Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/sound/drivers/vx/vx_mixer.c
10817 views
1
/*
2
* Driver for Digigram VX soundcards
3
*
4
* Common mixer part
5
*
6
* Copyright (c) 2002 by Takashi Iwai <[email protected]>
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU General Public License as published by
10
* the Free Software Foundation; either version 2 of the License, or
11
* (at your option) any later version.
12
*
13
* This program is distributed in the hope that it will be useful,
14
* but WITHOUT ANY WARRANTY; without even the implied warranty of
15
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16
* GNU General Public License for more details.
17
*
18
* You should have received a copy of the GNU General Public License
19
* along with this program; if not, write to the Free Software
20
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21
*/
22
23
#include <sound/core.h>
24
#include <sound/control.h>
25
#include <sound/tlv.h>
26
#include <sound/vx_core.h>
27
#include "vx_cmd.h"
28
29
30
/*
31
* write a codec data (24bit)
32
*/
33
static void vx_write_codec_reg(struct vx_core *chip, int codec, unsigned int data)
34
{
35
unsigned long flags;
36
37
if (snd_BUG_ON(!chip->ops->write_codec))
38
return;
39
40
if (chip->chip_status & VX_STAT_IS_STALE)
41
return;
42
43
spin_lock_irqsave(&chip->lock, flags);
44
chip->ops->write_codec(chip, codec, data);
45
spin_unlock_irqrestore(&chip->lock, flags);
46
}
47
48
/*
49
* Data type used to access the Codec
50
*/
51
union vx_codec_data {
52
u32 l;
53
#ifdef SNDRV_BIG_ENDIAN
54
struct w {
55
u16 h;
56
u16 l;
57
} w;
58
struct b {
59
u8 hh;
60
u8 mh;
61
u8 ml;
62
u8 ll;
63
} b;
64
#else /* LITTLE_ENDIAN */
65
struct w {
66
u16 l;
67
u16 h;
68
} w;
69
struct b {
70
u8 ll;
71
u8 ml;
72
u8 mh;
73
u8 hh;
74
} b;
75
#endif
76
};
77
78
#define SET_CDC_DATA_SEL(di,s) ((di).b.mh = (u8) (s))
79
#define SET_CDC_DATA_REG(di,r) ((di).b.ml = (u8) (r))
80
#define SET_CDC_DATA_VAL(di,d) ((di).b.ll = (u8) (d))
81
#define SET_CDC_DATA_INIT(di) ((di).l = 0L, SET_CDC_DATA_SEL(di,XX_CODEC_SELECTOR))
82
83
/*
84
* set up codec register and write the value
85
* @codec: the codec id, 0 or 1
86
* @reg: register index
87
* @val: data value
88
*/
89
static void vx_set_codec_reg(struct vx_core *chip, int codec, int reg, int val)
90
{
91
union vx_codec_data data;
92
/* DAC control register */
93
SET_CDC_DATA_INIT(data);
94
SET_CDC_DATA_REG(data, reg);
95
SET_CDC_DATA_VAL(data, val);
96
vx_write_codec_reg(chip, codec, data.l);
97
}
98
99
100
/*
101
* vx_set_analog_output_level - set the output attenuation level
102
* @codec: the output codec, 0 or 1. (1 for VXP440 only)
103
* @left: left output level, 0 = mute
104
* @right: right output level
105
*/
106
static void vx_set_analog_output_level(struct vx_core *chip, int codec, int left, int right)
107
{
108
left = chip->hw->output_level_max - left;
109
right = chip->hw->output_level_max - right;
110
111
if (chip->ops->akm_write) {
112
chip->ops->akm_write(chip, XX_CODEC_LEVEL_LEFT_REGISTER, left);
113
chip->ops->akm_write(chip, XX_CODEC_LEVEL_RIGHT_REGISTER, right);
114
} else {
115
/* convert to attenuation level: 0 = 0dB (max), 0xe3 = -113.5 dB (min) */
116
vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_LEFT_REGISTER, left);
117
vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_RIGHT_REGISTER, right);
118
}
119
}
120
121
122
/*
123
* vx_toggle_dac_mute - mute/unmute DAC
124
* @mute: 0 = unmute, 1 = mute
125
*/
126
127
#define DAC_ATTEN_MIN 0x08
128
#define DAC_ATTEN_MAX 0x38
129
130
void vx_toggle_dac_mute(struct vx_core *chip, int mute)
131
{
132
unsigned int i;
133
for (i = 0; i < chip->hw->num_codecs; i++) {
134
if (chip->ops->akm_write)
135
chip->ops->akm_write(chip, XX_CODEC_DAC_CONTROL_REGISTER, mute); /* XXX */
136
else
137
vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER,
138
mute ? DAC_ATTEN_MAX : DAC_ATTEN_MIN);
139
}
140
}
141
142
/*
143
* vx_reset_codec - reset and initialize the codecs
144
*/
145
void vx_reset_codec(struct vx_core *chip, int cold_reset)
146
{
147
unsigned int i;
148
int port = chip->type >= VX_TYPE_VXPOCKET ? 0x75 : 0x65;
149
150
chip->ops->reset_codec(chip);
151
152
/* AKM codecs should be initialized in reset_codec callback */
153
if (! chip->ops->akm_write) {
154
/* initialize old codecs */
155
for (i = 0; i < chip->hw->num_codecs; i++) {
156
/* DAC control register (change level when zero crossing + mute) */
157
vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER, DAC_ATTEN_MAX);
158
/* ADC control register */
159
vx_set_codec_reg(chip, i, XX_CODEC_ADC_CONTROL_REGISTER, 0x00);
160
/* Port mode register */
161
vx_set_codec_reg(chip, i, XX_CODEC_PORT_MODE_REGISTER, port);
162
/* Clock control register */
163
vx_set_codec_reg(chip, i, XX_CODEC_CLOCK_CONTROL_REGISTER, 0x00);
164
}
165
}
166
167
/* mute analog output */
168
for (i = 0; i < chip->hw->num_codecs; i++) {
169
chip->output_level[i][0] = 0;
170
chip->output_level[i][1] = 0;
171
vx_set_analog_output_level(chip, i, 0, 0);
172
}
173
}
174
175
/*
176
* change the audio input source
177
* @src: the target source (VX_AUDIO_SRC_XXX)
178
*/
179
static void vx_change_audio_source(struct vx_core *chip, int src)
180
{
181
unsigned long flags;
182
183
if (chip->chip_status & VX_STAT_IS_STALE)
184
return;
185
186
spin_lock_irqsave(&chip->lock, flags);
187
chip->ops->change_audio_source(chip, src);
188
spin_unlock_irqrestore(&chip->lock, flags);
189
}
190
191
192
/*
193
* change the audio source if necessary and possible
194
* returns 1 if the source is actually changed.
195
*/
196
int vx_sync_audio_source(struct vx_core *chip)
197
{
198
if (chip->audio_source_target == chip->audio_source ||
199
chip->pcm_running)
200
return 0;
201
vx_change_audio_source(chip, chip->audio_source_target);
202
chip->audio_source = chip->audio_source_target;
203
return 1;
204
}
205
206
207
/*
208
* audio level, mute, monitoring
209
*/
210
struct vx_audio_level {
211
unsigned int has_level: 1;
212
unsigned int has_monitor_level: 1;
213
unsigned int has_mute: 1;
214
unsigned int has_monitor_mute: 1;
215
unsigned int mute;
216
unsigned int monitor_mute;
217
short level;
218
short monitor_level;
219
};
220
221
static int vx_adjust_audio_level(struct vx_core *chip, int audio, int capture,
222
struct vx_audio_level *info)
223
{
224
struct vx_rmh rmh;
225
226
if (chip->chip_status & VX_STAT_IS_STALE)
227
return -EBUSY;
228
229
vx_init_rmh(&rmh, CMD_AUDIO_LEVEL_ADJUST);
230
if (capture)
231
rmh.Cmd[0] |= COMMAND_RECORD_MASK;
232
/* Add Audio IO mask */
233
rmh.Cmd[1] = 1 << audio;
234
rmh.Cmd[2] = 0;
235
if (info->has_level) {
236
rmh.Cmd[0] |= VALID_AUDIO_IO_DIGITAL_LEVEL;
237
rmh.Cmd[2] |= info->level;
238
}
239
if (info->has_monitor_level) {
240
rmh.Cmd[0] |= VALID_AUDIO_IO_MONITORING_LEVEL;
241
rmh.Cmd[2] |= ((unsigned int)info->monitor_level << 10);
242
}
243
if (info->has_mute) {
244
rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_LEVEL;
245
if (info->mute)
246
rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_LEVEL;
247
}
248
if (info->has_monitor_mute) {
249
/* validate flag for M2 at least to unmute it */
250
rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_MONITORING_1 | VALID_AUDIO_IO_MUTE_MONITORING_2;
251
if (info->monitor_mute)
252
rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_MONITORING_1;
253
}
254
255
return vx_send_msg(chip, &rmh);
256
}
257
258
259
#if 0 // not used
260
static int vx_read_audio_level(struct vx_core *chip, int audio, int capture,
261
struct vx_audio_level *info)
262
{
263
int err;
264
struct vx_rmh rmh;
265
266
memset(info, 0, sizeof(*info));
267
vx_init_rmh(&rmh, CMD_GET_AUDIO_LEVELS);
268
if (capture)
269
rmh.Cmd[0] |= COMMAND_RECORD_MASK;
270
/* Add Audio IO mask */
271
rmh.Cmd[1] = 1 << audio;
272
err = vx_send_msg(chip, &rmh);
273
if (err < 0)
274
return err;
275
info.level = rmh.Stat[0] & MASK_DSP_WORD_LEVEL;
276
info.monitor_level = (rmh.Stat[0] >> 10) & MASK_DSP_WORD_LEVEL;
277
info.mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_LEVEL) ? 1 : 0;
278
info.monitor_mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_MONITORING_1) ? 1 : 0;
279
return 0;
280
}
281
#endif // not used
282
283
/*
284
* set the monitoring level and mute state of the given audio
285
* no more static, because must be called from vx_pcm to demute monitoring
286
*/
287
int vx_set_monitor_level(struct vx_core *chip, int audio, int level, int active)
288
{
289
struct vx_audio_level info;
290
291
memset(&info, 0, sizeof(info));
292
info.has_monitor_level = 1;
293
info.monitor_level = level;
294
info.has_monitor_mute = 1;
295
info.monitor_mute = !active;
296
chip->audio_monitor[audio] = level;
297
chip->audio_monitor_active[audio] = active;
298
return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */
299
}
300
301
302
/*
303
* set the mute status of the given audio
304
*/
305
static int vx_set_audio_switch(struct vx_core *chip, int audio, int active)
306
{
307
struct vx_audio_level info;
308
309
memset(&info, 0, sizeof(info));
310
info.has_mute = 1;
311
info.mute = !active;
312
chip->audio_active[audio] = active;
313
return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */
314
}
315
316
/*
317
* set the mute status of the given audio
318
*/
319
static int vx_set_audio_gain(struct vx_core *chip, int audio, int capture, int level)
320
{
321
struct vx_audio_level info;
322
323
memset(&info, 0, sizeof(info));
324
info.has_level = 1;
325
info.level = level;
326
chip->audio_gain[capture][audio] = level;
327
return vx_adjust_audio_level(chip, audio, capture, &info);
328
}
329
330
/*
331
* reset all audio levels
332
*/
333
static void vx_reset_audio_levels(struct vx_core *chip)
334
{
335
unsigned int i, c;
336
struct vx_audio_level info;
337
338
memset(chip->audio_gain, 0, sizeof(chip->audio_gain));
339
memset(chip->audio_active, 0, sizeof(chip->audio_active));
340
memset(chip->audio_monitor, 0, sizeof(chip->audio_monitor));
341
memset(chip->audio_monitor_active, 0, sizeof(chip->audio_monitor_active));
342
343
for (c = 0; c < 2; c++) {
344
for (i = 0; i < chip->hw->num_ins * 2; i++) {
345
memset(&info, 0, sizeof(info));
346
if (c == 0) {
347
info.has_monitor_level = 1;
348
info.has_mute = 1;
349
info.has_monitor_mute = 1;
350
}
351
info.has_level = 1;
352
info.level = CVAL_0DB; /* default: 0dB */
353
vx_adjust_audio_level(chip, i, c, &info);
354
chip->audio_gain[c][i] = CVAL_0DB;
355
chip->audio_monitor[i] = CVAL_0DB;
356
}
357
}
358
}
359
360
361
/*
362
* VU, peak meter record
363
*/
364
365
#define VU_METER_CHANNELS 2
366
367
struct vx_vu_meter {
368
int saturated;
369
int vu_level;
370
int peak_level;
371
};
372
373
/*
374
* get the VU and peak meter values
375
* @audio: the audio index
376
* @capture: 0 = playback, 1 = capture operation
377
* @info: the array of vx_vu_meter records (size = 2).
378
*/
379
static int vx_get_audio_vu_meter(struct vx_core *chip, int audio, int capture, struct vx_vu_meter *info)
380
{
381
struct vx_rmh rmh;
382
int i, err;
383
384
if (chip->chip_status & VX_STAT_IS_STALE)
385
return -EBUSY;
386
387
vx_init_rmh(&rmh, CMD_AUDIO_VU_PIC_METER);
388
rmh.LgStat += 2 * VU_METER_CHANNELS;
389
if (capture)
390
rmh.Cmd[0] |= COMMAND_RECORD_MASK;
391
392
/* Add Audio IO mask */
393
rmh.Cmd[1] = 0;
394
for (i = 0; i < VU_METER_CHANNELS; i++)
395
rmh.Cmd[1] |= 1 << (audio + i);
396
err = vx_send_msg(chip, &rmh);
397
if (err < 0)
398
return err;
399
/* Read response */
400
for (i = 0; i < 2 * VU_METER_CHANNELS; i +=2) {
401
info->saturated = (rmh.Stat[0] & (1 << (audio + i))) ? 1 : 0;
402
info->vu_level = rmh.Stat[i + 1];
403
info->peak_level = rmh.Stat[i + 2];
404
info++;
405
}
406
return 0;
407
}
408
409
410
/*
411
* control API entries
412
*/
413
414
/*
415
* output level control
416
*/
417
static int vx_output_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
418
{
419
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
420
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
421
uinfo->count = 2;
422
uinfo->value.integer.min = 0;
423
uinfo->value.integer.max = chip->hw->output_level_max;
424
return 0;
425
}
426
427
static int vx_output_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
428
{
429
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
430
int codec = kcontrol->id.index;
431
mutex_lock(&chip->mixer_mutex);
432
ucontrol->value.integer.value[0] = chip->output_level[codec][0];
433
ucontrol->value.integer.value[1] = chip->output_level[codec][1];
434
mutex_unlock(&chip->mixer_mutex);
435
return 0;
436
}
437
438
static int vx_output_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
439
{
440
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
441
int codec = kcontrol->id.index;
442
unsigned int val[2], vmax;
443
444
vmax = chip->hw->output_level_max;
445
val[0] = ucontrol->value.integer.value[0];
446
val[1] = ucontrol->value.integer.value[1];
447
if (val[0] > vmax || val[1] > vmax)
448
return -EINVAL;
449
mutex_lock(&chip->mixer_mutex);
450
if (val[0] != chip->output_level[codec][0] ||
451
val[1] != chip->output_level[codec][1]) {
452
vx_set_analog_output_level(chip, codec, val[0], val[1]);
453
chip->output_level[codec][0] = val[0];
454
chip->output_level[codec][1] = val[1];
455
mutex_unlock(&chip->mixer_mutex);
456
return 1;
457
}
458
mutex_unlock(&chip->mixer_mutex);
459
return 0;
460
}
461
462
static struct snd_kcontrol_new vx_control_output_level = {
463
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
464
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
465
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
466
.name = "Master Playback Volume",
467
.info = vx_output_level_info,
468
.get = vx_output_level_get,
469
.put = vx_output_level_put,
470
/* tlv will be filled later */
471
};
472
473
/*
474
* audio source select
475
*/
476
static int vx_audio_src_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
477
{
478
static char *texts_mic[3] = {
479
"Digital", "Line", "Mic"
480
};
481
static char *texts_vx2[2] = {
482
"Digital", "Analog"
483
};
484
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
485
486
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
487
uinfo->count = 1;
488
if (chip->type >= VX_TYPE_VXPOCKET) {
489
uinfo->value.enumerated.items = 3;
490
if (uinfo->value.enumerated.item > 2)
491
uinfo->value.enumerated.item = 2;
492
strcpy(uinfo->value.enumerated.name,
493
texts_mic[uinfo->value.enumerated.item]);
494
} else {
495
uinfo->value.enumerated.items = 2;
496
if (uinfo->value.enumerated.item > 1)
497
uinfo->value.enumerated.item = 1;
498
strcpy(uinfo->value.enumerated.name,
499
texts_vx2[uinfo->value.enumerated.item]);
500
}
501
return 0;
502
}
503
504
static int vx_audio_src_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
505
{
506
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
507
ucontrol->value.enumerated.item[0] = chip->audio_source_target;
508
return 0;
509
}
510
511
static int vx_audio_src_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
512
{
513
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
514
515
if (chip->type >= VX_TYPE_VXPOCKET) {
516
if (ucontrol->value.enumerated.item[0] > 2)
517
return -EINVAL;
518
} else {
519
if (ucontrol->value.enumerated.item[0] > 1)
520
return -EINVAL;
521
}
522
mutex_lock(&chip->mixer_mutex);
523
if (chip->audio_source_target != ucontrol->value.enumerated.item[0]) {
524
chip->audio_source_target = ucontrol->value.enumerated.item[0];
525
vx_sync_audio_source(chip);
526
mutex_unlock(&chip->mixer_mutex);
527
return 1;
528
}
529
mutex_unlock(&chip->mixer_mutex);
530
return 0;
531
}
532
533
static struct snd_kcontrol_new vx_control_audio_src = {
534
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
535
.name = "Capture Source",
536
.info = vx_audio_src_info,
537
.get = vx_audio_src_get,
538
.put = vx_audio_src_put,
539
};
540
541
/*
542
* clock mode selection
543
*/
544
static int vx_clock_mode_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
545
{
546
static char *texts[3] = {
547
"Auto", "Internal", "External"
548
};
549
550
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
551
uinfo->count = 1;
552
uinfo->value.enumerated.items = 3;
553
if (uinfo->value.enumerated.item > 2)
554
uinfo->value.enumerated.item = 2;
555
strcpy(uinfo->value.enumerated.name,
556
texts[uinfo->value.enumerated.item]);
557
return 0;
558
}
559
560
static int vx_clock_mode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
561
{
562
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
563
ucontrol->value.enumerated.item[0] = chip->clock_mode;
564
return 0;
565
}
566
567
static int vx_clock_mode_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
568
{
569
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
570
571
if (ucontrol->value.enumerated.item[0] > 2)
572
return -EINVAL;
573
mutex_lock(&chip->mixer_mutex);
574
if (chip->clock_mode != ucontrol->value.enumerated.item[0]) {
575
chip->clock_mode = ucontrol->value.enumerated.item[0];
576
vx_set_clock(chip, chip->freq);
577
mutex_unlock(&chip->mixer_mutex);
578
return 1;
579
}
580
mutex_unlock(&chip->mixer_mutex);
581
return 0;
582
}
583
584
static struct snd_kcontrol_new vx_control_clock_mode = {
585
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
586
.name = "Clock Mode",
587
.info = vx_clock_mode_info,
588
.get = vx_clock_mode_get,
589
.put = vx_clock_mode_put,
590
};
591
592
/*
593
* Audio Gain
594
*/
595
static int vx_audio_gain_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
596
{
597
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
598
uinfo->count = 2;
599
uinfo->value.integer.min = 0;
600
uinfo->value.integer.max = CVAL_MAX;
601
return 0;
602
}
603
604
static int vx_audio_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
605
{
606
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
607
int audio = kcontrol->private_value & 0xff;
608
int capture = (kcontrol->private_value >> 8) & 1;
609
610
mutex_lock(&chip->mixer_mutex);
611
ucontrol->value.integer.value[0] = chip->audio_gain[capture][audio];
612
ucontrol->value.integer.value[1] = chip->audio_gain[capture][audio+1];
613
mutex_unlock(&chip->mixer_mutex);
614
return 0;
615
}
616
617
static int vx_audio_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
618
{
619
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
620
int audio = kcontrol->private_value & 0xff;
621
int capture = (kcontrol->private_value >> 8) & 1;
622
unsigned int val[2];
623
624
val[0] = ucontrol->value.integer.value[0];
625
val[1] = ucontrol->value.integer.value[1];
626
if (val[0] > CVAL_MAX || val[1] > CVAL_MAX)
627
return -EINVAL;
628
mutex_lock(&chip->mixer_mutex);
629
if (val[0] != chip->audio_gain[capture][audio] ||
630
val[1] != chip->audio_gain[capture][audio+1]) {
631
vx_set_audio_gain(chip, audio, capture, val[0]);
632
vx_set_audio_gain(chip, audio+1, capture, val[1]);
633
mutex_unlock(&chip->mixer_mutex);
634
return 1;
635
}
636
mutex_unlock(&chip->mixer_mutex);
637
return 0;
638
}
639
640
static int vx_audio_monitor_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
641
{
642
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
643
int audio = kcontrol->private_value & 0xff;
644
645
mutex_lock(&chip->mixer_mutex);
646
ucontrol->value.integer.value[0] = chip->audio_monitor[audio];
647
ucontrol->value.integer.value[1] = chip->audio_monitor[audio+1];
648
mutex_unlock(&chip->mixer_mutex);
649
return 0;
650
}
651
652
static int vx_audio_monitor_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
653
{
654
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
655
int audio = kcontrol->private_value & 0xff;
656
unsigned int val[2];
657
658
val[0] = ucontrol->value.integer.value[0];
659
val[1] = ucontrol->value.integer.value[1];
660
if (val[0] > CVAL_MAX || val[1] > CVAL_MAX)
661
return -EINVAL;
662
663
mutex_lock(&chip->mixer_mutex);
664
if (val[0] != chip->audio_monitor[audio] ||
665
val[1] != chip->audio_monitor[audio+1]) {
666
vx_set_monitor_level(chip, audio, val[0],
667
chip->audio_monitor_active[audio]);
668
vx_set_monitor_level(chip, audio+1, val[1],
669
chip->audio_monitor_active[audio+1]);
670
mutex_unlock(&chip->mixer_mutex);
671
return 1;
672
}
673
mutex_unlock(&chip->mixer_mutex);
674
return 0;
675
}
676
677
#define vx_audio_sw_info snd_ctl_boolean_stereo_info
678
679
static int vx_audio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
680
{
681
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
682
int audio = kcontrol->private_value & 0xff;
683
684
mutex_lock(&chip->mixer_mutex);
685
ucontrol->value.integer.value[0] = chip->audio_active[audio];
686
ucontrol->value.integer.value[1] = chip->audio_active[audio+1];
687
mutex_unlock(&chip->mixer_mutex);
688
return 0;
689
}
690
691
static int vx_audio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
692
{
693
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
694
int audio = kcontrol->private_value & 0xff;
695
696
mutex_lock(&chip->mixer_mutex);
697
if (ucontrol->value.integer.value[0] != chip->audio_active[audio] ||
698
ucontrol->value.integer.value[1] != chip->audio_active[audio+1]) {
699
vx_set_audio_switch(chip, audio,
700
!!ucontrol->value.integer.value[0]);
701
vx_set_audio_switch(chip, audio+1,
702
!!ucontrol->value.integer.value[1]);
703
mutex_unlock(&chip->mixer_mutex);
704
return 1;
705
}
706
mutex_unlock(&chip->mixer_mutex);
707
return 0;
708
}
709
710
static int vx_monitor_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
711
{
712
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
713
int audio = kcontrol->private_value & 0xff;
714
715
mutex_lock(&chip->mixer_mutex);
716
ucontrol->value.integer.value[0] = chip->audio_monitor_active[audio];
717
ucontrol->value.integer.value[1] = chip->audio_monitor_active[audio+1];
718
mutex_unlock(&chip->mixer_mutex);
719
return 0;
720
}
721
722
static int vx_monitor_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
723
{
724
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
725
int audio = kcontrol->private_value & 0xff;
726
727
mutex_lock(&chip->mixer_mutex);
728
if (ucontrol->value.integer.value[0] != chip->audio_monitor_active[audio] ||
729
ucontrol->value.integer.value[1] != chip->audio_monitor_active[audio+1]) {
730
vx_set_monitor_level(chip, audio, chip->audio_monitor[audio],
731
!!ucontrol->value.integer.value[0]);
732
vx_set_monitor_level(chip, audio+1, chip->audio_monitor[audio+1],
733
!!ucontrol->value.integer.value[1]);
734
mutex_unlock(&chip->mixer_mutex);
735
return 1;
736
}
737
mutex_unlock(&chip->mixer_mutex);
738
return 0;
739
}
740
741
static const DECLARE_TLV_DB_SCALE(db_scale_audio_gain, -10975, 25, 0);
742
743
static struct snd_kcontrol_new vx_control_audio_gain = {
744
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
745
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
746
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
747
/* name will be filled later */
748
.info = vx_audio_gain_info,
749
.get = vx_audio_gain_get,
750
.put = vx_audio_gain_put,
751
.tlv = { .p = db_scale_audio_gain },
752
};
753
static struct snd_kcontrol_new vx_control_output_switch = {
754
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
755
.name = "PCM Playback Switch",
756
.info = vx_audio_sw_info,
757
.get = vx_audio_sw_get,
758
.put = vx_audio_sw_put
759
};
760
static struct snd_kcontrol_new vx_control_monitor_gain = {
761
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
762
.name = "Monitoring Volume",
763
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
764
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
765
.info = vx_audio_gain_info, /* shared */
766
.get = vx_audio_monitor_get,
767
.put = vx_audio_monitor_put,
768
.tlv = { .p = db_scale_audio_gain },
769
};
770
static struct snd_kcontrol_new vx_control_monitor_switch = {
771
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
772
.name = "Monitoring Switch",
773
.info = vx_audio_sw_info, /* shared */
774
.get = vx_monitor_sw_get,
775
.put = vx_monitor_sw_put
776
};
777
778
779
/*
780
* IEC958 status bits
781
*/
782
static int vx_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
783
{
784
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
785
uinfo->count = 1;
786
return 0;
787
}
788
789
static int vx_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
790
{
791
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
792
793
mutex_lock(&chip->mixer_mutex);
794
ucontrol->value.iec958.status[0] = (chip->uer_bits >> 0) & 0xff;
795
ucontrol->value.iec958.status[1] = (chip->uer_bits >> 8) & 0xff;
796
ucontrol->value.iec958.status[2] = (chip->uer_bits >> 16) & 0xff;
797
ucontrol->value.iec958.status[3] = (chip->uer_bits >> 24) & 0xff;
798
mutex_unlock(&chip->mixer_mutex);
799
return 0;
800
}
801
802
static int vx_iec958_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
803
{
804
ucontrol->value.iec958.status[0] = 0xff;
805
ucontrol->value.iec958.status[1] = 0xff;
806
ucontrol->value.iec958.status[2] = 0xff;
807
ucontrol->value.iec958.status[3] = 0xff;
808
return 0;
809
}
810
811
static int vx_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
812
{
813
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
814
unsigned int val;
815
816
val = (ucontrol->value.iec958.status[0] << 0) |
817
(ucontrol->value.iec958.status[1] << 8) |
818
(ucontrol->value.iec958.status[2] << 16) |
819
(ucontrol->value.iec958.status[3] << 24);
820
mutex_lock(&chip->mixer_mutex);
821
if (chip->uer_bits != val) {
822
chip->uer_bits = val;
823
vx_set_iec958_status(chip, val);
824
mutex_unlock(&chip->mixer_mutex);
825
return 1;
826
}
827
mutex_unlock(&chip->mixer_mutex);
828
return 0;
829
}
830
831
static struct snd_kcontrol_new vx_control_iec958_mask = {
832
.access = SNDRV_CTL_ELEM_ACCESS_READ,
833
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
834
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
835
.info = vx_iec958_info, /* shared */
836
.get = vx_iec958_mask_get,
837
};
838
839
static struct snd_kcontrol_new vx_control_iec958 = {
840
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
841
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
842
.info = vx_iec958_info,
843
.get = vx_iec958_get,
844
.put = vx_iec958_put
845
};
846
847
848
/*
849
* VU meter
850
*/
851
852
#define METER_MAX 0xff
853
#define METER_SHIFT 16
854
855
static int vx_vu_meter_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
856
{
857
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
858
uinfo->count = 2;
859
uinfo->value.integer.min = 0;
860
uinfo->value.integer.max = METER_MAX;
861
return 0;
862
}
863
864
static int vx_vu_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
865
{
866
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
867
struct vx_vu_meter meter[2];
868
int audio = kcontrol->private_value & 0xff;
869
int capture = (kcontrol->private_value >> 8) & 1;
870
871
vx_get_audio_vu_meter(chip, audio, capture, meter);
872
ucontrol->value.integer.value[0] = meter[0].vu_level >> METER_SHIFT;
873
ucontrol->value.integer.value[1] = meter[1].vu_level >> METER_SHIFT;
874
return 0;
875
}
876
877
static int vx_peak_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
878
{
879
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
880
struct vx_vu_meter meter[2];
881
int audio = kcontrol->private_value & 0xff;
882
int capture = (kcontrol->private_value >> 8) & 1;
883
884
vx_get_audio_vu_meter(chip, audio, capture, meter);
885
ucontrol->value.integer.value[0] = meter[0].peak_level >> METER_SHIFT;
886
ucontrol->value.integer.value[1] = meter[1].peak_level >> METER_SHIFT;
887
return 0;
888
}
889
890
#define vx_saturation_info snd_ctl_boolean_stereo_info
891
892
static int vx_saturation_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
893
{
894
struct vx_core *chip = snd_kcontrol_chip(kcontrol);
895
struct vx_vu_meter meter[2];
896
int audio = kcontrol->private_value & 0xff;
897
898
vx_get_audio_vu_meter(chip, audio, 1, meter); /* capture only */
899
ucontrol->value.integer.value[0] = meter[0].saturated;
900
ucontrol->value.integer.value[1] = meter[1].saturated;
901
return 0;
902
}
903
904
static struct snd_kcontrol_new vx_control_vu_meter = {
905
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
906
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
907
/* name will be filled later */
908
.info = vx_vu_meter_info,
909
.get = vx_vu_meter_get,
910
};
911
912
static struct snd_kcontrol_new vx_control_peak_meter = {
913
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
914
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
915
/* name will be filled later */
916
.info = vx_vu_meter_info, /* shared */
917
.get = vx_peak_meter_get,
918
};
919
920
static struct snd_kcontrol_new vx_control_saturation = {
921
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
922
.name = "Input Saturation",
923
.access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
924
.info = vx_saturation_info,
925
.get = vx_saturation_get,
926
};
927
928
929
930
/*
931
*
932
*/
933
934
int snd_vx_mixer_new(struct vx_core *chip)
935
{
936
unsigned int i, c;
937
int err;
938
struct snd_kcontrol_new temp;
939
struct snd_card *card = chip->card;
940
char name[32];
941
942
strcpy(card->mixername, card->driver);
943
944
/* output level controls */
945
for (i = 0; i < chip->hw->num_outs; i++) {
946
temp = vx_control_output_level;
947
temp.index = i;
948
temp.tlv.p = chip->hw->output_level_db_scale;
949
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
950
return err;
951
}
952
953
/* PCM volumes, switches, monitoring */
954
for (i = 0; i < chip->hw->num_outs; i++) {
955
int val = i * 2;
956
temp = vx_control_audio_gain;
957
temp.index = i;
958
temp.name = "PCM Playback Volume";
959
temp.private_value = val;
960
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
961
return err;
962
temp = vx_control_output_switch;
963
temp.index = i;
964
temp.private_value = val;
965
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
966
return err;
967
temp = vx_control_monitor_gain;
968
temp.index = i;
969
temp.private_value = val;
970
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
971
return err;
972
temp = vx_control_monitor_switch;
973
temp.index = i;
974
temp.private_value = val;
975
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
976
return err;
977
}
978
for (i = 0; i < chip->hw->num_outs; i++) {
979
temp = vx_control_audio_gain;
980
temp.index = i;
981
temp.name = "PCM Capture Volume";
982
temp.private_value = (i * 2) | (1 << 8);
983
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
984
return err;
985
}
986
987
/* Audio source */
988
if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_audio_src, chip))) < 0)
989
return err;
990
/* clock mode */
991
if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_clock_mode, chip))) < 0)
992
return err;
993
/* IEC958 controls */
994
if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958_mask, chip))) < 0)
995
return err;
996
if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958, chip))) < 0)
997
return err;
998
/* VU, peak, saturation meters */
999
for (c = 0; c < 2; c++) {
1000
static char *dir[2] = { "Output", "Input" };
1001
for (i = 0; i < chip->hw->num_ins; i++) {
1002
int val = (i * 2) | (c << 8);
1003
if (c == 1) {
1004
temp = vx_control_saturation;
1005
temp.index = i;
1006
temp.private_value = val;
1007
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
1008
return err;
1009
}
1010
sprintf(name, "%s VU Meter", dir[c]);
1011
temp = vx_control_vu_meter;
1012
temp.index = i;
1013
temp.name = name;
1014
temp.private_value = val;
1015
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
1016
return err;
1017
sprintf(name, "%s Peak Meter", dir[c]);
1018
temp = vx_control_peak_meter;
1019
temp.index = i;
1020
temp.name = name;
1021
temp.private_value = val;
1022
if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
1023
return err;
1024
}
1025
}
1026
vx_reset_audio_levels(chip);
1027
return 0;
1028
}
1029
1030