Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/security/selinux/ss/services.c
10817 views
1
/*
2
* Implementation of the security services.
3
*
4
* Authors : Stephen Smalley, <[email protected]>
5
* James Morris <[email protected]>
6
*
7
* Updated: Trusted Computer Solutions, Inc. <[email protected]>
8
*
9
* Support for enhanced MLS infrastructure.
10
* Support for context based audit filters.
11
*
12
* Updated: Frank Mayer <[email protected]> and Karl MacMillan <[email protected]>
13
*
14
* Added conditional policy language extensions
15
*
16
* Updated: Hewlett-Packard <[email protected]>
17
*
18
* Added support for NetLabel
19
* Added support for the policy capability bitmap
20
*
21
* Updated: Chad Sellers <[email protected]>
22
*
23
* Added validation of kernel classes and permissions
24
*
25
* Updated: KaiGai Kohei <[email protected]>
26
*
27
* Added support for bounds domain and audit messaged on masked permissions
28
*
29
* Updated: Guido Trentalancia <[email protected]>
30
*
31
* Added support for runtime switching of the policy type
32
*
33
* Copyright (C) 2008, 2009 NEC Corporation
34
* Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35
* Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36
* Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37
* Copyright (C) 2003 Red Hat, Inc., James Morris <[email protected]>
38
* This program is free software; you can redistribute it and/or modify
39
* it under the terms of the GNU General Public License as published by
40
* the Free Software Foundation, version 2.
41
*/
42
#include <linux/kernel.h>
43
#include <linux/slab.h>
44
#include <linux/string.h>
45
#include <linux/spinlock.h>
46
#include <linux/rcupdate.h>
47
#include <linux/errno.h>
48
#include <linux/in.h>
49
#include <linux/sched.h>
50
#include <linux/audit.h>
51
#include <linux/mutex.h>
52
#include <linux/selinux.h>
53
#include <linux/flex_array.h>
54
#include <linux/vmalloc.h>
55
#include <net/netlabel.h>
56
57
#include "flask.h"
58
#include "avc.h"
59
#include "avc_ss.h"
60
#include "security.h"
61
#include "context.h"
62
#include "policydb.h"
63
#include "sidtab.h"
64
#include "services.h"
65
#include "conditional.h"
66
#include "mls.h"
67
#include "objsec.h"
68
#include "netlabel.h"
69
#include "xfrm.h"
70
#include "ebitmap.h"
71
#include "audit.h"
72
73
extern void selnl_notify_policyload(u32 seqno);
74
75
int selinux_policycap_netpeer;
76
int selinux_policycap_openperm;
77
78
static DEFINE_RWLOCK(policy_rwlock);
79
80
static struct sidtab sidtab;
81
struct policydb policydb;
82
int ss_initialized;
83
84
/*
85
* The largest sequence number that has been used when
86
* providing an access decision to the access vector cache.
87
* The sequence number only changes when a policy change
88
* occurs.
89
*/
90
static u32 latest_granting;
91
92
/* Forward declaration. */
93
static int context_struct_to_string(struct context *context, char **scontext,
94
u32 *scontext_len);
95
96
static void context_struct_compute_av(struct context *scontext,
97
struct context *tcontext,
98
u16 tclass,
99
struct av_decision *avd);
100
101
struct selinux_mapping {
102
u16 value; /* policy value */
103
unsigned num_perms;
104
u32 perms[sizeof(u32) * 8];
105
};
106
107
static struct selinux_mapping *current_mapping;
108
static u16 current_mapping_size;
109
110
static int selinux_set_mapping(struct policydb *pol,
111
struct security_class_mapping *map,
112
struct selinux_mapping **out_map_p,
113
u16 *out_map_size)
114
{
115
struct selinux_mapping *out_map = NULL;
116
size_t size = sizeof(struct selinux_mapping);
117
u16 i, j;
118
unsigned k;
119
bool print_unknown_handle = false;
120
121
/* Find number of classes in the input mapping */
122
if (!map)
123
return -EINVAL;
124
i = 0;
125
while (map[i].name)
126
i++;
127
128
/* Allocate space for the class records, plus one for class zero */
129
out_map = kcalloc(++i, size, GFP_ATOMIC);
130
if (!out_map)
131
return -ENOMEM;
132
133
/* Store the raw class and permission values */
134
j = 0;
135
while (map[j].name) {
136
struct security_class_mapping *p_in = map + (j++);
137
struct selinux_mapping *p_out = out_map + j;
138
139
/* An empty class string skips ahead */
140
if (!strcmp(p_in->name, "")) {
141
p_out->num_perms = 0;
142
continue;
143
}
144
145
p_out->value = string_to_security_class(pol, p_in->name);
146
if (!p_out->value) {
147
printk(KERN_INFO
148
"SELinux: Class %s not defined in policy.\n",
149
p_in->name);
150
if (pol->reject_unknown)
151
goto err;
152
p_out->num_perms = 0;
153
print_unknown_handle = true;
154
continue;
155
}
156
157
k = 0;
158
while (p_in->perms && p_in->perms[k]) {
159
/* An empty permission string skips ahead */
160
if (!*p_in->perms[k]) {
161
k++;
162
continue;
163
}
164
p_out->perms[k] = string_to_av_perm(pol, p_out->value,
165
p_in->perms[k]);
166
if (!p_out->perms[k]) {
167
printk(KERN_INFO
168
"SELinux: Permission %s in class %s not defined in policy.\n",
169
p_in->perms[k], p_in->name);
170
if (pol->reject_unknown)
171
goto err;
172
print_unknown_handle = true;
173
}
174
175
k++;
176
}
177
p_out->num_perms = k;
178
}
179
180
if (print_unknown_handle)
181
printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
182
pol->allow_unknown ? "allowed" : "denied");
183
184
*out_map_p = out_map;
185
*out_map_size = i;
186
return 0;
187
err:
188
kfree(out_map);
189
return -EINVAL;
190
}
191
192
/*
193
* Get real, policy values from mapped values
194
*/
195
196
static u16 unmap_class(u16 tclass)
197
{
198
if (tclass < current_mapping_size)
199
return current_mapping[tclass].value;
200
201
return tclass;
202
}
203
204
/*
205
* Get kernel value for class from its policy value
206
*/
207
static u16 map_class(u16 pol_value)
208
{
209
u16 i;
210
211
for (i = 1; i < current_mapping_size; i++) {
212
if (current_mapping[i].value == pol_value)
213
return i;
214
}
215
216
return SECCLASS_NULL;
217
}
218
219
static void map_decision(u16 tclass, struct av_decision *avd,
220
int allow_unknown)
221
{
222
if (tclass < current_mapping_size) {
223
unsigned i, n = current_mapping[tclass].num_perms;
224
u32 result;
225
226
for (i = 0, result = 0; i < n; i++) {
227
if (avd->allowed & current_mapping[tclass].perms[i])
228
result |= 1<<i;
229
if (allow_unknown && !current_mapping[tclass].perms[i])
230
result |= 1<<i;
231
}
232
avd->allowed = result;
233
234
for (i = 0, result = 0; i < n; i++)
235
if (avd->auditallow & current_mapping[tclass].perms[i])
236
result |= 1<<i;
237
avd->auditallow = result;
238
239
for (i = 0, result = 0; i < n; i++) {
240
if (avd->auditdeny & current_mapping[tclass].perms[i])
241
result |= 1<<i;
242
if (!allow_unknown && !current_mapping[tclass].perms[i])
243
result |= 1<<i;
244
}
245
/*
246
* In case the kernel has a bug and requests a permission
247
* between num_perms and the maximum permission number, we
248
* should audit that denial
249
*/
250
for (; i < (sizeof(u32)*8); i++)
251
result |= 1<<i;
252
avd->auditdeny = result;
253
}
254
}
255
256
int security_mls_enabled(void)
257
{
258
return policydb.mls_enabled;
259
}
260
261
/*
262
* Return the boolean value of a constraint expression
263
* when it is applied to the specified source and target
264
* security contexts.
265
*
266
* xcontext is a special beast... It is used by the validatetrans rules
267
* only. For these rules, scontext is the context before the transition,
268
* tcontext is the context after the transition, and xcontext is the context
269
* of the process performing the transition. All other callers of
270
* constraint_expr_eval should pass in NULL for xcontext.
271
*/
272
static int constraint_expr_eval(struct context *scontext,
273
struct context *tcontext,
274
struct context *xcontext,
275
struct constraint_expr *cexpr)
276
{
277
u32 val1, val2;
278
struct context *c;
279
struct role_datum *r1, *r2;
280
struct mls_level *l1, *l2;
281
struct constraint_expr *e;
282
int s[CEXPR_MAXDEPTH];
283
int sp = -1;
284
285
for (e = cexpr; e; e = e->next) {
286
switch (e->expr_type) {
287
case CEXPR_NOT:
288
BUG_ON(sp < 0);
289
s[sp] = !s[sp];
290
break;
291
case CEXPR_AND:
292
BUG_ON(sp < 1);
293
sp--;
294
s[sp] &= s[sp + 1];
295
break;
296
case CEXPR_OR:
297
BUG_ON(sp < 1);
298
sp--;
299
s[sp] |= s[sp + 1];
300
break;
301
case CEXPR_ATTR:
302
if (sp == (CEXPR_MAXDEPTH - 1))
303
return 0;
304
switch (e->attr) {
305
case CEXPR_USER:
306
val1 = scontext->user;
307
val2 = tcontext->user;
308
break;
309
case CEXPR_TYPE:
310
val1 = scontext->type;
311
val2 = tcontext->type;
312
break;
313
case CEXPR_ROLE:
314
val1 = scontext->role;
315
val2 = tcontext->role;
316
r1 = policydb.role_val_to_struct[val1 - 1];
317
r2 = policydb.role_val_to_struct[val2 - 1];
318
switch (e->op) {
319
case CEXPR_DOM:
320
s[++sp] = ebitmap_get_bit(&r1->dominates,
321
val2 - 1);
322
continue;
323
case CEXPR_DOMBY:
324
s[++sp] = ebitmap_get_bit(&r2->dominates,
325
val1 - 1);
326
continue;
327
case CEXPR_INCOMP:
328
s[++sp] = (!ebitmap_get_bit(&r1->dominates,
329
val2 - 1) &&
330
!ebitmap_get_bit(&r2->dominates,
331
val1 - 1));
332
continue;
333
default:
334
break;
335
}
336
break;
337
case CEXPR_L1L2:
338
l1 = &(scontext->range.level[0]);
339
l2 = &(tcontext->range.level[0]);
340
goto mls_ops;
341
case CEXPR_L1H2:
342
l1 = &(scontext->range.level[0]);
343
l2 = &(tcontext->range.level[1]);
344
goto mls_ops;
345
case CEXPR_H1L2:
346
l1 = &(scontext->range.level[1]);
347
l2 = &(tcontext->range.level[0]);
348
goto mls_ops;
349
case CEXPR_H1H2:
350
l1 = &(scontext->range.level[1]);
351
l2 = &(tcontext->range.level[1]);
352
goto mls_ops;
353
case CEXPR_L1H1:
354
l1 = &(scontext->range.level[0]);
355
l2 = &(scontext->range.level[1]);
356
goto mls_ops;
357
case CEXPR_L2H2:
358
l1 = &(tcontext->range.level[0]);
359
l2 = &(tcontext->range.level[1]);
360
goto mls_ops;
361
mls_ops:
362
switch (e->op) {
363
case CEXPR_EQ:
364
s[++sp] = mls_level_eq(l1, l2);
365
continue;
366
case CEXPR_NEQ:
367
s[++sp] = !mls_level_eq(l1, l2);
368
continue;
369
case CEXPR_DOM:
370
s[++sp] = mls_level_dom(l1, l2);
371
continue;
372
case CEXPR_DOMBY:
373
s[++sp] = mls_level_dom(l2, l1);
374
continue;
375
case CEXPR_INCOMP:
376
s[++sp] = mls_level_incomp(l2, l1);
377
continue;
378
default:
379
BUG();
380
return 0;
381
}
382
break;
383
default:
384
BUG();
385
return 0;
386
}
387
388
switch (e->op) {
389
case CEXPR_EQ:
390
s[++sp] = (val1 == val2);
391
break;
392
case CEXPR_NEQ:
393
s[++sp] = (val1 != val2);
394
break;
395
default:
396
BUG();
397
return 0;
398
}
399
break;
400
case CEXPR_NAMES:
401
if (sp == (CEXPR_MAXDEPTH-1))
402
return 0;
403
c = scontext;
404
if (e->attr & CEXPR_TARGET)
405
c = tcontext;
406
else if (e->attr & CEXPR_XTARGET) {
407
c = xcontext;
408
if (!c) {
409
BUG();
410
return 0;
411
}
412
}
413
if (e->attr & CEXPR_USER)
414
val1 = c->user;
415
else if (e->attr & CEXPR_ROLE)
416
val1 = c->role;
417
else if (e->attr & CEXPR_TYPE)
418
val1 = c->type;
419
else {
420
BUG();
421
return 0;
422
}
423
424
switch (e->op) {
425
case CEXPR_EQ:
426
s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
427
break;
428
case CEXPR_NEQ:
429
s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
430
break;
431
default:
432
BUG();
433
return 0;
434
}
435
break;
436
default:
437
BUG();
438
return 0;
439
}
440
}
441
442
BUG_ON(sp != 0);
443
return s[0];
444
}
445
446
/*
447
* security_dump_masked_av - dumps masked permissions during
448
* security_compute_av due to RBAC, MLS/Constraint and Type bounds.
449
*/
450
static int dump_masked_av_helper(void *k, void *d, void *args)
451
{
452
struct perm_datum *pdatum = d;
453
char **permission_names = args;
454
455
BUG_ON(pdatum->value < 1 || pdatum->value > 32);
456
457
permission_names[pdatum->value - 1] = (char *)k;
458
459
return 0;
460
}
461
462
static void security_dump_masked_av(struct context *scontext,
463
struct context *tcontext,
464
u16 tclass,
465
u32 permissions,
466
const char *reason)
467
{
468
struct common_datum *common_dat;
469
struct class_datum *tclass_dat;
470
struct audit_buffer *ab;
471
char *tclass_name;
472
char *scontext_name = NULL;
473
char *tcontext_name = NULL;
474
char *permission_names[32];
475
int index;
476
u32 length;
477
bool need_comma = false;
478
479
if (!permissions)
480
return;
481
482
tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
483
tclass_dat = policydb.class_val_to_struct[tclass - 1];
484
common_dat = tclass_dat->comdatum;
485
486
/* init permission_names */
487
if (common_dat &&
488
hashtab_map(common_dat->permissions.table,
489
dump_masked_av_helper, permission_names) < 0)
490
goto out;
491
492
if (hashtab_map(tclass_dat->permissions.table,
493
dump_masked_av_helper, permission_names) < 0)
494
goto out;
495
496
/* get scontext/tcontext in text form */
497
if (context_struct_to_string(scontext,
498
&scontext_name, &length) < 0)
499
goto out;
500
501
if (context_struct_to_string(tcontext,
502
&tcontext_name, &length) < 0)
503
goto out;
504
505
/* audit a message */
506
ab = audit_log_start(current->audit_context,
507
GFP_ATOMIC, AUDIT_SELINUX_ERR);
508
if (!ab)
509
goto out;
510
511
audit_log_format(ab, "op=security_compute_av reason=%s "
512
"scontext=%s tcontext=%s tclass=%s perms=",
513
reason, scontext_name, tcontext_name, tclass_name);
514
515
for (index = 0; index < 32; index++) {
516
u32 mask = (1 << index);
517
518
if ((mask & permissions) == 0)
519
continue;
520
521
audit_log_format(ab, "%s%s",
522
need_comma ? "," : "",
523
permission_names[index]
524
? permission_names[index] : "????");
525
need_comma = true;
526
}
527
audit_log_end(ab);
528
out:
529
/* release scontext/tcontext */
530
kfree(tcontext_name);
531
kfree(scontext_name);
532
533
return;
534
}
535
536
/*
537
* security_boundary_permission - drops violated permissions
538
* on boundary constraint.
539
*/
540
static void type_attribute_bounds_av(struct context *scontext,
541
struct context *tcontext,
542
u16 tclass,
543
struct av_decision *avd)
544
{
545
struct context lo_scontext;
546
struct context lo_tcontext;
547
struct av_decision lo_avd;
548
struct type_datum *source;
549
struct type_datum *target;
550
u32 masked = 0;
551
552
source = flex_array_get_ptr(policydb.type_val_to_struct_array,
553
scontext->type - 1);
554
BUG_ON(!source);
555
556
target = flex_array_get_ptr(policydb.type_val_to_struct_array,
557
tcontext->type - 1);
558
BUG_ON(!target);
559
560
if (source->bounds) {
561
memset(&lo_avd, 0, sizeof(lo_avd));
562
563
memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
564
lo_scontext.type = source->bounds;
565
566
context_struct_compute_av(&lo_scontext,
567
tcontext,
568
tclass,
569
&lo_avd);
570
if ((lo_avd.allowed & avd->allowed) == avd->allowed)
571
return; /* no masked permission */
572
masked = ~lo_avd.allowed & avd->allowed;
573
}
574
575
if (target->bounds) {
576
memset(&lo_avd, 0, sizeof(lo_avd));
577
578
memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
579
lo_tcontext.type = target->bounds;
580
581
context_struct_compute_av(scontext,
582
&lo_tcontext,
583
tclass,
584
&lo_avd);
585
if ((lo_avd.allowed & avd->allowed) == avd->allowed)
586
return; /* no masked permission */
587
masked = ~lo_avd.allowed & avd->allowed;
588
}
589
590
if (source->bounds && target->bounds) {
591
memset(&lo_avd, 0, sizeof(lo_avd));
592
/*
593
* lo_scontext and lo_tcontext are already
594
* set up.
595
*/
596
597
context_struct_compute_av(&lo_scontext,
598
&lo_tcontext,
599
tclass,
600
&lo_avd);
601
if ((lo_avd.allowed & avd->allowed) == avd->allowed)
602
return; /* no masked permission */
603
masked = ~lo_avd.allowed & avd->allowed;
604
}
605
606
if (masked) {
607
/* mask violated permissions */
608
avd->allowed &= ~masked;
609
610
/* audit masked permissions */
611
security_dump_masked_av(scontext, tcontext,
612
tclass, masked, "bounds");
613
}
614
}
615
616
/*
617
* Compute access vectors based on a context structure pair for
618
* the permissions in a particular class.
619
*/
620
static void context_struct_compute_av(struct context *scontext,
621
struct context *tcontext,
622
u16 tclass,
623
struct av_decision *avd)
624
{
625
struct constraint_node *constraint;
626
struct role_allow *ra;
627
struct avtab_key avkey;
628
struct avtab_node *node;
629
struct class_datum *tclass_datum;
630
struct ebitmap *sattr, *tattr;
631
struct ebitmap_node *snode, *tnode;
632
unsigned int i, j;
633
634
avd->allowed = 0;
635
avd->auditallow = 0;
636
avd->auditdeny = 0xffffffff;
637
638
if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
639
if (printk_ratelimit())
640
printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
641
return;
642
}
643
644
tclass_datum = policydb.class_val_to_struct[tclass - 1];
645
646
/*
647
* If a specific type enforcement rule was defined for
648
* this permission check, then use it.
649
*/
650
avkey.target_class = tclass;
651
avkey.specified = AVTAB_AV;
652
sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
653
BUG_ON(!sattr);
654
tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
655
BUG_ON(!tattr);
656
ebitmap_for_each_positive_bit(sattr, snode, i) {
657
ebitmap_for_each_positive_bit(tattr, tnode, j) {
658
avkey.source_type = i + 1;
659
avkey.target_type = j + 1;
660
for (node = avtab_search_node(&policydb.te_avtab, &avkey);
661
node;
662
node = avtab_search_node_next(node, avkey.specified)) {
663
if (node->key.specified == AVTAB_ALLOWED)
664
avd->allowed |= node->datum.data;
665
else if (node->key.specified == AVTAB_AUDITALLOW)
666
avd->auditallow |= node->datum.data;
667
else if (node->key.specified == AVTAB_AUDITDENY)
668
avd->auditdeny &= node->datum.data;
669
}
670
671
/* Check conditional av table for additional permissions */
672
cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
673
674
}
675
}
676
677
/*
678
* Remove any permissions prohibited by a constraint (this includes
679
* the MLS policy).
680
*/
681
constraint = tclass_datum->constraints;
682
while (constraint) {
683
if ((constraint->permissions & (avd->allowed)) &&
684
!constraint_expr_eval(scontext, tcontext, NULL,
685
constraint->expr)) {
686
avd->allowed &= ~(constraint->permissions);
687
}
688
constraint = constraint->next;
689
}
690
691
/*
692
* If checking process transition permission and the
693
* role is changing, then check the (current_role, new_role)
694
* pair.
695
*/
696
if (tclass == policydb.process_class &&
697
(avd->allowed & policydb.process_trans_perms) &&
698
scontext->role != tcontext->role) {
699
for (ra = policydb.role_allow; ra; ra = ra->next) {
700
if (scontext->role == ra->role &&
701
tcontext->role == ra->new_role)
702
break;
703
}
704
if (!ra)
705
avd->allowed &= ~policydb.process_trans_perms;
706
}
707
708
/*
709
* If the given source and target types have boundary
710
* constraint, lazy checks have to mask any violated
711
* permission and notice it to userspace via audit.
712
*/
713
type_attribute_bounds_av(scontext, tcontext,
714
tclass, avd);
715
}
716
717
static int security_validtrans_handle_fail(struct context *ocontext,
718
struct context *ncontext,
719
struct context *tcontext,
720
u16 tclass)
721
{
722
char *o = NULL, *n = NULL, *t = NULL;
723
u32 olen, nlen, tlen;
724
725
if (context_struct_to_string(ocontext, &o, &olen))
726
goto out;
727
if (context_struct_to_string(ncontext, &n, &nlen))
728
goto out;
729
if (context_struct_to_string(tcontext, &t, &tlen))
730
goto out;
731
audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
732
"security_validate_transition: denied for"
733
" oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
734
o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
735
out:
736
kfree(o);
737
kfree(n);
738
kfree(t);
739
740
if (!selinux_enforcing)
741
return 0;
742
return -EPERM;
743
}
744
745
int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
746
u16 orig_tclass)
747
{
748
struct context *ocontext;
749
struct context *ncontext;
750
struct context *tcontext;
751
struct class_datum *tclass_datum;
752
struct constraint_node *constraint;
753
u16 tclass;
754
int rc = 0;
755
756
if (!ss_initialized)
757
return 0;
758
759
read_lock(&policy_rwlock);
760
761
tclass = unmap_class(orig_tclass);
762
763
if (!tclass || tclass > policydb.p_classes.nprim) {
764
printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
765
__func__, tclass);
766
rc = -EINVAL;
767
goto out;
768
}
769
tclass_datum = policydb.class_val_to_struct[tclass - 1];
770
771
ocontext = sidtab_search(&sidtab, oldsid);
772
if (!ocontext) {
773
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
774
__func__, oldsid);
775
rc = -EINVAL;
776
goto out;
777
}
778
779
ncontext = sidtab_search(&sidtab, newsid);
780
if (!ncontext) {
781
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
782
__func__, newsid);
783
rc = -EINVAL;
784
goto out;
785
}
786
787
tcontext = sidtab_search(&sidtab, tasksid);
788
if (!tcontext) {
789
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
790
__func__, tasksid);
791
rc = -EINVAL;
792
goto out;
793
}
794
795
constraint = tclass_datum->validatetrans;
796
while (constraint) {
797
if (!constraint_expr_eval(ocontext, ncontext, tcontext,
798
constraint->expr)) {
799
rc = security_validtrans_handle_fail(ocontext, ncontext,
800
tcontext, tclass);
801
goto out;
802
}
803
constraint = constraint->next;
804
}
805
806
out:
807
read_unlock(&policy_rwlock);
808
return rc;
809
}
810
811
/*
812
* security_bounded_transition - check whether the given
813
* transition is directed to bounded, or not.
814
* It returns 0, if @newsid is bounded by @oldsid.
815
* Otherwise, it returns error code.
816
*
817
* @oldsid : current security identifier
818
* @newsid : destinated security identifier
819
*/
820
int security_bounded_transition(u32 old_sid, u32 new_sid)
821
{
822
struct context *old_context, *new_context;
823
struct type_datum *type;
824
int index;
825
int rc;
826
827
read_lock(&policy_rwlock);
828
829
rc = -EINVAL;
830
old_context = sidtab_search(&sidtab, old_sid);
831
if (!old_context) {
832
printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
833
__func__, old_sid);
834
goto out;
835
}
836
837
rc = -EINVAL;
838
new_context = sidtab_search(&sidtab, new_sid);
839
if (!new_context) {
840
printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
841
__func__, new_sid);
842
goto out;
843
}
844
845
rc = 0;
846
/* type/domain unchanged */
847
if (old_context->type == new_context->type)
848
goto out;
849
850
index = new_context->type;
851
while (true) {
852
type = flex_array_get_ptr(policydb.type_val_to_struct_array,
853
index - 1);
854
BUG_ON(!type);
855
856
/* not bounded anymore */
857
rc = -EPERM;
858
if (!type->bounds)
859
break;
860
861
/* @newsid is bounded by @oldsid */
862
rc = 0;
863
if (type->bounds == old_context->type)
864
break;
865
866
index = type->bounds;
867
}
868
869
if (rc) {
870
char *old_name = NULL;
871
char *new_name = NULL;
872
u32 length;
873
874
if (!context_struct_to_string(old_context,
875
&old_name, &length) &&
876
!context_struct_to_string(new_context,
877
&new_name, &length)) {
878
audit_log(current->audit_context,
879
GFP_ATOMIC, AUDIT_SELINUX_ERR,
880
"op=security_bounded_transition "
881
"result=denied "
882
"oldcontext=%s newcontext=%s",
883
old_name, new_name);
884
}
885
kfree(new_name);
886
kfree(old_name);
887
}
888
out:
889
read_unlock(&policy_rwlock);
890
891
return rc;
892
}
893
894
static void avd_init(struct av_decision *avd)
895
{
896
avd->allowed = 0;
897
avd->auditallow = 0;
898
avd->auditdeny = 0xffffffff;
899
avd->seqno = latest_granting;
900
avd->flags = 0;
901
}
902
903
904
/**
905
* security_compute_av - Compute access vector decisions.
906
* @ssid: source security identifier
907
* @tsid: target security identifier
908
* @tclass: target security class
909
* @avd: access vector decisions
910
*
911
* Compute a set of access vector decisions based on the
912
* SID pair (@ssid, @tsid) for the permissions in @tclass.
913
*/
914
void security_compute_av(u32 ssid,
915
u32 tsid,
916
u16 orig_tclass,
917
struct av_decision *avd)
918
{
919
u16 tclass;
920
struct context *scontext = NULL, *tcontext = NULL;
921
922
read_lock(&policy_rwlock);
923
avd_init(avd);
924
if (!ss_initialized)
925
goto allow;
926
927
scontext = sidtab_search(&sidtab, ssid);
928
if (!scontext) {
929
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
930
__func__, ssid);
931
goto out;
932
}
933
934
/* permissive domain? */
935
if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
936
avd->flags |= AVD_FLAGS_PERMISSIVE;
937
938
tcontext = sidtab_search(&sidtab, tsid);
939
if (!tcontext) {
940
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
941
__func__, tsid);
942
goto out;
943
}
944
945
tclass = unmap_class(orig_tclass);
946
if (unlikely(orig_tclass && !tclass)) {
947
if (policydb.allow_unknown)
948
goto allow;
949
goto out;
950
}
951
context_struct_compute_av(scontext, tcontext, tclass, avd);
952
map_decision(orig_tclass, avd, policydb.allow_unknown);
953
out:
954
read_unlock(&policy_rwlock);
955
return;
956
allow:
957
avd->allowed = 0xffffffff;
958
goto out;
959
}
960
961
void security_compute_av_user(u32 ssid,
962
u32 tsid,
963
u16 tclass,
964
struct av_decision *avd)
965
{
966
struct context *scontext = NULL, *tcontext = NULL;
967
968
read_lock(&policy_rwlock);
969
avd_init(avd);
970
if (!ss_initialized)
971
goto allow;
972
973
scontext = sidtab_search(&sidtab, ssid);
974
if (!scontext) {
975
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
976
__func__, ssid);
977
goto out;
978
}
979
980
/* permissive domain? */
981
if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
982
avd->flags |= AVD_FLAGS_PERMISSIVE;
983
984
tcontext = sidtab_search(&sidtab, tsid);
985
if (!tcontext) {
986
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
987
__func__, tsid);
988
goto out;
989
}
990
991
if (unlikely(!tclass)) {
992
if (policydb.allow_unknown)
993
goto allow;
994
goto out;
995
}
996
997
context_struct_compute_av(scontext, tcontext, tclass, avd);
998
out:
999
read_unlock(&policy_rwlock);
1000
return;
1001
allow:
1002
avd->allowed = 0xffffffff;
1003
goto out;
1004
}
1005
1006
/*
1007
* Write the security context string representation of
1008
* the context structure `context' into a dynamically
1009
* allocated string of the correct size. Set `*scontext'
1010
* to point to this string and set `*scontext_len' to
1011
* the length of the string.
1012
*/
1013
static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1014
{
1015
char *scontextp;
1016
1017
if (scontext)
1018
*scontext = NULL;
1019
*scontext_len = 0;
1020
1021
if (context->len) {
1022
*scontext_len = context->len;
1023
*scontext = kstrdup(context->str, GFP_ATOMIC);
1024
if (!(*scontext))
1025
return -ENOMEM;
1026
return 0;
1027
}
1028
1029
/* Compute the size of the context. */
1030
*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031
*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032
*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033
*scontext_len += mls_compute_context_len(context);
1034
1035
if (!scontext)
1036
return 0;
1037
1038
/* Allocate space for the context; caller must free this space. */
1039
scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040
if (!scontextp)
1041
return -ENOMEM;
1042
*scontext = scontextp;
1043
1044
/*
1045
* Copy the user name, role name and type name into the context.
1046
*/
1047
sprintf(scontextp, "%s:%s:%s",
1048
sym_name(&policydb, SYM_USERS, context->user - 1),
1049
sym_name(&policydb, SYM_ROLES, context->role - 1),
1050
sym_name(&policydb, SYM_TYPES, context->type - 1));
1051
scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052
1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053
1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054
1055
mls_sid_to_context(context, &scontextp);
1056
1057
*scontextp = 0;
1058
1059
return 0;
1060
}
1061
1062
#include "initial_sid_to_string.h"
1063
1064
const char *security_get_initial_sid_context(u32 sid)
1065
{
1066
if (unlikely(sid > SECINITSID_NUM))
1067
return NULL;
1068
return initial_sid_to_string[sid];
1069
}
1070
1071
static int security_sid_to_context_core(u32 sid, char **scontext,
1072
u32 *scontext_len, int force)
1073
{
1074
struct context *context;
1075
int rc = 0;
1076
1077
if (scontext)
1078
*scontext = NULL;
1079
*scontext_len = 0;
1080
1081
if (!ss_initialized) {
1082
if (sid <= SECINITSID_NUM) {
1083
char *scontextp;
1084
1085
*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1086
if (!scontext)
1087
goto out;
1088
scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089
if (!scontextp) {
1090
rc = -ENOMEM;
1091
goto out;
1092
}
1093
strcpy(scontextp, initial_sid_to_string[sid]);
1094
*scontext = scontextp;
1095
goto out;
1096
}
1097
printk(KERN_ERR "SELinux: %s: called before initial "
1098
"load_policy on unknown SID %d\n", __func__, sid);
1099
rc = -EINVAL;
1100
goto out;
1101
}
1102
read_lock(&policy_rwlock);
1103
if (force)
1104
context = sidtab_search_force(&sidtab, sid);
1105
else
1106
context = sidtab_search(&sidtab, sid);
1107
if (!context) {
1108
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1109
__func__, sid);
1110
rc = -EINVAL;
1111
goto out_unlock;
1112
}
1113
rc = context_struct_to_string(context, scontext, scontext_len);
1114
out_unlock:
1115
read_unlock(&policy_rwlock);
1116
out:
1117
return rc;
1118
1119
}
1120
1121
/**
1122
* security_sid_to_context - Obtain a context for a given SID.
1123
* @sid: security identifier, SID
1124
* @scontext: security context
1125
* @scontext_len: length in bytes
1126
*
1127
* Write the string representation of the context associated with @sid
1128
* into a dynamically allocated string of the correct size. Set @scontext
1129
* to point to this string and set @scontext_len to the length of the string.
1130
*/
1131
int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1132
{
1133
return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1134
}
1135
1136
int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1137
{
1138
return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1139
}
1140
1141
/*
1142
* Caveat: Mutates scontext.
1143
*/
1144
static int string_to_context_struct(struct policydb *pol,
1145
struct sidtab *sidtabp,
1146
char *scontext,
1147
u32 scontext_len,
1148
struct context *ctx,
1149
u32 def_sid)
1150
{
1151
struct role_datum *role;
1152
struct type_datum *typdatum;
1153
struct user_datum *usrdatum;
1154
char *scontextp, *p, oldc;
1155
int rc = 0;
1156
1157
context_init(ctx);
1158
1159
/* Parse the security context. */
1160
1161
rc = -EINVAL;
1162
scontextp = (char *) scontext;
1163
1164
/* Extract the user. */
1165
p = scontextp;
1166
while (*p && *p != ':')
1167
p++;
1168
1169
if (*p == 0)
1170
goto out;
1171
1172
*p++ = 0;
1173
1174
usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175
if (!usrdatum)
1176
goto out;
1177
1178
ctx->user = usrdatum->value;
1179
1180
/* Extract role. */
1181
scontextp = p;
1182
while (*p && *p != ':')
1183
p++;
1184
1185
if (*p == 0)
1186
goto out;
1187
1188
*p++ = 0;
1189
1190
role = hashtab_search(pol->p_roles.table, scontextp);
1191
if (!role)
1192
goto out;
1193
ctx->role = role->value;
1194
1195
/* Extract type. */
1196
scontextp = p;
1197
while (*p && *p != ':')
1198
p++;
1199
oldc = *p;
1200
*p++ = 0;
1201
1202
typdatum = hashtab_search(pol->p_types.table, scontextp);
1203
if (!typdatum || typdatum->attribute)
1204
goto out;
1205
1206
ctx->type = typdatum->value;
1207
1208
rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209
if (rc)
1210
goto out;
1211
1212
rc = -EINVAL;
1213
if ((p - scontext) < scontext_len)
1214
goto out;
1215
1216
/* Check the validity of the new context. */
1217
if (!policydb_context_isvalid(pol, ctx))
1218
goto out;
1219
rc = 0;
1220
out:
1221
if (rc)
1222
context_destroy(ctx);
1223
return rc;
1224
}
1225
1226
static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1227
u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228
int force)
1229
{
1230
char *scontext2, *str = NULL;
1231
struct context context;
1232
int rc = 0;
1233
1234
if (!ss_initialized) {
1235
int i;
1236
1237
for (i = 1; i < SECINITSID_NUM; i++) {
1238
if (!strcmp(initial_sid_to_string[i], scontext)) {
1239
*sid = i;
1240
return 0;
1241
}
1242
}
1243
*sid = SECINITSID_KERNEL;
1244
return 0;
1245
}
1246
*sid = SECSID_NULL;
1247
1248
/* Copy the string so that we can modify the copy as we parse it. */
1249
scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250
if (!scontext2)
1251
return -ENOMEM;
1252
memcpy(scontext2, scontext, scontext_len);
1253
scontext2[scontext_len] = 0;
1254
1255
if (force) {
1256
/* Save another copy for storing in uninterpreted form */
1257
rc = -ENOMEM;
1258
str = kstrdup(scontext2, gfp_flags);
1259
if (!str)
1260
goto out;
1261
}
1262
1263
read_lock(&policy_rwlock);
1264
rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265
scontext_len, &context, def_sid);
1266
if (rc == -EINVAL && force) {
1267
context.str = str;
1268
context.len = scontext_len;
1269
str = NULL;
1270
} else if (rc)
1271
goto out_unlock;
1272
rc = sidtab_context_to_sid(&sidtab, &context, sid);
1273
context_destroy(&context);
1274
out_unlock:
1275
read_unlock(&policy_rwlock);
1276
out:
1277
kfree(scontext2);
1278
kfree(str);
1279
return rc;
1280
}
1281
1282
/**
1283
* security_context_to_sid - Obtain a SID for a given security context.
1284
* @scontext: security context
1285
* @scontext_len: length in bytes
1286
* @sid: security identifier, SID
1287
*
1288
* Obtains a SID associated with the security context that
1289
* has the string representation specified by @scontext.
1290
* Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291
* memory is available, or 0 on success.
1292
*/
1293
int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1294
{
1295
return security_context_to_sid_core(scontext, scontext_len,
1296
sid, SECSID_NULL, GFP_KERNEL, 0);
1297
}
1298
1299
/**
1300
* security_context_to_sid_default - Obtain a SID for a given security context,
1301
* falling back to specified default if needed.
1302
*
1303
* @scontext: security context
1304
* @scontext_len: length in bytes
1305
* @sid: security identifier, SID
1306
* @def_sid: default SID to assign on error
1307
*
1308
* Obtains a SID associated with the security context that
1309
* has the string representation specified by @scontext.
1310
* The default SID is passed to the MLS layer to be used to allow
1311
* kernel labeling of the MLS field if the MLS field is not present
1312
* (for upgrading to MLS without full relabel).
1313
* Implicitly forces adding of the context even if it cannot be mapped yet.
1314
* Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315
* memory is available, or 0 on success.
1316
*/
1317
int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1318
u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319
{
1320
return security_context_to_sid_core(scontext, scontext_len,
1321
sid, def_sid, gfp_flags, 1);
1322
}
1323
1324
int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1325
u32 *sid)
1326
{
1327
return security_context_to_sid_core(scontext, scontext_len,
1328
sid, SECSID_NULL, GFP_KERNEL, 1);
1329
}
1330
1331
static int compute_sid_handle_invalid_context(
1332
struct context *scontext,
1333
struct context *tcontext,
1334
u16 tclass,
1335
struct context *newcontext)
1336
{
1337
char *s = NULL, *t = NULL, *n = NULL;
1338
u32 slen, tlen, nlen;
1339
1340
if (context_struct_to_string(scontext, &s, &slen))
1341
goto out;
1342
if (context_struct_to_string(tcontext, &t, &tlen))
1343
goto out;
1344
if (context_struct_to_string(newcontext, &n, &nlen))
1345
goto out;
1346
audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347
"security_compute_sid: invalid context %s"
1348
" for scontext=%s"
1349
" tcontext=%s"
1350
" tclass=%s",
1351
n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1352
out:
1353
kfree(s);
1354
kfree(t);
1355
kfree(n);
1356
if (!selinux_enforcing)
1357
return 0;
1358
return -EACCES;
1359
}
1360
1361
static void filename_compute_type(struct policydb *p, struct context *newcontext,
1362
u32 stype, u32 ttype, u16 tclass,
1363
const char *objname)
1364
{
1365
struct filename_trans ft;
1366
struct filename_trans_datum *otype;
1367
1368
/*
1369
* Most filename trans rules are going to live in specific directories
1370
* like /dev or /var/run. This bitmap will quickly skip rule searches
1371
* if the ttype does not contain any rules.
1372
*/
1373
if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374
return;
1375
1376
ft.stype = stype;
1377
ft.ttype = ttype;
1378
ft.tclass = tclass;
1379
ft.name = objname;
1380
1381
otype = hashtab_search(p->filename_trans, &ft);
1382
if (otype)
1383
newcontext->type = otype->otype;
1384
}
1385
1386
static int security_compute_sid(u32 ssid,
1387
u32 tsid,
1388
u16 orig_tclass,
1389
u32 specified,
1390
const char *objname,
1391
u32 *out_sid,
1392
bool kern)
1393
{
1394
struct context *scontext = NULL, *tcontext = NULL, newcontext;
1395
struct role_trans *roletr = NULL;
1396
struct avtab_key avkey;
1397
struct avtab_datum *avdatum;
1398
struct avtab_node *node;
1399
u16 tclass;
1400
int rc = 0;
1401
bool sock;
1402
1403
if (!ss_initialized) {
1404
switch (orig_tclass) {
1405
case SECCLASS_PROCESS: /* kernel value */
1406
*out_sid = ssid;
1407
break;
1408
default:
1409
*out_sid = tsid;
1410
break;
1411
}
1412
goto out;
1413
}
1414
1415
context_init(&newcontext);
1416
1417
read_lock(&policy_rwlock);
1418
1419
if (kern) {
1420
tclass = unmap_class(orig_tclass);
1421
sock = security_is_socket_class(orig_tclass);
1422
} else {
1423
tclass = orig_tclass;
1424
sock = security_is_socket_class(map_class(tclass));
1425
}
1426
1427
scontext = sidtab_search(&sidtab, ssid);
1428
if (!scontext) {
1429
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1430
__func__, ssid);
1431
rc = -EINVAL;
1432
goto out_unlock;
1433
}
1434
tcontext = sidtab_search(&sidtab, tsid);
1435
if (!tcontext) {
1436
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1437
__func__, tsid);
1438
rc = -EINVAL;
1439
goto out_unlock;
1440
}
1441
1442
/* Set the user identity. */
1443
switch (specified) {
1444
case AVTAB_TRANSITION:
1445
case AVTAB_CHANGE:
1446
/* Use the process user identity. */
1447
newcontext.user = scontext->user;
1448
break;
1449
case AVTAB_MEMBER:
1450
/* Use the related object owner. */
1451
newcontext.user = tcontext->user;
1452
break;
1453
}
1454
1455
/* Set the role and type to default values. */
1456
if ((tclass == policydb.process_class) || (sock == true)) {
1457
/* Use the current role and type of process. */
1458
newcontext.role = scontext->role;
1459
newcontext.type = scontext->type;
1460
} else {
1461
/* Use the well-defined object role. */
1462
newcontext.role = OBJECT_R_VAL;
1463
/* Use the type of the related object. */
1464
newcontext.type = tcontext->type;
1465
}
1466
1467
/* Look for a type transition/member/change rule. */
1468
avkey.source_type = scontext->type;
1469
avkey.target_type = tcontext->type;
1470
avkey.target_class = tclass;
1471
avkey.specified = specified;
1472
avdatum = avtab_search(&policydb.te_avtab, &avkey);
1473
1474
/* If no permanent rule, also check for enabled conditional rules */
1475
if (!avdatum) {
1476
node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1477
for (; node; node = avtab_search_node_next(node, specified)) {
1478
if (node->key.specified & AVTAB_ENABLED) {
1479
avdatum = &node->datum;
1480
break;
1481
}
1482
}
1483
}
1484
1485
if (avdatum) {
1486
/* Use the type from the type transition/member/change rule. */
1487
newcontext.type = avdatum->data;
1488
}
1489
1490
/* if we have a objname this is a file trans check so check those rules */
1491
if (objname)
1492
filename_compute_type(&policydb, &newcontext, scontext->type,
1493
tcontext->type, tclass, objname);
1494
1495
/* Check for class-specific changes. */
1496
if (specified & AVTAB_TRANSITION) {
1497
/* Look for a role transition rule. */
1498
for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1499
if ((roletr->role == scontext->role) &&
1500
(roletr->type == tcontext->type) &&
1501
(roletr->tclass == tclass)) {
1502
/* Use the role transition rule. */
1503
newcontext.role = roletr->new_role;
1504
break;
1505
}
1506
}
1507
}
1508
1509
/* Set the MLS attributes.
1510
This is done last because it may allocate memory. */
1511
rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1512
&newcontext, sock);
1513
if (rc)
1514
goto out_unlock;
1515
1516
/* Check the validity of the context. */
1517
if (!policydb_context_isvalid(&policydb, &newcontext)) {
1518
rc = compute_sid_handle_invalid_context(scontext,
1519
tcontext,
1520
tclass,
1521
&newcontext);
1522
if (rc)
1523
goto out_unlock;
1524
}
1525
/* Obtain the sid for the context. */
1526
rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1527
out_unlock:
1528
read_unlock(&policy_rwlock);
1529
context_destroy(&newcontext);
1530
out:
1531
return rc;
1532
}
1533
1534
/**
1535
* security_transition_sid - Compute the SID for a new subject/object.
1536
* @ssid: source security identifier
1537
* @tsid: target security identifier
1538
* @tclass: target security class
1539
* @out_sid: security identifier for new subject/object
1540
*
1541
* Compute a SID to use for labeling a new subject or object in the
1542
* class @tclass based on a SID pair (@ssid, @tsid).
1543
* Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1544
* if insufficient memory is available, or %0 if the new SID was
1545
* computed successfully.
1546
*/
1547
int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1548
const struct qstr *qstr, u32 *out_sid)
1549
{
1550
return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1551
qstr ? qstr->name : NULL, out_sid, true);
1552
}
1553
1554
int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1555
const char *objname, u32 *out_sid)
1556
{
1557
return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1558
objname, out_sid, false);
1559
}
1560
1561
/**
1562
* security_member_sid - Compute the SID for member selection.
1563
* @ssid: source security identifier
1564
* @tsid: target security identifier
1565
* @tclass: target security class
1566
* @out_sid: security identifier for selected member
1567
*
1568
* Compute a SID to use when selecting a member of a polyinstantiated
1569
* object of class @tclass based on a SID pair (@ssid, @tsid).
1570
* Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1571
* if insufficient memory is available, or %0 if the SID was
1572
* computed successfully.
1573
*/
1574
int security_member_sid(u32 ssid,
1575
u32 tsid,
1576
u16 tclass,
1577
u32 *out_sid)
1578
{
1579
return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1580
out_sid, false);
1581
}
1582
1583
/**
1584
* security_change_sid - Compute the SID for object relabeling.
1585
* @ssid: source security identifier
1586
* @tsid: target security identifier
1587
* @tclass: target security class
1588
* @out_sid: security identifier for selected member
1589
*
1590
* Compute a SID to use for relabeling an object of class @tclass
1591
* based on a SID pair (@ssid, @tsid).
1592
* Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1593
* if insufficient memory is available, or %0 if the SID was
1594
* computed successfully.
1595
*/
1596
int security_change_sid(u32 ssid,
1597
u32 tsid,
1598
u16 tclass,
1599
u32 *out_sid)
1600
{
1601
return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1602
out_sid, false);
1603
}
1604
1605
/* Clone the SID into the new SID table. */
1606
static int clone_sid(u32 sid,
1607
struct context *context,
1608
void *arg)
1609
{
1610
struct sidtab *s = arg;
1611
1612
if (sid > SECINITSID_NUM)
1613
return sidtab_insert(s, sid, context);
1614
else
1615
return 0;
1616
}
1617
1618
static inline int convert_context_handle_invalid_context(struct context *context)
1619
{
1620
char *s;
1621
u32 len;
1622
1623
if (selinux_enforcing)
1624
return -EINVAL;
1625
1626
if (!context_struct_to_string(context, &s, &len)) {
1627
printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s);
1628
kfree(s);
1629
}
1630
return 0;
1631
}
1632
1633
struct convert_context_args {
1634
struct policydb *oldp;
1635
struct policydb *newp;
1636
};
1637
1638
/*
1639
* Convert the values in the security context
1640
* structure `c' from the values specified
1641
* in the policy `p->oldp' to the values specified
1642
* in the policy `p->newp'. Verify that the
1643
* context is valid under the new policy.
1644
*/
1645
static int convert_context(u32 key,
1646
struct context *c,
1647
void *p)
1648
{
1649
struct convert_context_args *args;
1650
struct context oldc;
1651
struct ocontext *oc;
1652
struct mls_range *range;
1653
struct role_datum *role;
1654
struct type_datum *typdatum;
1655
struct user_datum *usrdatum;
1656
char *s;
1657
u32 len;
1658
int rc = 0;
1659
1660
if (key <= SECINITSID_NUM)
1661
goto out;
1662
1663
args = p;
1664
1665
if (c->str) {
1666
struct context ctx;
1667
1668
rc = -ENOMEM;
1669
s = kstrdup(c->str, GFP_KERNEL);
1670
if (!s)
1671
goto out;
1672
1673
rc = string_to_context_struct(args->newp, NULL, s,
1674
c->len, &ctx, SECSID_NULL);
1675
kfree(s);
1676
if (!rc) {
1677
printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n",
1678
c->str);
1679
/* Replace string with mapped representation. */
1680
kfree(c->str);
1681
memcpy(c, &ctx, sizeof(*c));
1682
goto out;
1683
} else if (rc == -EINVAL) {
1684
/* Retain string representation for later mapping. */
1685
rc = 0;
1686
goto out;
1687
} else {
1688
/* Other error condition, e.g. ENOMEM. */
1689
printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n",
1690
c->str, -rc);
1691
goto out;
1692
}
1693
}
1694
1695
rc = context_cpy(&oldc, c);
1696
if (rc)
1697
goto out;
1698
1699
/* Convert the user. */
1700
rc = -EINVAL;
1701
usrdatum = hashtab_search(args->newp->p_users.table,
1702
sym_name(args->oldp, SYM_USERS, c->user - 1));
1703
if (!usrdatum)
1704
goto bad;
1705
c->user = usrdatum->value;
1706
1707
/* Convert the role. */
1708
rc = -EINVAL;
1709
role = hashtab_search(args->newp->p_roles.table,
1710
sym_name(args->oldp, SYM_ROLES, c->role - 1));
1711
if (!role)
1712
goto bad;
1713
c->role = role->value;
1714
1715
/* Convert the type. */
1716
rc = -EINVAL;
1717
typdatum = hashtab_search(args->newp->p_types.table,
1718
sym_name(args->oldp, SYM_TYPES, c->type - 1));
1719
if (!typdatum)
1720
goto bad;
1721
c->type = typdatum->value;
1722
1723
/* Convert the MLS fields if dealing with MLS policies */
1724
if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1725
rc = mls_convert_context(args->oldp, args->newp, c);
1726
if (rc)
1727
goto bad;
1728
} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1729
/*
1730
* Switching between MLS and non-MLS policy:
1731
* free any storage used by the MLS fields in the
1732
* context for all existing entries in the sidtab.
1733
*/
1734
mls_context_destroy(c);
1735
} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1736
/*
1737
* Switching between non-MLS and MLS policy:
1738
* ensure that the MLS fields of the context for all
1739
* existing entries in the sidtab are filled in with a
1740
* suitable default value, likely taken from one of the
1741
* initial SIDs.
1742
*/
1743
oc = args->newp->ocontexts[OCON_ISID];
1744
while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1745
oc = oc->next;
1746
rc = -EINVAL;
1747
if (!oc) {
1748
printk(KERN_ERR "SELinux: unable to look up"
1749
" the initial SIDs list\n");
1750
goto bad;
1751
}
1752
range = &oc->context[0].range;
1753
rc = mls_range_set(c, range);
1754
if (rc)
1755
goto bad;
1756
}
1757
1758
/* Check the validity of the new context. */
1759
if (!policydb_context_isvalid(args->newp, c)) {
1760
rc = convert_context_handle_invalid_context(&oldc);
1761
if (rc)
1762
goto bad;
1763
}
1764
1765
context_destroy(&oldc);
1766
1767
rc = 0;
1768
out:
1769
return rc;
1770
bad:
1771
/* Map old representation to string and save it. */
1772
rc = context_struct_to_string(&oldc, &s, &len);
1773
if (rc)
1774
return rc;
1775
context_destroy(&oldc);
1776
context_destroy(c);
1777
c->str = s;
1778
c->len = len;
1779
printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n",
1780
c->str);
1781
rc = 0;
1782
goto out;
1783
}
1784
1785
static void security_load_policycaps(void)
1786
{
1787
selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1788
POLICYDB_CAPABILITY_NETPEER);
1789
selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1790
POLICYDB_CAPABILITY_OPENPERM);
1791
}
1792
1793
extern void selinux_complete_init(void);
1794
static int security_preserve_bools(struct policydb *p);
1795
1796
/**
1797
* security_load_policy - Load a security policy configuration.
1798
* @data: binary policy data
1799
* @len: length of data in bytes
1800
*
1801
* Load a new set of security policy configuration data,
1802
* validate it and convert the SID table as necessary.
1803
* This function will flush the access vector cache after
1804
* loading the new policy.
1805
*/
1806
int security_load_policy(void *data, size_t len)
1807
{
1808
struct policydb oldpolicydb, newpolicydb;
1809
struct sidtab oldsidtab, newsidtab;
1810
struct selinux_mapping *oldmap, *map = NULL;
1811
struct convert_context_args args;
1812
u32 seqno;
1813
u16 map_size;
1814
int rc = 0;
1815
struct policy_file file = { data, len }, *fp = &file;
1816
1817
if (!ss_initialized) {
1818
avtab_cache_init();
1819
rc = policydb_read(&policydb, fp);
1820
if (rc) {
1821
avtab_cache_destroy();
1822
return rc;
1823
}
1824
1825
policydb.len = len;
1826
rc = selinux_set_mapping(&policydb, secclass_map,
1827
&current_mapping,
1828
&current_mapping_size);
1829
if (rc) {
1830
policydb_destroy(&policydb);
1831
avtab_cache_destroy();
1832
return rc;
1833
}
1834
1835
rc = policydb_load_isids(&policydb, &sidtab);
1836
if (rc) {
1837
policydb_destroy(&policydb);
1838
avtab_cache_destroy();
1839
return rc;
1840
}
1841
1842
security_load_policycaps();
1843
ss_initialized = 1;
1844
seqno = ++latest_granting;
1845
selinux_complete_init();
1846
avc_ss_reset(seqno);
1847
selnl_notify_policyload(seqno);
1848
selinux_status_update_policyload(seqno);
1849
selinux_netlbl_cache_invalidate();
1850
selinux_xfrm_notify_policyload();
1851
return 0;
1852
}
1853
1854
#if 0
1855
sidtab_hash_eval(&sidtab, "sids");
1856
#endif
1857
1858
rc = policydb_read(&newpolicydb, fp);
1859
if (rc)
1860
return rc;
1861
1862
newpolicydb.len = len;
1863
/* If switching between different policy types, log MLS status */
1864
if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1865
printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1866
else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1867
printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1868
1869
rc = policydb_load_isids(&newpolicydb, &newsidtab);
1870
if (rc) {
1871
printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
1872
policydb_destroy(&newpolicydb);
1873
return rc;
1874
}
1875
1876
rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1877
if (rc)
1878
goto err;
1879
1880
rc = security_preserve_bools(&newpolicydb);
1881
if (rc) {
1882
printk(KERN_ERR "SELinux: unable to preserve booleans\n");
1883
goto err;
1884
}
1885
1886
/* Clone the SID table. */
1887
sidtab_shutdown(&sidtab);
1888
1889
rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1890
if (rc)
1891
goto err;
1892
1893
/*
1894
* Convert the internal representations of contexts
1895
* in the new SID table.
1896
*/
1897
args.oldp = &policydb;
1898
args.newp = &newpolicydb;
1899
rc = sidtab_map(&newsidtab, convert_context, &args);
1900
if (rc) {
1901
printk(KERN_ERR "SELinux: unable to convert the internal"
1902
" representation of contexts in the new SID"
1903
" table\n");
1904
goto err;
1905
}
1906
1907
/* Save the old policydb and SID table to free later. */
1908
memcpy(&oldpolicydb, &policydb, sizeof policydb);
1909
sidtab_set(&oldsidtab, &sidtab);
1910
1911
/* Install the new policydb and SID table. */
1912
write_lock_irq(&policy_rwlock);
1913
memcpy(&policydb, &newpolicydb, sizeof policydb);
1914
sidtab_set(&sidtab, &newsidtab);
1915
security_load_policycaps();
1916
oldmap = current_mapping;
1917
current_mapping = map;
1918
current_mapping_size = map_size;
1919
seqno = ++latest_granting;
1920
write_unlock_irq(&policy_rwlock);
1921
1922
/* Free the old policydb and SID table. */
1923
policydb_destroy(&oldpolicydb);
1924
sidtab_destroy(&oldsidtab);
1925
kfree(oldmap);
1926
1927
avc_ss_reset(seqno);
1928
selnl_notify_policyload(seqno);
1929
selinux_status_update_policyload(seqno);
1930
selinux_netlbl_cache_invalidate();
1931
selinux_xfrm_notify_policyload();
1932
1933
return 0;
1934
1935
err:
1936
kfree(map);
1937
sidtab_destroy(&newsidtab);
1938
policydb_destroy(&newpolicydb);
1939
return rc;
1940
1941
}
1942
1943
size_t security_policydb_len(void)
1944
{
1945
size_t len;
1946
1947
read_lock(&policy_rwlock);
1948
len = policydb.len;
1949
read_unlock(&policy_rwlock);
1950
1951
return len;
1952
}
1953
1954
/**
1955
* security_port_sid - Obtain the SID for a port.
1956
* @protocol: protocol number
1957
* @port: port number
1958
* @out_sid: security identifier
1959
*/
1960
int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1961
{
1962
struct ocontext *c;
1963
int rc = 0;
1964
1965
read_lock(&policy_rwlock);
1966
1967
c = policydb.ocontexts[OCON_PORT];
1968
while (c) {
1969
if (c->u.port.protocol == protocol &&
1970
c->u.port.low_port <= port &&
1971
c->u.port.high_port >= port)
1972
break;
1973
c = c->next;
1974
}
1975
1976
if (c) {
1977
if (!c->sid[0]) {
1978
rc = sidtab_context_to_sid(&sidtab,
1979
&c->context[0],
1980
&c->sid[0]);
1981
if (rc)
1982
goto out;
1983
}
1984
*out_sid = c->sid[0];
1985
} else {
1986
*out_sid = SECINITSID_PORT;
1987
}
1988
1989
out:
1990
read_unlock(&policy_rwlock);
1991
return rc;
1992
}
1993
1994
/**
1995
* security_netif_sid - Obtain the SID for a network interface.
1996
* @name: interface name
1997
* @if_sid: interface SID
1998
*/
1999
int security_netif_sid(char *name, u32 *if_sid)
2000
{
2001
int rc = 0;
2002
struct ocontext *c;
2003
2004
read_lock(&policy_rwlock);
2005
2006
c = policydb.ocontexts[OCON_NETIF];
2007
while (c) {
2008
if (strcmp(name, c->u.name) == 0)
2009
break;
2010
c = c->next;
2011
}
2012
2013
if (c) {
2014
if (!c->sid[0] || !c->sid[1]) {
2015
rc = sidtab_context_to_sid(&sidtab,
2016
&c->context[0],
2017
&c->sid[0]);
2018
if (rc)
2019
goto out;
2020
rc = sidtab_context_to_sid(&sidtab,
2021
&c->context[1],
2022
&c->sid[1]);
2023
if (rc)
2024
goto out;
2025
}
2026
*if_sid = c->sid[0];
2027
} else
2028
*if_sid = SECINITSID_NETIF;
2029
2030
out:
2031
read_unlock(&policy_rwlock);
2032
return rc;
2033
}
2034
2035
static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2036
{
2037
int i, fail = 0;
2038
2039
for (i = 0; i < 4; i++)
2040
if (addr[i] != (input[i] & mask[i])) {
2041
fail = 1;
2042
break;
2043
}
2044
2045
return !fail;
2046
}
2047
2048
/**
2049
* security_node_sid - Obtain the SID for a node (host).
2050
* @domain: communication domain aka address family
2051
* @addrp: address
2052
* @addrlen: address length in bytes
2053
* @out_sid: security identifier
2054
*/
2055
int security_node_sid(u16 domain,
2056
void *addrp,
2057
u32 addrlen,
2058
u32 *out_sid)
2059
{
2060
int rc;
2061
struct ocontext *c;
2062
2063
read_lock(&policy_rwlock);
2064
2065
switch (domain) {
2066
case AF_INET: {
2067
u32 addr;
2068
2069
rc = -EINVAL;
2070
if (addrlen != sizeof(u32))
2071
goto out;
2072
2073
addr = *((u32 *)addrp);
2074
2075
c = policydb.ocontexts[OCON_NODE];
2076
while (c) {
2077
if (c->u.node.addr == (addr & c->u.node.mask))
2078
break;
2079
c = c->next;
2080
}
2081
break;
2082
}
2083
2084
case AF_INET6:
2085
rc = -EINVAL;
2086
if (addrlen != sizeof(u64) * 2)
2087
goto out;
2088
c = policydb.ocontexts[OCON_NODE6];
2089
while (c) {
2090
if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2091
c->u.node6.mask))
2092
break;
2093
c = c->next;
2094
}
2095
break;
2096
2097
default:
2098
rc = 0;
2099
*out_sid = SECINITSID_NODE;
2100
goto out;
2101
}
2102
2103
if (c) {
2104
if (!c->sid[0]) {
2105
rc = sidtab_context_to_sid(&sidtab,
2106
&c->context[0],
2107
&c->sid[0]);
2108
if (rc)
2109
goto out;
2110
}
2111
*out_sid = c->sid[0];
2112
} else {
2113
*out_sid = SECINITSID_NODE;
2114
}
2115
2116
rc = 0;
2117
out:
2118
read_unlock(&policy_rwlock);
2119
return rc;
2120
}
2121
2122
#define SIDS_NEL 25
2123
2124
/**
2125
* security_get_user_sids - Obtain reachable SIDs for a user.
2126
* @fromsid: starting SID
2127
* @username: username
2128
* @sids: array of reachable SIDs for user
2129
* @nel: number of elements in @sids
2130
*
2131
* Generate the set of SIDs for legal security contexts
2132
* for a given user that can be reached by @fromsid.
2133
* Set *@sids to point to a dynamically allocated
2134
* array containing the set of SIDs. Set *@nel to the
2135
* number of elements in the array.
2136
*/
2137
2138
int security_get_user_sids(u32 fromsid,
2139
char *username,
2140
u32 **sids,
2141
u32 *nel)
2142
{
2143
struct context *fromcon, usercon;
2144
u32 *mysids = NULL, *mysids2, sid;
2145
u32 mynel = 0, maxnel = SIDS_NEL;
2146
struct user_datum *user;
2147
struct role_datum *role;
2148
struct ebitmap_node *rnode, *tnode;
2149
int rc = 0, i, j;
2150
2151
*sids = NULL;
2152
*nel = 0;
2153
2154
if (!ss_initialized)
2155
goto out;
2156
2157
read_lock(&policy_rwlock);
2158
2159
context_init(&usercon);
2160
2161
rc = -EINVAL;
2162
fromcon = sidtab_search(&sidtab, fromsid);
2163
if (!fromcon)
2164
goto out_unlock;
2165
2166
rc = -EINVAL;
2167
user = hashtab_search(policydb.p_users.table, username);
2168
if (!user)
2169
goto out_unlock;
2170
2171
usercon.user = user->value;
2172
2173
rc = -ENOMEM;
2174
mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2175
if (!mysids)
2176
goto out_unlock;
2177
2178
ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2179
role = policydb.role_val_to_struct[i];
2180
usercon.role = i + 1;
2181
ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2182
usercon.type = j + 1;
2183
2184
if (mls_setup_user_range(fromcon, user, &usercon))
2185
continue;
2186
2187
rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2188
if (rc)
2189
goto out_unlock;
2190
if (mynel < maxnel) {
2191
mysids[mynel++] = sid;
2192
} else {
2193
rc = -ENOMEM;
2194
maxnel += SIDS_NEL;
2195
mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2196
if (!mysids2)
2197
goto out_unlock;
2198
memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2199
kfree(mysids);
2200
mysids = mysids2;
2201
mysids[mynel++] = sid;
2202
}
2203
}
2204
}
2205
rc = 0;
2206
out_unlock:
2207
read_unlock(&policy_rwlock);
2208
if (rc || !mynel) {
2209
kfree(mysids);
2210
goto out;
2211
}
2212
2213
rc = -ENOMEM;
2214
mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2215
if (!mysids2) {
2216
kfree(mysids);
2217
goto out;
2218
}
2219
for (i = 0, j = 0; i < mynel; i++) {
2220
struct av_decision dummy_avd;
2221
rc = avc_has_perm_noaudit(fromsid, mysids[i],
2222
SECCLASS_PROCESS, /* kernel value */
2223
PROCESS__TRANSITION, AVC_STRICT,
2224
&dummy_avd);
2225
if (!rc)
2226
mysids2[j++] = mysids[i];
2227
cond_resched();
2228
}
2229
rc = 0;
2230
kfree(mysids);
2231
*sids = mysids2;
2232
*nel = j;
2233
out:
2234
return rc;
2235
}
2236
2237
/**
2238
* security_genfs_sid - Obtain a SID for a file in a filesystem
2239
* @fstype: filesystem type
2240
* @path: path from root of mount
2241
* @sclass: file security class
2242
* @sid: SID for path
2243
*
2244
* Obtain a SID to use for a file in a filesystem that
2245
* cannot support xattr or use a fixed labeling behavior like
2246
* transition SIDs or task SIDs.
2247
*/
2248
int security_genfs_sid(const char *fstype,
2249
char *path,
2250
u16 orig_sclass,
2251
u32 *sid)
2252
{
2253
int len;
2254
u16 sclass;
2255
struct genfs *genfs;
2256
struct ocontext *c;
2257
int rc, cmp = 0;
2258
2259
while (path[0] == '/' && path[1] == '/')
2260
path++;
2261
2262
read_lock(&policy_rwlock);
2263
2264
sclass = unmap_class(orig_sclass);
2265
*sid = SECINITSID_UNLABELED;
2266
2267
for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2268
cmp = strcmp(fstype, genfs->fstype);
2269
if (cmp <= 0)
2270
break;
2271
}
2272
2273
rc = -ENOENT;
2274
if (!genfs || cmp)
2275
goto out;
2276
2277
for (c = genfs->head; c; c = c->next) {
2278
len = strlen(c->u.name);
2279
if ((!c->v.sclass || sclass == c->v.sclass) &&
2280
(strncmp(c->u.name, path, len) == 0))
2281
break;
2282
}
2283
2284
rc = -ENOENT;
2285
if (!c)
2286
goto out;
2287
2288
if (!c->sid[0]) {
2289
rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2290
if (rc)
2291
goto out;
2292
}
2293
2294
*sid = c->sid[0];
2295
rc = 0;
2296
out:
2297
read_unlock(&policy_rwlock);
2298
return rc;
2299
}
2300
2301
/**
2302
* security_fs_use - Determine how to handle labeling for a filesystem.
2303
* @fstype: filesystem type
2304
* @behavior: labeling behavior
2305
* @sid: SID for filesystem (superblock)
2306
*/
2307
int security_fs_use(
2308
const char *fstype,
2309
unsigned int *behavior,
2310
u32 *sid)
2311
{
2312
int rc = 0;
2313
struct ocontext *c;
2314
2315
read_lock(&policy_rwlock);
2316
2317
c = policydb.ocontexts[OCON_FSUSE];
2318
while (c) {
2319
if (strcmp(fstype, c->u.name) == 0)
2320
break;
2321
c = c->next;
2322
}
2323
2324
if (c) {
2325
*behavior = c->v.behavior;
2326
if (!c->sid[0]) {
2327
rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2328
&c->sid[0]);
2329
if (rc)
2330
goto out;
2331
}
2332
*sid = c->sid[0];
2333
} else {
2334
rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2335
if (rc) {
2336
*behavior = SECURITY_FS_USE_NONE;
2337
rc = 0;
2338
} else {
2339
*behavior = SECURITY_FS_USE_GENFS;
2340
}
2341
}
2342
2343
out:
2344
read_unlock(&policy_rwlock);
2345
return rc;
2346
}
2347
2348
int security_get_bools(int *len, char ***names, int **values)
2349
{
2350
int i, rc;
2351
2352
read_lock(&policy_rwlock);
2353
*names = NULL;
2354
*values = NULL;
2355
2356
rc = 0;
2357
*len = policydb.p_bools.nprim;
2358
if (!*len)
2359
goto out;
2360
2361
rc = -ENOMEM;
2362
*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2363
if (!*names)
2364
goto err;
2365
2366
rc = -ENOMEM;
2367
*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2368
if (!*values)
2369
goto err;
2370
2371
for (i = 0; i < *len; i++) {
2372
size_t name_len;
2373
2374
(*values)[i] = policydb.bool_val_to_struct[i]->state;
2375
name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2376
2377
rc = -ENOMEM;
2378
(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2379
if (!(*names)[i])
2380
goto err;
2381
2382
strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2383
(*names)[i][name_len - 1] = 0;
2384
}
2385
rc = 0;
2386
out:
2387
read_unlock(&policy_rwlock);
2388
return rc;
2389
err:
2390
if (*names) {
2391
for (i = 0; i < *len; i++)
2392
kfree((*names)[i]);
2393
}
2394
kfree(*values);
2395
goto out;
2396
}
2397
2398
2399
int security_set_bools(int len, int *values)
2400
{
2401
int i, rc;
2402
int lenp, seqno = 0;
2403
struct cond_node *cur;
2404
2405
write_lock_irq(&policy_rwlock);
2406
2407
rc = -EFAULT;
2408
lenp = policydb.p_bools.nprim;
2409
if (len != lenp)
2410
goto out;
2411
2412
for (i = 0; i < len; i++) {
2413
if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2414
audit_log(current->audit_context, GFP_ATOMIC,
2415
AUDIT_MAC_CONFIG_CHANGE,
2416
"bool=%s val=%d old_val=%d auid=%u ses=%u",
2417
sym_name(&policydb, SYM_BOOLS, i),
2418
!!values[i],
2419
policydb.bool_val_to_struct[i]->state,
2420
audit_get_loginuid(current),
2421
audit_get_sessionid(current));
2422
}
2423
if (values[i])
2424
policydb.bool_val_to_struct[i]->state = 1;
2425
else
2426
policydb.bool_val_to_struct[i]->state = 0;
2427
}
2428
2429
for (cur = policydb.cond_list; cur; cur = cur->next) {
2430
rc = evaluate_cond_node(&policydb, cur);
2431
if (rc)
2432
goto out;
2433
}
2434
2435
seqno = ++latest_granting;
2436
rc = 0;
2437
out:
2438
write_unlock_irq(&policy_rwlock);
2439
if (!rc) {
2440
avc_ss_reset(seqno);
2441
selnl_notify_policyload(seqno);
2442
selinux_status_update_policyload(seqno);
2443
selinux_xfrm_notify_policyload();
2444
}
2445
return rc;
2446
}
2447
2448
int security_get_bool_value(int bool)
2449
{
2450
int rc;
2451
int len;
2452
2453
read_lock(&policy_rwlock);
2454
2455
rc = -EFAULT;
2456
len = policydb.p_bools.nprim;
2457
if (bool >= len)
2458
goto out;
2459
2460
rc = policydb.bool_val_to_struct[bool]->state;
2461
out:
2462
read_unlock(&policy_rwlock);
2463
return rc;
2464
}
2465
2466
static int security_preserve_bools(struct policydb *p)
2467
{
2468
int rc, nbools = 0, *bvalues = NULL, i;
2469
char **bnames = NULL;
2470
struct cond_bool_datum *booldatum;
2471
struct cond_node *cur;
2472
2473
rc = security_get_bools(&nbools, &bnames, &bvalues);
2474
if (rc)
2475
goto out;
2476
for (i = 0; i < nbools; i++) {
2477
booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2478
if (booldatum)
2479
booldatum->state = bvalues[i];
2480
}
2481
for (cur = p->cond_list; cur; cur = cur->next) {
2482
rc = evaluate_cond_node(p, cur);
2483
if (rc)
2484
goto out;
2485
}
2486
2487
out:
2488
if (bnames) {
2489
for (i = 0; i < nbools; i++)
2490
kfree(bnames[i]);
2491
}
2492
kfree(bnames);
2493
kfree(bvalues);
2494
return rc;
2495
}
2496
2497
/*
2498
* security_sid_mls_copy() - computes a new sid based on the given
2499
* sid and the mls portion of mls_sid.
2500
*/
2501
int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2502
{
2503
struct context *context1;
2504
struct context *context2;
2505
struct context newcon;
2506
char *s;
2507
u32 len;
2508
int rc;
2509
2510
rc = 0;
2511
if (!ss_initialized || !policydb.mls_enabled) {
2512
*new_sid = sid;
2513
goto out;
2514
}
2515
2516
context_init(&newcon);
2517
2518
read_lock(&policy_rwlock);
2519
2520
rc = -EINVAL;
2521
context1 = sidtab_search(&sidtab, sid);
2522
if (!context1) {
2523
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2524
__func__, sid);
2525
goto out_unlock;
2526
}
2527
2528
rc = -EINVAL;
2529
context2 = sidtab_search(&sidtab, mls_sid);
2530
if (!context2) {
2531
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2532
__func__, mls_sid);
2533
goto out_unlock;
2534
}
2535
2536
newcon.user = context1->user;
2537
newcon.role = context1->role;
2538
newcon.type = context1->type;
2539
rc = mls_context_cpy(&newcon, context2);
2540
if (rc)
2541
goto out_unlock;
2542
2543
/* Check the validity of the new context. */
2544
if (!policydb_context_isvalid(&policydb, &newcon)) {
2545
rc = convert_context_handle_invalid_context(&newcon);
2546
if (rc) {
2547
if (!context_struct_to_string(&newcon, &s, &len)) {
2548
audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2549
"security_sid_mls_copy: invalid context %s", s);
2550
kfree(s);
2551
}
2552
goto out_unlock;
2553
}
2554
}
2555
2556
rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2557
out_unlock:
2558
read_unlock(&policy_rwlock);
2559
context_destroy(&newcon);
2560
out:
2561
return rc;
2562
}
2563
2564
/**
2565
* security_net_peersid_resolve - Compare and resolve two network peer SIDs
2566
* @nlbl_sid: NetLabel SID
2567
* @nlbl_type: NetLabel labeling protocol type
2568
* @xfrm_sid: XFRM SID
2569
*
2570
* Description:
2571
* Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2572
* resolved into a single SID it is returned via @peer_sid and the function
2573
* returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2574
* returns a negative value. A table summarizing the behavior is below:
2575
*
2576
* | function return | @sid
2577
* ------------------------------+-----------------+-----------------
2578
* no peer labels | 0 | SECSID_NULL
2579
* single peer label | 0 | <peer_label>
2580
* multiple, consistent labels | 0 | <peer_label>
2581
* multiple, inconsistent labels | -<errno> | SECSID_NULL
2582
*
2583
*/
2584
int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2585
u32 xfrm_sid,
2586
u32 *peer_sid)
2587
{
2588
int rc;
2589
struct context *nlbl_ctx;
2590
struct context *xfrm_ctx;
2591
2592
*peer_sid = SECSID_NULL;
2593
2594
/* handle the common (which also happens to be the set of easy) cases
2595
* right away, these two if statements catch everything involving a
2596
* single or absent peer SID/label */
2597
if (xfrm_sid == SECSID_NULL) {
2598
*peer_sid = nlbl_sid;
2599
return 0;
2600
}
2601
/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2602
* and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2603
* is present */
2604
if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2605
*peer_sid = xfrm_sid;
2606
return 0;
2607
}
2608
2609
/* we don't need to check ss_initialized here since the only way both
2610
* nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2611
* security server was initialized and ss_initialized was true */
2612
if (!policydb.mls_enabled)
2613
return 0;
2614
2615
read_lock(&policy_rwlock);
2616
2617
rc = -EINVAL;
2618
nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2619
if (!nlbl_ctx) {
2620
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2621
__func__, nlbl_sid);
2622
goto out;
2623
}
2624
rc = -EINVAL;
2625
xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2626
if (!xfrm_ctx) {
2627
printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2628
__func__, xfrm_sid);
2629
goto out;
2630
}
2631
rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2632
if (rc)
2633
goto out;
2634
2635
/* at present NetLabel SIDs/labels really only carry MLS
2636
* information so if the MLS portion of the NetLabel SID
2637
* matches the MLS portion of the labeled XFRM SID/label
2638
* then pass along the XFRM SID as it is the most
2639
* expressive */
2640
*peer_sid = xfrm_sid;
2641
out:
2642
read_unlock(&policy_rwlock);
2643
return rc;
2644
}
2645
2646
static int get_classes_callback(void *k, void *d, void *args)
2647
{
2648
struct class_datum *datum = d;
2649
char *name = k, **classes = args;
2650
int value = datum->value - 1;
2651
2652
classes[value] = kstrdup(name, GFP_ATOMIC);
2653
if (!classes[value])
2654
return -ENOMEM;
2655
2656
return 0;
2657
}
2658
2659
int security_get_classes(char ***classes, int *nclasses)
2660
{
2661
int rc;
2662
2663
read_lock(&policy_rwlock);
2664
2665
rc = -ENOMEM;
2666
*nclasses = policydb.p_classes.nprim;
2667
*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2668
if (!*classes)
2669
goto out;
2670
2671
rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2672
*classes);
2673
if (rc) {
2674
int i;
2675
for (i = 0; i < *nclasses; i++)
2676
kfree((*classes)[i]);
2677
kfree(*classes);
2678
}
2679
2680
out:
2681
read_unlock(&policy_rwlock);
2682
return rc;
2683
}
2684
2685
static int get_permissions_callback(void *k, void *d, void *args)
2686
{
2687
struct perm_datum *datum = d;
2688
char *name = k, **perms = args;
2689
int value = datum->value - 1;
2690
2691
perms[value] = kstrdup(name, GFP_ATOMIC);
2692
if (!perms[value])
2693
return -ENOMEM;
2694
2695
return 0;
2696
}
2697
2698
int security_get_permissions(char *class, char ***perms, int *nperms)
2699
{
2700
int rc, i;
2701
struct class_datum *match;
2702
2703
read_lock(&policy_rwlock);
2704
2705
rc = -EINVAL;
2706
match = hashtab_search(policydb.p_classes.table, class);
2707
if (!match) {
2708
printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
2709
__func__, class);
2710
goto out;
2711
}
2712
2713
rc = -ENOMEM;
2714
*nperms = match->permissions.nprim;
2715
*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2716
if (!*perms)
2717
goto out;
2718
2719
if (match->comdatum) {
2720
rc = hashtab_map(match->comdatum->permissions.table,
2721
get_permissions_callback, *perms);
2722
if (rc)
2723
goto err;
2724
}
2725
2726
rc = hashtab_map(match->permissions.table, get_permissions_callback,
2727
*perms);
2728
if (rc)
2729
goto err;
2730
2731
out:
2732
read_unlock(&policy_rwlock);
2733
return rc;
2734
2735
err:
2736
read_unlock(&policy_rwlock);
2737
for (i = 0; i < *nperms; i++)
2738
kfree((*perms)[i]);
2739
kfree(*perms);
2740
return rc;
2741
}
2742
2743
int security_get_reject_unknown(void)
2744
{
2745
return policydb.reject_unknown;
2746
}
2747
2748
int security_get_allow_unknown(void)
2749
{
2750
return policydb.allow_unknown;
2751
}
2752
2753
/**
2754
* security_policycap_supported - Check for a specific policy capability
2755
* @req_cap: capability
2756
*
2757
* Description:
2758
* This function queries the currently loaded policy to see if it supports the
2759
* capability specified by @req_cap. Returns true (1) if the capability is
2760
* supported, false (0) if it isn't supported.
2761
*
2762
*/
2763
int security_policycap_supported(unsigned int req_cap)
2764
{
2765
int rc;
2766
2767
read_lock(&policy_rwlock);
2768
rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2769
read_unlock(&policy_rwlock);
2770
2771
return rc;
2772
}
2773
2774
struct selinux_audit_rule {
2775
u32 au_seqno;
2776
struct context au_ctxt;
2777
};
2778
2779
void selinux_audit_rule_free(void *vrule)
2780
{
2781
struct selinux_audit_rule *rule = vrule;
2782
2783
if (rule) {
2784
context_destroy(&rule->au_ctxt);
2785
kfree(rule);
2786
}
2787
}
2788
2789
int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2790
{
2791
struct selinux_audit_rule *tmprule;
2792
struct role_datum *roledatum;
2793
struct type_datum *typedatum;
2794
struct user_datum *userdatum;
2795
struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2796
int rc = 0;
2797
2798
*rule = NULL;
2799
2800
if (!ss_initialized)
2801
return -EOPNOTSUPP;
2802
2803
switch (field) {
2804
case AUDIT_SUBJ_USER:
2805
case AUDIT_SUBJ_ROLE:
2806
case AUDIT_SUBJ_TYPE:
2807
case AUDIT_OBJ_USER:
2808
case AUDIT_OBJ_ROLE:
2809
case AUDIT_OBJ_TYPE:
2810
/* only 'equals' and 'not equals' fit user, role, and type */
2811
if (op != Audit_equal && op != Audit_not_equal)
2812
return -EINVAL;
2813
break;
2814
case AUDIT_SUBJ_SEN:
2815
case AUDIT_SUBJ_CLR:
2816
case AUDIT_OBJ_LEV_LOW:
2817
case AUDIT_OBJ_LEV_HIGH:
2818
/* we do not allow a range, indicated by the presence of '-' */
2819
if (strchr(rulestr, '-'))
2820
return -EINVAL;
2821
break;
2822
default:
2823
/* only the above fields are valid */
2824
return -EINVAL;
2825
}
2826
2827
tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2828
if (!tmprule)
2829
return -ENOMEM;
2830
2831
context_init(&tmprule->au_ctxt);
2832
2833
read_lock(&policy_rwlock);
2834
2835
tmprule->au_seqno = latest_granting;
2836
2837
switch (field) {
2838
case AUDIT_SUBJ_USER:
2839
case AUDIT_OBJ_USER:
2840
rc = -EINVAL;
2841
userdatum = hashtab_search(policydb.p_users.table, rulestr);
2842
if (!userdatum)
2843
goto out;
2844
tmprule->au_ctxt.user = userdatum->value;
2845
break;
2846
case AUDIT_SUBJ_ROLE:
2847
case AUDIT_OBJ_ROLE:
2848
rc = -EINVAL;
2849
roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2850
if (!roledatum)
2851
goto out;
2852
tmprule->au_ctxt.role = roledatum->value;
2853
break;
2854
case AUDIT_SUBJ_TYPE:
2855
case AUDIT_OBJ_TYPE:
2856
rc = -EINVAL;
2857
typedatum = hashtab_search(policydb.p_types.table, rulestr);
2858
if (!typedatum)
2859
goto out;
2860
tmprule->au_ctxt.type = typedatum->value;
2861
break;
2862
case AUDIT_SUBJ_SEN:
2863
case AUDIT_SUBJ_CLR:
2864
case AUDIT_OBJ_LEV_LOW:
2865
case AUDIT_OBJ_LEV_HIGH:
2866
rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2867
if (rc)
2868
goto out;
2869
break;
2870
}
2871
rc = 0;
2872
out:
2873
read_unlock(&policy_rwlock);
2874
2875
if (rc) {
2876
selinux_audit_rule_free(tmprule);
2877
tmprule = NULL;
2878
}
2879
2880
*rule = tmprule;
2881
2882
return rc;
2883
}
2884
2885
/* Check to see if the rule contains any selinux fields */
2886
int selinux_audit_rule_known(struct audit_krule *rule)
2887
{
2888
int i;
2889
2890
for (i = 0; i < rule->field_count; i++) {
2891
struct audit_field *f = &rule->fields[i];
2892
switch (f->type) {
2893
case AUDIT_SUBJ_USER:
2894
case AUDIT_SUBJ_ROLE:
2895
case AUDIT_SUBJ_TYPE:
2896
case AUDIT_SUBJ_SEN:
2897
case AUDIT_SUBJ_CLR:
2898
case AUDIT_OBJ_USER:
2899
case AUDIT_OBJ_ROLE:
2900
case AUDIT_OBJ_TYPE:
2901
case AUDIT_OBJ_LEV_LOW:
2902
case AUDIT_OBJ_LEV_HIGH:
2903
return 1;
2904
}
2905
}
2906
2907
return 0;
2908
}
2909
2910
int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2911
struct audit_context *actx)
2912
{
2913
struct context *ctxt;
2914
struct mls_level *level;
2915
struct selinux_audit_rule *rule = vrule;
2916
int match = 0;
2917
2918
if (!rule) {
2919
audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2920
"selinux_audit_rule_match: missing rule\n");
2921
return -ENOENT;
2922
}
2923
2924
read_lock(&policy_rwlock);
2925
2926
if (rule->au_seqno < latest_granting) {
2927
audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2928
"selinux_audit_rule_match: stale rule\n");
2929
match = -ESTALE;
2930
goto out;
2931
}
2932
2933
ctxt = sidtab_search(&sidtab, sid);
2934
if (!ctxt) {
2935
audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2936
"selinux_audit_rule_match: unrecognized SID %d\n",
2937
sid);
2938
match = -ENOENT;
2939
goto out;
2940
}
2941
2942
/* a field/op pair that is not caught here will simply fall through
2943
without a match */
2944
switch (field) {
2945
case AUDIT_SUBJ_USER:
2946
case AUDIT_OBJ_USER:
2947
switch (op) {
2948
case Audit_equal:
2949
match = (ctxt->user == rule->au_ctxt.user);
2950
break;
2951
case Audit_not_equal:
2952
match = (ctxt->user != rule->au_ctxt.user);
2953
break;
2954
}
2955
break;
2956
case AUDIT_SUBJ_ROLE:
2957
case AUDIT_OBJ_ROLE:
2958
switch (op) {
2959
case Audit_equal:
2960
match = (ctxt->role == rule->au_ctxt.role);
2961
break;
2962
case Audit_not_equal:
2963
match = (ctxt->role != rule->au_ctxt.role);
2964
break;
2965
}
2966
break;
2967
case AUDIT_SUBJ_TYPE:
2968
case AUDIT_OBJ_TYPE:
2969
switch (op) {
2970
case Audit_equal:
2971
match = (ctxt->type == rule->au_ctxt.type);
2972
break;
2973
case Audit_not_equal:
2974
match = (ctxt->type != rule->au_ctxt.type);
2975
break;
2976
}
2977
break;
2978
case AUDIT_SUBJ_SEN:
2979
case AUDIT_SUBJ_CLR:
2980
case AUDIT_OBJ_LEV_LOW:
2981
case AUDIT_OBJ_LEV_HIGH:
2982
level = ((field == AUDIT_SUBJ_SEN ||
2983
field == AUDIT_OBJ_LEV_LOW) ?
2984
&ctxt->range.level[0] : &ctxt->range.level[1]);
2985
switch (op) {
2986
case Audit_equal:
2987
match = mls_level_eq(&rule->au_ctxt.range.level[0],
2988
level);
2989
break;
2990
case Audit_not_equal:
2991
match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2992
level);
2993
break;
2994
case Audit_lt:
2995
match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2996
level) &&
2997
!mls_level_eq(&rule->au_ctxt.range.level[0],
2998
level));
2999
break;
3000
case Audit_le:
3001
match = mls_level_dom(&rule->au_ctxt.range.level[0],
3002
level);
3003
break;
3004
case Audit_gt:
3005
match = (mls_level_dom(level,
3006
&rule->au_ctxt.range.level[0]) &&
3007
!mls_level_eq(level,
3008
&rule->au_ctxt.range.level[0]));
3009
break;
3010
case Audit_ge:
3011
match = mls_level_dom(level,
3012
&rule->au_ctxt.range.level[0]);
3013
break;
3014
}
3015
}
3016
3017
out:
3018
read_unlock(&policy_rwlock);
3019
return match;
3020
}
3021
3022
static int (*aurule_callback)(void) = audit_update_lsm_rules;
3023
3024
static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
3025
u16 class, u32 perms, u32 *retained)
3026
{
3027
int err = 0;
3028
3029
if (event == AVC_CALLBACK_RESET && aurule_callback)
3030
err = aurule_callback();
3031
return err;
3032
}
3033
3034
static int __init aurule_init(void)
3035
{
3036
int err;
3037
3038
err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
3039
SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
3040
if (err)
3041
panic("avc_add_callback() failed, error %d\n", err);
3042
3043
return err;
3044
}
3045
__initcall(aurule_init);
3046
3047
#ifdef CONFIG_NETLABEL
3048
/**
3049
* security_netlbl_cache_add - Add an entry to the NetLabel cache
3050
* @secattr: the NetLabel packet security attributes
3051
* @sid: the SELinux SID
3052
*
3053
* Description:
3054
* Attempt to cache the context in @ctx, which was derived from the packet in
3055
* @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3056
* already been initialized.
3057
*
3058
*/
3059
static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3060
u32 sid)
3061
{
3062
u32 *sid_cache;
3063
3064
sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3065
if (sid_cache == NULL)
3066
return;
3067
secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3068
if (secattr->cache == NULL) {
3069
kfree(sid_cache);
3070
return;
3071
}
3072
3073
*sid_cache = sid;
3074
secattr->cache->free = kfree;
3075
secattr->cache->data = sid_cache;
3076
secattr->flags |= NETLBL_SECATTR_CACHE;
3077
}
3078
3079
/**
3080
* security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3081
* @secattr: the NetLabel packet security attributes
3082
* @sid: the SELinux SID
3083
*
3084
* Description:
3085
* Convert the given NetLabel security attributes in @secattr into a
3086
* SELinux SID. If the @secattr field does not contain a full SELinux
3087
* SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3088
* 'cache' field of @secattr is set and the CACHE flag is set; this is to
3089
* allow the @secattr to be used by NetLabel to cache the secattr to SID
3090
* conversion for future lookups. Returns zero on success, negative values on
3091
* failure.
3092
*
3093
*/
3094
int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3095
u32 *sid)
3096
{
3097
int rc;
3098
struct context *ctx;
3099
struct context ctx_new;
3100
3101
if (!ss_initialized) {
3102
*sid = SECSID_NULL;
3103
return 0;
3104
}
3105
3106
read_lock(&policy_rwlock);
3107
3108
if (secattr->flags & NETLBL_SECATTR_CACHE)
3109
*sid = *(u32 *)secattr->cache->data;
3110
else if (secattr->flags & NETLBL_SECATTR_SECID)
3111
*sid = secattr->attr.secid;
3112
else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3113
rc = -EIDRM;
3114
ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3115
if (ctx == NULL)
3116
goto out;
3117
3118
context_init(&ctx_new);
3119
ctx_new.user = ctx->user;
3120
ctx_new.role = ctx->role;
3121
ctx_new.type = ctx->type;
3122
mls_import_netlbl_lvl(&ctx_new, secattr);
3123
if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3124
rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3125
secattr->attr.mls.cat);
3126
if (rc)
3127
goto out;
3128
memcpy(&ctx_new.range.level[1].cat,
3129
&ctx_new.range.level[0].cat,
3130
sizeof(ctx_new.range.level[0].cat));
3131
}
3132
rc = -EIDRM;
3133
if (!mls_context_isvalid(&policydb, &ctx_new))
3134
goto out_free;
3135
3136
rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3137
if (rc)
3138
goto out_free;
3139
3140
security_netlbl_cache_add(secattr, *sid);
3141
3142
ebitmap_destroy(&ctx_new.range.level[0].cat);
3143
} else
3144
*sid = SECSID_NULL;
3145
3146
read_unlock(&policy_rwlock);
3147
return 0;
3148
out_free:
3149
ebitmap_destroy(&ctx_new.range.level[0].cat);
3150
out:
3151
read_unlock(&policy_rwlock);
3152
return rc;
3153
}
3154
3155
/**
3156
* security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3157
* @sid: the SELinux SID
3158
* @secattr: the NetLabel packet security attributes
3159
*
3160
* Description:
3161
* Convert the given SELinux SID in @sid into a NetLabel security attribute.
3162
* Returns zero on success, negative values on failure.
3163
*
3164
*/
3165
int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3166
{
3167
int rc;
3168
struct context *ctx;
3169
3170
if (!ss_initialized)
3171
return 0;
3172
3173
read_lock(&policy_rwlock);
3174
3175
rc = -ENOENT;
3176
ctx = sidtab_search(&sidtab, sid);
3177
if (ctx == NULL)
3178
goto out;
3179
3180
rc = -ENOMEM;
3181
secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3182
GFP_ATOMIC);
3183
if (secattr->domain == NULL)
3184
goto out;
3185
3186
secattr->attr.secid = sid;
3187
secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3188
mls_export_netlbl_lvl(ctx, secattr);
3189
rc = mls_export_netlbl_cat(ctx, secattr);
3190
out:
3191
read_unlock(&policy_rwlock);
3192
return rc;
3193
}
3194
#endif /* CONFIG_NETLABEL */
3195
3196
/**
3197
* security_read_policy - read the policy.
3198
* @data: binary policy data
3199
* @len: length of data in bytes
3200
*
3201
*/
3202
int security_read_policy(void **data, size_t *len)
3203
{
3204
int rc;
3205
struct policy_file fp;
3206
3207
if (!ss_initialized)
3208
return -EINVAL;
3209
3210
*len = security_policydb_len();
3211
3212
*data = vmalloc_user(*len);
3213
if (!*data)
3214
return -ENOMEM;
3215
3216
fp.data = *data;
3217
fp.len = *len;
3218
3219
read_lock(&policy_rwlock);
3220
rc = policydb_write(&policydb, &fp);
3221
read_unlock(&policy_rwlock);
3222
3223
if (rc)
3224
return rc;
3225
3226
*len = (unsigned long)fp.data - (unsigned long)*data;
3227
return 0;
3228
3229
}
3230
3231