Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/security/selinux/ss/conditional.c
10817 views
1
/* Authors: Karl MacMillan <[email protected]>
2
* Frank Mayer <[email protected]>
3
*
4
* Copyright (C) 2003 - 2004 Tresys Technology, LLC
5
* This program is free software; you can redistribute it and/or modify
6
* it under the terms of the GNU General Public License as published by
7
* the Free Software Foundation, version 2.
8
*/
9
10
#include <linux/kernel.h>
11
#include <linux/errno.h>
12
#include <linux/string.h>
13
#include <linux/spinlock.h>
14
#include <linux/slab.h>
15
16
#include "security.h"
17
#include "conditional.h"
18
19
/*
20
* cond_evaluate_expr evaluates a conditional expr
21
* in reverse polish notation. It returns true (1), false (0),
22
* or undefined (-1). Undefined occurs when the expression
23
* exceeds the stack depth of COND_EXPR_MAXDEPTH.
24
*/
25
static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
26
{
27
28
struct cond_expr *cur;
29
int s[COND_EXPR_MAXDEPTH];
30
int sp = -1;
31
32
for (cur = expr; cur; cur = cur->next) {
33
switch (cur->expr_type) {
34
case COND_BOOL:
35
if (sp == (COND_EXPR_MAXDEPTH - 1))
36
return -1;
37
sp++;
38
s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
39
break;
40
case COND_NOT:
41
if (sp < 0)
42
return -1;
43
s[sp] = !s[sp];
44
break;
45
case COND_OR:
46
if (sp < 1)
47
return -1;
48
sp--;
49
s[sp] |= s[sp + 1];
50
break;
51
case COND_AND:
52
if (sp < 1)
53
return -1;
54
sp--;
55
s[sp] &= s[sp + 1];
56
break;
57
case COND_XOR:
58
if (sp < 1)
59
return -1;
60
sp--;
61
s[sp] ^= s[sp + 1];
62
break;
63
case COND_EQ:
64
if (sp < 1)
65
return -1;
66
sp--;
67
s[sp] = (s[sp] == s[sp + 1]);
68
break;
69
case COND_NEQ:
70
if (sp < 1)
71
return -1;
72
sp--;
73
s[sp] = (s[sp] != s[sp + 1]);
74
break;
75
default:
76
return -1;
77
}
78
}
79
return s[0];
80
}
81
82
/*
83
* evaluate_cond_node evaluates the conditional stored in
84
* a struct cond_node and if the result is different than the
85
* current state of the node it sets the rules in the true/false
86
* list appropriately. If the result of the expression is undefined
87
* all of the rules are disabled for safety.
88
*/
89
int evaluate_cond_node(struct policydb *p, struct cond_node *node)
90
{
91
int new_state;
92
struct cond_av_list *cur;
93
94
new_state = cond_evaluate_expr(p, node->expr);
95
if (new_state != node->cur_state) {
96
node->cur_state = new_state;
97
if (new_state == -1)
98
printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
99
/* turn the rules on or off */
100
for (cur = node->true_list; cur; cur = cur->next) {
101
if (new_state <= 0)
102
cur->node->key.specified &= ~AVTAB_ENABLED;
103
else
104
cur->node->key.specified |= AVTAB_ENABLED;
105
}
106
107
for (cur = node->false_list; cur; cur = cur->next) {
108
/* -1 or 1 */
109
if (new_state)
110
cur->node->key.specified &= ~AVTAB_ENABLED;
111
else
112
cur->node->key.specified |= AVTAB_ENABLED;
113
}
114
}
115
return 0;
116
}
117
118
int cond_policydb_init(struct policydb *p)
119
{
120
int rc;
121
122
p->bool_val_to_struct = NULL;
123
p->cond_list = NULL;
124
125
rc = avtab_init(&p->te_cond_avtab);
126
if (rc)
127
return rc;
128
129
return 0;
130
}
131
132
static void cond_av_list_destroy(struct cond_av_list *list)
133
{
134
struct cond_av_list *cur, *next;
135
for (cur = list; cur; cur = next) {
136
next = cur->next;
137
/* the avtab_ptr_t node is destroy by the avtab */
138
kfree(cur);
139
}
140
}
141
142
static void cond_node_destroy(struct cond_node *node)
143
{
144
struct cond_expr *cur_expr, *next_expr;
145
146
for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
147
next_expr = cur_expr->next;
148
kfree(cur_expr);
149
}
150
cond_av_list_destroy(node->true_list);
151
cond_av_list_destroy(node->false_list);
152
kfree(node);
153
}
154
155
static void cond_list_destroy(struct cond_node *list)
156
{
157
struct cond_node *next, *cur;
158
159
if (list == NULL)
160
return;
161
162
for (cur = list; cur; cur = next) {
163
next = cur->next;
164
cond_node_destroy(cur);
165
}
166
}
167
168
void cond_policydb_destroy(struct policydb *p)
169
{
170
kfree(p->bool_val_to_struct);
171
avtab_destroy(&p->te_cond_avtab);
172
cond_list_destroy(p->cond_list);
173
}
174
175
int cond_init_bool_indexes(struct policydb *p)
176
{
177
kfree(p->bool_val_to_struct);
178
p->bool_val_to_struct = (struct cond_bool_datum **)
179
kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL);
180
if (!p->bool_val_to_struct)
181
return -ENOMEM;
182
return 0;
183
}
184
185
int cond_destroy_bool(void *key, void *datum, void *p)
186
{
187
kfree(key);
188
kfree(datum);
189
return 0;
190
}
191
192
int cond_index_bool(void *key, void *datum, void *datap)
193
{
194
struct policydb *p;
195
struct cond_bool_datum *booldatum;
196
struct flex_array *fa;
197
198
booldatum = datum;
199
p = datap;
200
201
if (!booldatum->value || booldatum->value > p->p_bools.nprim)
202
return -EINVAL;
203
204
fa = p->sym_val_to_name[SYM_BOOLS];
205
if (flex_array_put_ptr(fa, booldatum->value - 1, key,
206
GFP_KERNEL | __GFP_ZERO))
207
BUG();
208
p->bool_val_to_struct[booldatum->value - 1] = booldatum;
209
210
return 0;
211
}
212
213
static int bool_isvalid(struct cond_bool_datum *b)
214
{
215
if (!(b->state == 0 || b->state == 1))
216
return 0;
217
return 1;
218
}
219
220
int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
221
{
222
char *key = NULL;
223
struct cond_bool_datum *booldatum;
224
__le32 buf[3];
225
u32 len;
226
int rc;
227
228
booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
229
if (!booldatum)
230
return -ENOMEM;
231
232
rc = next_entry(buf, fp, sizeof buf);
233
if (rc)
234
goto err;
235
236
booldatum->value = le32_to_cpu(buf[0]);
237
booldatum->state = le32_to_cpu(buf[1]);
238
239
rc = -EINVAL;
240
if (!bool_isvalid(booldatum))
241
goto err;
242
243
len = le32_to_cpu(buf[2]);
244
245
rc = -ENOMEM;
246
key = kmalloc(len + 1, GFP_KERNEL);
247
if (!key)
248
goto err;
249
rc = next_entry(key, fp, len);
250
if (rc)
251
goto err;
252
key[len] = '\0';
253
rc = hashtab_insert(h, key, booldatum);
254
if (rc)
255
goto err;
256
257
return 0;
258
err:
259
cond_destroy_bool(key, booldatum, NULL);
260
return rc;
261
}
262
263
struct cond_insertf_data {
264
struct policydb *p;
265
struct cond_av_list *other;
266
struct cond_av_list *head;
267
struct cond_av_list *tail;
268
};
269
270
static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
271
{
272
struct cond_insertf_data *data = ptr;
273
struct policydb *p = data->p;
274
struct cond_av_list *other = data->other, *list, *cur;
275
struct avtab_node *node_ptr;
276
u8 found;
277
int rc = -EINVAL;
278
279
/*
280
* For type rules we have to make certain there aren't any
281
* conflicting rules by searching the te_avtab and the
282
* cond_te_avtab.
283
*/
284
if (k->specified & AVTAB_TYPE) {
285
if (avtab_search(&p->te_avtab, k)) {
286
printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
287
goto err;
288
}
289
/*
290
* If we are reading the false list other will be a pointer to
291
* the true list. We can have duplicate entries if there is only
292
* 1 other entry and it is in our true list.
293
*
294
* If we are reading the true list (other == NULL) there shouldn't
295
* be any other entries.
296
*/
297
if (other) {
298
node_ptr = avtab_search_node(&p->te_cond_avtab, k);
299
if (node_ptr) {
300
if (avtab_search_node_next(node_ptr, k->specified)) {
301
printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
302
goto err;
303
}
304
found = 0;
305
for (cur = other; cur; cur = cur->next) {
306
if (cur->node == node_ptr) {
307
found = 1;
308
break;
309
}
310
}
311
if (!found) {
312
printk(KERN_ERR "SELinux: conflicting type rules.\n");
313
goto err;
314
}
315
}
316
} else {
317
if (avtab_search(&p->te_cond_avtab, k)) {
318
printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
319
goto err;
320
}
321
}
322
}
323
324
node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
325
if (!node_ptr) {
326
printk(KERN_ERR "SELinux: could not insert rule.\n");
327
rc = -ENOMEM;
328
goto err;
329
}
330
331
list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL);
332
if (!list) {
333
rc = -ENOMEM;
334
goto err;
335
}
336
337
list->node = node_ptr;
338
if (!data->head)
339
data->head = list;
340
else
341
data->tail->next = list;
342
data->tail = list;
343
return 0;
344
345
err:
346
cond_av_list_destroy(data->head);
347
data->head = NULL;
348
return rc;
349
}
350
351
static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
352
{
353
int i, rc;
354
__le32 buf[1];
355
u32 len;
356
struct cond_insertf_data data;
357
358
*ret_list = NULL;
359
360
len = 0;
361
rc = next_entry(buf, fp, sizeof(u32));
362
if (rc)
363
return rc;
364
365
len = le32_to_cpu(buf[0]);
366
if (len == 0)
367
return 0;
368
369
data.p = p;
370
data.other = other;
371
data.head = NULL;
372
data.tail = NULL;
373
for (i = 0; i < len; i++) {
374
rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
375
&data);
376
if (rc)
377
return rc;
378
}
379
380
*ret_list = data.head;
381
return 0;
382
}
383
384
static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
385
{
386
if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
387
printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
388
return 0;
389
}
390
391
if (expr->bool > p->p_bools.nprim) {
392
printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
393
return 0;
394
}
395
return 1;
396
}
397
398
static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
399
{
400
__le32 buf[2];
401
u32 len, i;
402
int rc;
403
struct cond_expr *expr = NULL, *last = NULL;
404
405
rc = next_entry(buf, fp, sizeof(u32));
406
if (rc)
407
return rc;
408
409
node->cur_state = le32_to_cpu(buf[0]);
410
411
len = 0;
412
rc = next_entry(buf, fp, sizeof(u32));
413
if (rc)
414
return rc;
415
416
/* expr */
417
len = le32_to_cpu(buf[0]);
418
419
for (i = 0; i < len; i++) {
420
rc = next_entry(buf, fp, sizeof(u32) * 2);
421
if (rc)
422
goto err;
423
424
rc = -ENOMEM;
425
expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL);
426
if (!expr)
427
goto err;
428
429
expr->expr_type = le32_to_cpu(buf[0]);
430
expr->bool = le32_to_cpu(buf[1]);
431
432
if (!expr_isvalid(p, expr)) {
433
rc = -EINVAL;
434
kfree(expr);
435
goto err;
436
}
437
438
if (i == 0)
439
node->expr = expr;
440
else
441
last->next = expr;
442
last = expr;
443
}
444
445
rc = cond_read_av_list(p, fp, &node->true_list, NULL);
446
if (rc)
447
goto err;
448
rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
449
if (rc)
450
goto err;
451
return 0;
452
err:
453
cond_node_destroy(node);
454
return rc;
455
}
456
457
int cond_read_list(struct policydb *p, void *fp)
458
{
459
struct cond_node *node, *last = NULL;
460
__le32 buf[1];
461
u32 i, len;
462
int rc;
463
464
rc = next_entry(buf, fp, sizeof buf);
465
if (rc)
466
return rc;
467
468
len = le32_to_cpu(buf[0]);
469
470
rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
471
if (rc)
472
goto err;
473
474
for (i = 0; i < len; i++) {
475
rc = -ENOMEM;
476
node = kzalloc(sizeof(struct cond_node), GFP_KERNEL);
477
if (!node)
478
goto err;
479
480
rc = cond_read_node(p, node, fp);
481
if (rc)
482
goto err;
483
484
if (i == 0)
485
p->cond_list = node;
486
else
487
last->next = node;
488
last = node;
489
}
490
return 0;
491
err:
492
cond_list_destroy(p->cond_list);
493
p->cond_list = NULL;
494
return rc;
495
}
496
497
int cond_write_bool(void *vkey, void *datum, void *ptr)
498
{
499
char *key = vkey;
500
struct cond_bool_datum *booldatum = datum;
501
struct policy_data *pd = ptr;
502
void *fp = pd->fp;
503
__le32 buf[3];
504
u32 len;
505
int rc;
506
507
len = strlen(key);
508
buf[0] = cpu_to_le32(booldatum->value);
509
buf[1] = cpu_to_le32(booldatum->state);
510
buf[2] = cpu_to_le32(len);
511
rc = put_entry(buf, sizeof(u32), 3, fp);
512
if (rc)
513
return rc;
514
rc = put_entry(key, 1, len, fp);
515
if (rc)
516
return rc;
517
return 0;
518
}
519
520
/*
521
* cond_write_cond_av_list doesn't write out the av_list nodes.
522
* Instead it writes out the key/value pairs from the avtab. This
523
* is necessary because there is no way to uniquely identifying rules
524
* in the avtab so it is not possible to associate individual rules
525
* in the avtab with a conditional without saving them as part of
526
* the conditional. This means that the avtab with the conditional
527
* rules will not be saved but will be rebuilt on policy load.
528
*/
529
static int cond_write_av_list(struct policydb *p,
530
struct cond_av_list *list, struct policy_file *fp)
531
{
532
__le32 buf[1];
533
struct cond_av_list *cur_list;
534
u32 len;
535
int rc;
536
537
len = 0;
538
for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
539
len++;
540
541
buf[0] = cpu_to_le32(len);
542
rc = put_entry(buf, sizeof(u32), 1, fp);
543
if (rc)
544
return rc;
545
546
if (len == 0)
547
return 0;
548
549
for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
550
rc = avtab_write_item(p, cur_list->node, fp);
551
if (rc)
552
return rc;
553
}
554
555
return 0;
556
}
557
558
int cond_write_node(struct policydb *p, struct cond_node *node,
559
struct policy_file *fp)
560
{
561
struct cond_expr *cur_expr;
562
__le32 buf[2];
563
int rc;
564
u32 len = 0;
565
566
buf[0] = cpu_to_le32(node->cur_state);
567
rc = put_entry(buf, sizeof(u32), 1, fp);
568
if (rc)
569
return rc;
570
571
for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
572
len++;
573
574
buf[0] = cpu_to_le32(len);
575
rc = put_entry(buf, sizeof(u32), 1, fp);
576
if (rc)
577
return rc;
578
579
for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
580
buf[0] = cpu_to_le32(cur_expr->expr_type);
581
buf[1] = cpu_to_le32(cur_expr->bool);
582
rc = put_entry(buf, sizeof(u32), 2, fp);
583
if (rc)
584
return rc;
585
}
586
587
rc = cond_write_av_list(p, node->true_list, fp);
588
if (rc)
589
return rc;
590
rc = cond_write_av_list(p, node->false_list, fp);
591
if (rc)
592
return rc;
593
594
return 0;
595
}
596
597
int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
598
{
599
struct cond_node *cur;
600
u32 len;
601
__le32 buf[1];
602
int rc;
603
604
len = 0;
605
for (cur = list; cur != NULL; cur = cur->next)
606
len++;
607
buf[0] = cpu_to_le32(len);
608
rc = put_entry(buf, sizeof(u32), 1, fp);
609
if (rc)
610
return rc;
611
612
for (cur = list; cur != NULL; cur = cur->next) {
613
rc = cond_write_node(p, cur, fp);
614
if (rc)
615
return rc;
616
}
617
618
return 0;
619
}
620
/* Determine whether additional permissions are granted by the conditional
621
* av table, and if so, add them to the result
622
*/
623
void cond_compute_av(struct avtab *ctab, struct avtab_key *key, struct av_decision *avd)
624
{
625
struct avtab_node *node;
626
627
if (!ctab || !key || !avd)
628
return;
629
630
for (node = avtab_search_node(ctab, key); node;
631
node = avtab_search_node_next(node, key->specified)) {
632
if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
633
(node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
634
avd->allowed |= node->datum.data;
635
if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
636
(node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
637
/* Since a '0' in an auditdeny mask represents a
638
* permission we do NOT want to audit (dontaudit), we use
639
* the '&' operand to ensure that all '0's in the mask
640
* are retained (much unlike the allow and auditallow cases).
641
*/
642
avd->auditdeny &= node->datum.data;
643
if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
644
(node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
645
avd->auditallow |= node->datum.data;
646
}
647
return;
648
}
649
650