
/*
833
* If you are looking at this because you have realized that we are
834
* not destroying the avc_node_cachep it might be easy to fix, but
835
* I don't know the memory barrier semantics well enough to know. It's
836
* possible that some other task dereferenced security_ops when
837
* it still pointed to selinux operations. If that is the case it's
838
* possible that it is about to use the avc and is about to need the
839
* avc_node_cachep. I know I could wrap the security.c security_ops call
840
* in an rcu_lock, but seriously, it's not worth it. Instead I just flush
841
* the cache and get that memory back.
842
*/
843
if (avc_node_cachep) {
844
avc_flush();
845
/* kmem_cache_destroy(avc_node_cachep); */
846
}
847
}
848
849