Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/sound/pci/cmipci.c
10814 views
1
/*
2
* Driver for C-Media CMI8338 and 8738 PCI soundcards.
3
* Copyright (c) 2000 by Takashi Iwai <[email protected]>
4
*
5
* This program is free software; you can redistribute it and/or modify
6
* it under the terms of the GNU General Public License as published by
7
* the Free Software Foundation; either version 2 of the License, or
8
* (at your option) any later version.
9
*
10
* This program is distributed in the hope that it will be useful,
11
* but WITHOUT ANY WARRANTY; without even the implied warranty of
12
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
* GNU General Public License for more details.
14
*
15
* You should have received a copy of the GNU General Public License
16
* along with this program; if not, write to the Free Software
17
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
*/
19
20
/* Does not work. Warning may block system in capture mode */
21
/* #define USE_VAR48KRATE */
22
23
#include <asm/io.h>
24
#include <linux/delay.h>
25
#include <linux/interrupt.h>
26
#include <linux/init.h>
27
#include <linux/pci.h>
28
#include <linux/slab.h>
29
#include <linux/gameport.h>
30
#include <linux/moduleparam.h>
31
#include <linux/mutex.h>
32
#include <sound/core.h>
33
#include <sound/info.h>
34
#include <sound/control.h>
35
#include <sound/pcm.h>
36
#include <sound/rawmidi.h>
37
#include <sound/mpu401.h>
38
#include <sound/opl3.h>
39
#include <sound/sb.h>
40
#include <sound/asoundef.h>
41
#include <sound/initval.h>
42
43
MODULE_AUTHOR("Takashi Iwai <[email protected]>");
44
MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45
MODULE_LICENSE("GPL");
46
MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47
"{C-Media,CMI8738B},"
48
"{C-Media,CMI8338A},"
49
"{C-Media,CMI8338B}}");
50
51
#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52
#define SUPPORT_JOYSTICK 1
53
#endif
54
55
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
56
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
57
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
58
static long mpu_port[SNDRV_CARDS];
59
static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
60
static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61
#ifdef SUPPORT_JOYSTICK
62
static int joystick_port[SNDRV_CARDS];
63
#endif
64
65
module_param_array(index, int, NULL, 0444);
66
MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67
module_param_array(id, charp, NULL, 0444);
68
MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69
module_param_array(enable, bool, NULL, 0444);
70
MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71
module_param_array(mpu_port, long, NULL, 0444);
72
MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73
module_param_array(fm_port, long, NULL, 0444);
74
MODULE_PARM_DESC(fm_port, "FM port.");
75
module_param_array(soft_ac3, bool, NULL, 0444);
76
MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
77
#ifdef SUPPORT_JOYSTICK
78
module_param_array(joystick_port, int, NULL, 0444);
79
MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80
#endif
81
82
/*
83
* CM8x38 registers definition
84
*/
85
86
#define CM_REG_FUNCTRL0 0x00
87
#define CM_RST_CH1 0x00080000
88
#define CM_RST_CH0 0x00040000
89
#define CM_CHEN1 0x00020000 /* ch1: enable */
90
#define CM_CHEN0 0x00010000 /* ch0: enable */
91
#define CM_PAUSE1 0x00000008 /* ch1: pause */
92
#define CM_PAUSE0 0x00000004 /* ch0: pause */
93
#define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
94
#define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
95
96
#define CM_REG_FUNCTRL1 0x04
97
#define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */
98
#define CM_DSFC_SHIFT 13
99
#define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */
100
#define CM_ASFC_SHIFT 10
101
#define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
102
#define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
103
#define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */
104
#define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
105
#define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
106
#define CM_BREQ 0x00000010 /* bus master enabled */
107
#define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
108
#define CM_UART_EN 0x00000004 /* legacy UART */
109
#define CM_JYSTK_EN 0x00000002 /* legacy joystick */
110
#define CM_ZVPORT 0x00000001 /* ZVPORT */
111
112
#define CM_REG_CHFORMAT 0x08
113
114
#define CM_CHB3D5C 0x80000000 /* 5,6 channels */
115
#define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */
116
#define CM_CHB3D 0x20000000 /* 4 channels */
117
118
#define CM_CHIP_MASK1 0x1f000000
119
#define CM_CHIP_037 0x01000000
120
#define CM_SETLAT48 0x00800000 /* set latency timer 48h */
121
#define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */
122
#define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */
123
#define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
124
#define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
125
#define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
126
/* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
127
128
#define CM_ADCBITLEN_MASK 0x0000C000
129
#define CM_ADCBITLEN_16 0x00000000
130
#define CM_ADCBITLEN_15 0x00004000
131
#define CM_ADCBITLEN_14 0x00008000
132
#define CM_ADCBITLEN_13 0x0000C000
133
134
#define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */
135
#define CM_ADCDACLEN_060 0x00000000
136
#define CM_ADCDACLEN_066 0x00001000
137
#define CM_ADCDACLEN_130 0x00002000
138
#define CM_ADCDACLEN_280 0x00003000
139
140
#define CM_ADCDLEN_MASK 0x00003000 /* model 039 */
141
#define CM_ADCDLEN_ORIGINAL 0x00000000
142
#define CM_ADCDLEN_EXTRA 0x00001000
143
#define CM_ADCDLEN_24K 0x00002000
144
#define CM_ADCDLEN_WEIGHT 0x00003000
145
146
#define CM_CH1_SRATE_176K 0x00000800
147
#define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
148
#define CM_CH1_SRATE_88K 0x00000400
149
#define CM_CH0_SRATE_176K 0x00000200
150
#define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
151
#define CM_CH0_SRATE_88K 0x00000100
152
#define CM_CH0_SRATE_128K 0x00000300
153
#define CM_CH0_SRATE_MASK 0x00000300
154
155
#define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
156
#define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */
157
#define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */
158
#define CM_SPDLOCKED 0x00000010
159
160
#define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */
161
#define CM_CH1FMT_SHIFT 2
162
#define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */
163
#define CM_CH0FMT_SHIFT 0
164
165
#define CM_REG_INT_HLDCLR 0x0C
166
#define CM_CHIP_MASK2 0xff000000
167
#define CM_CHIP_8768 0x20000000
168
#define CM_CHIP_055 0x08000000
169
#define CM_CHIP_039 0x04000000
170
#define CM_CHIP_039_6CH 0x01000000
171
#define CM_UNKNOWN_INT_EN 0x00080000 /* ? */
172
#define CM_TDMA_INT_EN 0x00040000
173
#define CM_CH1_INT_EN 0x00020000
174
#define CM_CH0_INT_EN 0x00010000
175
176
#define CM_REG_INT_STATUS 0x10
177
#define CM_INTR 0x80000000
178
#define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
179
#define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
180
#define CM_UARTINT 0x00010000
181
#define CM_LTDMAINT 0x00008000
182
#define CM_HTDMAINT 0x00004000
183
#define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
184
#define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
185
#define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
186
#define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
187
#define CM_CH1BUSY 0x00000008
188
#define CM_CH0BUSY 0x00000004
189
#define CM_CHINT1 0x00000002
190
#define CM_CHINT0 0x00000001
191
192
#define CM_REG_LEGACY_CTRL 0x14
193
#define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */
194
#define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
195
#define CM_VMPU_330 0x00000000
196
#define CM_VMPU_320 0x20000000
197
#define CM_VMPU_310 0x40000000
198
#define CM_VMPU_300 0x60000000
199
#define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */
200
#define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
201
#define CM_VSBSEL_220 0x00000000
202
#define CM_VSBSEL_240 0x04000000
203
#define CM_VSBSEL_260 0x08000000
204
#define CM_VSBSEL_280 0x0C000000
205
#define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
206
#define CM_FMSEL_388 0x00000000
207
#define CM_FMSEL_3C8 0x01000000
208
#define CM_FMSEL_3E0 0x02000000
209
#define CM_FMSEL_3E8 0x03000000
210
#define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */
211
#define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */
212
#define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
213
#define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */
214
#define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
215
#define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */
216
#define CM_C_EECS 0x00040000
217
#define CM_C_EEDI46 0x00020000
218
#define CM_C_EECK46 0x00010000
219
#define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
220
#define CM_CENTR2LIN 0x00004000 /* line-in as center out */
221
#define CM_BASE2LIN 0x00002000 /* line-in as bass out */
222
#define CM_EXBASEN 0x00001000 /* external bass input enable */
223
224
#define CM_REG_MISC_CTRL 0x18
225
#define CM_PWD 0x80000000 /* power down */
226
#define CM_RESET 0x40000000
227
#define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */
228
#define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */
229
#define CM_TXVX 0x08000000 /* model 037? */
230
#define CM_N4SPK3D 0x04000000 /* copy front to rear */
231
#define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
232
#define CM_SPDIF48K 0x01000000 /* write */
233
#define CM_SPATUS48K 0x01000000 /* read */
234
#define CM_ENDBDAC 0x00800000 /* enable double dac */
235
#define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
236
#define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
237
#define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */
238
#define CM_FM_EN 0x00080000 /* enable legacy FM */
239
#define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
240
#define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */
241
#define CM_VIDWPDSB 0x00010000 /* model 037? */
242
#define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
243
#define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */
244
#define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */
245
#define CM_VIDWPPRT 0x00002000 /* model 037? */
246
#define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */
247
#define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */
248
#define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
249
#define CM_ENCENTER 0x00000080
250
#define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */
251
#define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */
252
#define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */
253
#define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */
254
#define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */
255
#define CM_UPDDMA_2048 0x00000000
256
#define CM_UPDDMA_1024 0x00000004
257
#define CM_UPDDMA_512 0x00000008
258
#define CM_UPDDMA_256 0x0000000C
259
#define CM_TWAIT_MASK 0x00000003 /* model 037 */
260
#define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261
#define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */
262
263
#define CM_REG_TDMA_POSITION 0x1C
264
#define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */
265
#define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */
266
267
/* byte */
268
#define CM_REG_MIXER0 0x20
269
#define CM_REG_SBVR 0x20 /* write: sb16 version */
270
#define CM_REG_DEV 0x20 /* read: hardware device version */
271
272
#define CM_REG_MIXER21 0x21
273
#define CM_UNKNOWN_21_MASK 0x78 /* ? */
274
#define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */
275
#define CM_PROINV 0x02 /* SBPro left/right channel switching */
276
#define CM_X_SB16 0x01 /* SB16 compatible */
277
278
#define CM_REG_SB16_DATA 0x22
279
#define CM_REG_SB16_ADDR 0x23
280
281
#define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
282
#define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283
#define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
284
#define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
285
286
#define CM_REG_MIXER1 0x24
287
#define CM_FMMUTE 0x80 /* mute FM */
288
#define CM_FMMUTE_SHIFT 7
289
#define CM_WSMUTE 0x40 /* mute PCM */
290
#define CM_WSMUTE_SHIFT 6
291
#define CM_REAR2LIN 0x20 /* lin-in -> rear line out */
292
#define CM_REAR2LIN_SHIFT 5
293
#define CM_REAR2FRONT 0x10 /* exchange rear/front */
294
#define CM_REAR2FRONT_SHIFT 4
295
#define CM_WAVEINL 0x08 /* digital wave rec. left chan */
296
#define CM_WAVEINL_SHIFT 3
297
#define CM_WAVEINR 0x04 /* digical wave rec. right */
298
#define CM_WAVEINR_SHIFT 2
299
#define CM_X3DEN 0x02 /* 3D surround enable */
300
#define CM_X3DEN_SHIFT 1
301
#define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
302
#define CM_CDPLAY_SHIFT 0
303
304
#define CM_REG_MIXER2 0x25
305
#define CM_RAUXREN 0x80 /* AUX right capture */
306
#define CM_RAUXREN_SHIFT 7
307
#define CM_RAUXLEN 0x40 /* AUX left capture */
308
#define CM_RAUXLEN_SHIFT 6
309
#define CM_VAUXRM 0x20 /* AUX right mute */
310
#define CM_VAUXRM_SHIFT 5
311
#define CM_VAUXLM 0x10 /* AUX left mute */
312
#define CM_VAUXLM_SHIFT 4
313
#define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
314
#define CM_VADMIC_SHIFT 1
315
#define CM_MICGAINZ 0x01 /* mic boost */
316
#define CM_MICGAINZ_SHIFT 0
317
318
#define CM_REG_MIXER3 0x24
319
#define CM_REG_AUX_VOL 0x26
320
#define CM_VAUXL_MASK 0xf0
321
#define CM_VAUXR_MASK 0x0f
322
323
#define CM_REG_MISC 0x27
324
#define CM_UNKNOWN_27_MASK 0xd8 /* ? */
325
#define CM_XGPO1 0x20
326
// #define CM_XGPBIO 0x04
327
#define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
328
#define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
329
#define CM_SPDVALID 0x02 /* spdif input valid check */
330
#define CM_DMAUTO 0x01 /* SB16 DMA auto detect */
331
332
#define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
333
/*
334
* For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335
* or identical with AC97 codec?
336
*/
337
#define CM_REG_EXTERN_CODEC CM_REG_AC97
338
339
/*
340
* MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
341
*/
342
#define CM_REG_MPU_PCI 0x40
343
344
/*
345
* FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
346
*/
347
#define CM_REG_FM_PCI 0x50
348
349
/*
350
* access from SB-mixer port
351
*/
352
#define CM_REG_EXTENT_IND 0xf0
353
#define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
354
#define CM_VPHONE_SHIFT 5
355
#define CM_VPHOM 0x10 /* Phone mute control */
356
#define CM_VSPKM 0x08 /* Speaker mute control, default high */
357
#define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
358
#define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
359
#define CM_VADMIC3 0x01 /* Mic record boost */
360
361
/*
362
* CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363
* the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364
* unit (readonly?).
365
*/
366
#define CM_REG_PLL 0xf8
367
368
/*
369
* extended registers
370
*/
371
#define CM_REG_CH0_FRAME1 0x80 /* write: base address */
372
#define CM_REG_CH0_FRAME2 0x84 /* read: current address */
373
#define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
374
#define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
375
376
#define CM_REG_EXT_MISC 0x90
377
#define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */
378
#define CM_CHB3D8C 0x00200000 /* 7.1 channels support */
379
#define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */
380
#define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */
381
#define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */
382
#define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */
383
#define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */
384
#define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */
385
386
/*
387
* size of i/o region
388
*/
389
#define CM_EXTENT_CODEC 0x100
390
#define CM_EXTENT_MIDI 0x2
391
#define CM_EXTENT_SYNTH 0x4
392
393
394
/*
395
* channels for playback / capture
396
*/
397
#define CM_CH_PLAY 0
398
#define CM_CH_CAPT 1
399
400
/*
401
* flags to check device open/close
402
*/
403
#define CM_OPEN_NONE 0
404
#define CM_OPEN_CH_MASK 0x01
405
#define CM_OPEN_DAC 0x10
406
#define CM_OPEN_ADC 0x20
407
#define CM_OPEN_SPDIF 0x40
408
#define CM_OPEN_MCHAN 0x80
409
#define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
410
#define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
411
#define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412
#define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
413
#define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414
#define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
415
416
417
#if CM_CH_PLAY == 1
418
#define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
419
#define CM_PLAYBACK_SPDF CM_SPDF_1
420
#define CM_CAPTURE_SPDF CM_SPDF_0
421
#else
422
#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423
#define CM_PLAYBACK_SPDF CM_SPDF_0
424
#define CM_CAPTURE_SPDF CM_SPDF_1
425
#endif
426
427
428
/*
429
* driver data
430
*/
431
432
struct cmipci_pcm {
433
struct snd_pcm_substream *substream;
434
u8 running; /* dac/adc running? */
435
u8 fmt; /* format bits */
436
u8 is_dac;
437
u8 needs_silencing;
438
unsigned int dma_size; /* in frames */
439
unsigned int shift;
440
unsigned int ch; /* channel (0/1) */
441
unsigned int offset; /* physical address of the buffer */
442
};
443
444
/* mixer elements toggled/resumed during ac3 playback */
445
struct cmipci_mixer_auto_switches {
446
const char *name; /* switch to toggle */
447
int toggle_on; /* value to change when ac3 mode */
448
};
449
static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450
{"PCM Playback Switch", 0},
451
{"IEC958 Output Switch", 1},
452
{"IEC958 Mix Analog", 0},
453
// {"IEC958 Out To DAC", 1}, // no longer used
454
{"IEC958 Loop", 0},
455
};
456
#define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
457
458
struct cmipci {
459
struct snd_card *card;
460
461
struct pci_dev *pci;
462
unsigned int device; /* device ID */
463
int irq;
464
465
unsigned long iobase;
466
unsigned int ctrl; /* FUNCTRL0 current value */
467
468
struct snd_pcm *pcm; /* DAC/ADC PCM */
469
struct snd_pcm *pcm2; /* 2nd DAC */
470
struct snd_pcm *pcm_spdif; /* SPDIF */
471
472
int chip_version;
473
int max_channels;
474
unsigned int can_ac3_sw: 1;
475
unsigned int can_ac3_hw: 1;
476
unsigned int can_multi_ch: 1;
477
unsigned int can_96k: 1; /* samplerate above 48k */
478
unsigned int do_soft_ac3: 1;
479
480
unsigned int spdif_playback_avail: 1; /* spdif ready? */
481
unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
482
int spdif_counter; /* for software AC3 */
483
484
unsigned int dig_status;
485
unsigned int dig_pcm_status;
486
487
struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
488
489
int opened[2]; /* open mode */
490
struct mutex open_mutex;
491
492
unsigned int mixer_insensitive: 1;
493
struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
494
int mixer_res_status[CM_SAVED_MIXERS];
495
496
struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
497
498
/* external MIDI */
499
struct snd_rawmidi *rmidi;
500
501
#ifdef SUPPORT_JOYSTICK
502
struct gameport *gameport;
503
#endif
504
505
spinlock_t reg_lock;
506
507
#ifdef CONFIG_PM
508
unsigned int saved_regs[0x20];
509
unsigned char saved_mixers[0x20];
510
#endif
511
};
512
513
514
/* read/write operations for dword register */
515
static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
516
{
517
outl(data, cm->iobase + cmd);
518
}
519
520
static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
521
{
522
return inl(cm->iobase + cmd);
523
}
524
525
/* read/write operations for word register */
526
static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
527
{
528
outw(data, cm->iobase + cmd);
529
}
530
531
static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
532
{
533
return inw(cm->iobase + cmd);
534
}
535
536
/* read/write operations for byte register */
537
static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
538
{
539
outb(data, cm->iobase + cmd);
540
}
541
542
static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
543
{
544
return inb(cm->iobase + cmd);
545
}
546
547
/* bit operations for dword register */
548
static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
549
{
550
unsigned int val, oval;
551
val = oval = inl(cm->iobase + cmd);
552
val |= flag;
553
if (val == oval)
554
return 0;
555
outl(val, cm->iobase + cmd);
556
return 1;
557
}
558
559
static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
560
{
561
unsigned int val, oval;
562
val = oval = inl(cm->iobase + cmd);
563
val &= ~flag;
564
if (val == oval)
565
return 0;
566
outl(val, cm->iobase + cmd);
567
return 1;
568
}
569
570
/* bit operations for byte register */
571
static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
572
{
573
unsigned char val, oval;
574
val = oval = inb(cm->iobase + cmd);
575
val |= flag;
576
if (val == oval)
577
return 0;
578
outb(val, cm->iobase + cmd);
579
return 1;
580
}
581
582
static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
583
{
584
unsigned char val, oval;
585
val = oval = inb(cm->iobase + cmd);
586
val &= ~flag;
587
if (val == oval)
588
return 0;
589
outb(val, cm->iobase + cmd);
590
return 1;
591
}
592
593
594
/*
595
* PCM interface
596
*/
597
598
/*
599
* calculate frequency
600
*/
601
602
static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
603
604
static unsigned int snd_cmipci_rate_freq(unsigned int rate)
605
{
606
unsigned int i;
607
608
for (i = 0; i < ARRAY_SIZE(rates); i++) {
609
if (rates[i] == rate)
610
return i;
611
}
612
snd_BUG();
613
return 0;
614
}
615
616
#ifdef USE_VAR48KRATE
617
/*
618
* Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
619
* does it this way .. maybe not. Never get any information from C-Media about
620
* that <[email protected]>.
621
*/
622
static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
623
{
624
unsigned int delta, tolerance;
625
int xm, xn, xr;
626
627
for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
628
rate <<= 1;
629
*n = -1;
630
if (*r > 0xff)
631
goto out;
632
tolerance = rate*CM_TOLERANCE_RATE;
633
634
for (xn = (1+2); xn < (0x1f+2); xn++) {
635
for (xm = (1+2); xm < (0xff+2); xm++) {
636
xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
637
638
if (xr < rate)
639
delta = rate - xr;
640
else
641
delta = xr - rate;
642
643
/*
644
* If we found one, remember this,
645
* and try to find a closer one
646
*/
647
if (delta < tolerance) {
648
tolerance = delta;
649
*m = xm - 2;
650
*n = xn - 2;
651
}
652
}
653
}
654
out:
655
return (*n > -1);
656
}
657
658
/*
659
* Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
660
* are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
661
* at the register CM_REG_FUNCTRL1 (0x04).
662
* Problem: other ways are also possible (any information about that?)
663
*/
664
static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
665
{
666
unsigned int reg = CM_REG_PLL + slot;
667
/*
668
* Guess that this programs at reg. 0x04 the pos 15:13/12:10
669
* for DSFC/ASFC (000 up to 111).
670
*/
671
672
/* FIXME: Init (Do we've to set an other register first before programming?) */
673
674
/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
675
snd_cmipci_write_b(cm, reg, rate>>8);
676
snd_cmipci_write_b(cm, reg, rate&0xff);
677
678
/* FIXME: Setup (Do we've to set an other register first to enable this?) */
679
}
680
#endif /* USE_VAR48KRATE */
681
682
static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
683
struct snd_pcm_hw_params *hw_params)
684
{
685
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
686
}
687
688
static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
689
struct snd_pcm_hw_params *hw_params)
690
{
691
struct cmipci *cm = snd_pcm_substream_chip(substream);
692
if (params_channels(hw_params) > 2) {
693
mutex_lock(&cm->open_mutex);
694
if (cm->opened[CM_CH_PLAY]) {
695
mutex_unlock(&cm->open_mutex);
696
return -EBUSY;
697
}
698
/* reserve the channel A */
699
cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
700
mutex_unlock(&cm->open_mutex);
701
}
702
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
703
}
704
705
static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
706
{
707
int reset = CM_RST_CH0 << (cm->channel[ch].ch);
708
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
709
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
710
udelay(10);
711
}
712
713
static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
714
{
715
return snd_pcm_lib_free_pages(substream);
716
}
717
718
719
/*
720
*/
721
722
static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
723
static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
724
.count = 3,
725
.list = hw_channels,
726
.mask = 0,
727
};
728
static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
729
.count = 4,
730
.list = hw_channels,
731
.mask = 0,
732
};
733
static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
734
.count = 5,
735
.list = hw_channels,
736
.mask = 0,
737
};
738
739
static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
740
{
741
if (channels > 2) {
742
if (!cm->can_multi_ch || !rec->ch)
743
return -EINVAL;
744
if (rec->fmt != 0x03) /* stereo 16bit only */
745
return -EINVAL;
746
}
747
748
if (cm->can_multi_ch) {
749
spin_lock_irq(&cm->reg_lock);
750
if (channels > 2) {
751
snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
752
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
753
} else {
754
snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
755
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
756
}
757
if (channels == 8)
758
snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
759
else
760
snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
761
if (channels == 6) {
762
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
763
snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
764
} else {
765
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
766
snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
767
}
768
if (channels == 4)
769
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
770
else
771
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
772
spin_unlock_irq(&cm->reg_lock);
773
}
774
return 0;
775
}
776
777
778
/*
779
* prepare playback/capture channel
780
* channel to be used must have been set in rec->ch.
781
*/
782
static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
783
struct snd_pcm_substream *substream)
784
{
785
unsigned int reg, freq, freq_ext, val;
786
unsigned int period_size;
787
struct snd_pcm_runtime *runtime = substream->runtime;
788
789
rec->fmt = 0;
790
rec->shift = 0;
791
if (snd_pcm_format_width(runtime->format) >= 16) {
792
rec->fmt |= 0x02;
793
if (snd_pcm_format_width(runtime->format) > 16)
794
rec->shift++; /* 24/32bit */
795
}
796
if (runtime->channels > 1)
797
rec->fmt |= 0x01;
798
if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
799
snd_printd("cannot set dac channels\n");
800
return -EINVAL;
801
}
802
803
rec->offset = runtime->dma_addr;
804
/* buffer and period sizes in frame */
805
rec->dma_size = runtime->buffer_size << rec->shift;
806
period_size = runtime->period_size << rec->shift;
807
if (runtime->channels > 2) {
808
/* multi-channels */
809
rec->dma_size = (rec->dma_size * runtime->channels) / 2;
810
period_size = (period_size * runtime->channels) / 2;
811
}
812
813
spin_lock_irq(&cm->reg_lock);
814
815
/* set buffer address */
816
reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
817
snd_cmipci_write(cm, reg, rec->offset);
818
/* program sample counts */
819
reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
820
snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
821
snd_cmipci_write_w(cm, reg + 2, period_size - 1);
822
823
/* set adc/dac flag */
824
val = rec->ch ? CM_CHADC1 : CM_CHADC0;
825
if (rec->is_dac)
826
cm->ctrl &= ~val;
827
else
828
cm->ctrl |= val;
829
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
830
//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
831
832
/* set sample rate */
833
freq = 0;
834
freq_ext = 0;
835
if (runtime->rate > 48000)
836
switch (runtime->rate) {
837
case 88200: freq_ext = CM_CH0_SRATE_88K; break;
838
case 96000: freq_ext = CM_CH0_SRATE_96K; break;
839
case 128000: freq_ext = CM_CH0_SRATE_128K; break;
840
default: snd_BUG(); break;
841
}
842
else
843
freq = snd_cmipci_rate_freq(runtime->rate);
844
val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
845
if (rec->ch) {
846
val &= ~CM_DSFC_MASK;
847
val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
848
} else {
849
val &= ~CM_ASFC_MASK;
850
val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
851
}
852
snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
853
//snd_printd("cmipci: functrl1 = %08x\n", val);
854
855
/* set format */
856
val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
857
if (rec->ch) {
858
val &= ~CM_CH1FMT_MASK;
859
val |= rec->fmt << CM_CH1FMT_SHIFT;
860
} else {
861
val &= ~CM_CH0FMT_MASK;
862
val |= rec->fmt << CM_CH0FMT_SHIFT;
863
}
864
if (cm->can_96k) {
865
val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
866
val |= freq_ext << (rec->ch * 2);
867
}
868
snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
869
//snd_printd("cmipci: chformat = %08x\n", val);
870
871
if (!rec->is_dac && cm->chip_version) {
872
if (runtime->rate > 44100)
873
snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
874
else
875
snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
876
}
877
878
rec->running = 0;
879
spin_unlock_irq(&cm->reg_lock);
880
881
return 0;
882
}
883
884
/*
885
* PCM trigger/stop
886
*/
887
static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
888
int cmd)
889
{
890
unsigned int inthld, chen, reset, pause;
891
int result = 0;
892
893
inthld = CM_CH0_INT_EN << rec->ch;
894
chen = CM_CHEN0 << rec->ch;
895
reset = CM_RST_CH0 << rec->ch;
896
pause = CM_PAUSE0 << rec->ch;
897
898
spin_lock(&cm->reg_lock);
899
switch (cmd) {
900
case SNDRV_PCM_TRIGGER_START:
901
rec->running = 1;
902
/* set interrupt */
903
snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
904
cm->ctrl |= chen;
905
/* enable channel */
906
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
907
//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
908
break;
909
case SNDRV_PCM_TRIGGER_STOP:
910
rec->running = 0;
911
/* disable interrupt */
912
snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
913
/* reset */
914
cm->ctrl &= ~chen;
915
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
916
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
917
rec->needs_silencing = rec->is_dac;
918
break;
919
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
920
case SNDRV_PCM_TRIGGER_SUSPEND:
921
cm->ctrl |= pause;
922
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
923
break;
924
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
925
case SNDRV_PCM_TRIGGER_RESUME:
926
cm->ctrl &= ~pause;
927
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
928
break;
929
default:
930
result = -EINVAL;
931
break;
932
}
933
spin_unlock(&cm->reg_lock);
934
return result;
935
}
936
937
/*
938
* return the current pointer
939
*/
940
static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
941
struct snd_pcm_substream *substream)
942
{
943
size_t ptr;
944
unsigned int reg, rem, tries;
945
946
if (!rec->running)
947
return 0;
948
#if 1 // this seems better..
949
reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
950
for (tries = 0; tries < 3; tries++) {
951
rem = snd_cmipci_read_w(cm, reg);
952
if (rem < rec->dma_size)
953
goto ok;
954
}
955
printk(KERN_ERR "cmipci: invalid PCM pointer: %#x\n", rem);
956
return SNDRV_PCM_POS_XRUN;
957
ok:
958
ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
959
#else
960
reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
961
ptr = snd_cmipci_read(cm, reg) - rec->offset;
962
ptr = bytes_to_frames(substream->runtime, ptr);
963
#endif
964
if (substream->runtime->channels > 2)
965
ptr = (ptr * 2) / substream->runtime->channels;
966
return ptr;
967
}
968
969
/*
970
* playback
971
*/
972
973
static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
974
int cmd)
975
{
976
struct cmipci *cm = snd_pcm_substream_chip(substream);
977
return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
978
}
979
980
static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
981
{
982
struct cmipci *cm = snd_pcm_substream_chip(substream);
983
return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
984
}
985
986
987
988
/*
989
* capture
990
*/
991
992
static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
993
int cmd)
994
{
995
struct cmipci *cm = snd_pcm_substream_chip(substream);
996
return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
997
}
998
999
static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
1000
{
1001
struct cmipci *cm = snd_pcm_substream_chip(substream);
1002
return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
1003
}
1004
1005
1006
/*
1007
* hw preparation for spdif
1008
*/
1009
1010
static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1011
struct snd_ctl_elem_info *uinfo)
1012
{
1013
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1014
uinfo->count = 1;
1015
return 0;
1016
}
1017
1018
static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1019
struct snd_ctl_elem_value *ucontrol)
1020
{
1021
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022
int i;
1023
1024
spin_lock_irq(&chip->reg_lock);
1025
for (i = 0; i < 4; i++)
1026
ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1027
spin_unlock_irq(&chip->reg_lock);
1028
return 0;
1029
}
1030
1031
static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1032
struct snd_ctl_elem_value *ucontrol)
1033
{
1034
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1035
int i, change;
1036
unsigned int val;
1037
1038
val = 0;
1039
spin_lock_irq(&chip->reg_lock);
1040
for (i = 0; i < 4; i++)
1041
val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1042
change = val != chip->dig_status;
1043
chip->dig_status = val;
1044
spin_unlock_irq(&chip->reg_lock);
1045
return change;
1046
}
1047
1048
static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
1049
{
1050
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1051
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1052
.info = snd_cmipci_spdif_default_info,
1053
.get = snd_cmipci_spdif_default_get,
1054
.put = snd_cmipci_spdif_default_put
1055
};
1056
1057
static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1058
struct snd_ctl_elem_info *uinfo)
1059
{
1060
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1061
uinfo->count = 1;
1062
return 0;
1063
}
1064
1065
static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1066
struct snd_ctl_elem_value *ucontrol)
1067
{
1068
ucontrol->value.iec958.status[0] = 0xff;
1069
ucontrol->value.iec958.status[1] = 0xff;
1070
ucontrol->value.iec958.status[2] = 0xff;
1071
ucontrol->value.iec958.status[3] = 0xff;
1072
return 0;
1073
}
1074
1075
static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1076
{
1077
.access = SNDRV_CTL_ELEM_ACCESS_READ,
1078
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1079
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1080
.info = snd_cmipci_spdif_mask_info,
1081
.get = snd_cmipci_spdif_mask_get,
1082
};
1083
1084
static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1085
struct snd_ctl_elem_info *uinfo)
1086
{
1087
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1088
uinfo->count = 1;
1089
return 0;
1090
}
1091
1092
static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1093
struct snd_ctl_elem_value *ucontrol)
1094
{
1095
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096
int i;
1097
1098
spin_lock_irq(&chip->reg_lock);
1099
for (i = 0; i < 4; i++)
1100
ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1101
spin_unlock_irq(&chip->reg_lock);
1102
return 0;
1103
}
1104
1105
static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1106
struct snd_ctl_elem_value *ucontrol)
1107
{
1108
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1109
int i, change;
1110
unsigned int val;
1111
1112
val = 0;
1113
spin_lock_irq(&chip->reg_lock);
1114
for (i = 0; i < 4; i++)
1115
val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1116
change = val != chip->dig_pcm_status;
1117
chip->dig_pcm_status = val;
1118
spin_unlock_irq(&chip->reg_lock);
1119
return change;
1120
}
1121
1122
static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1123
{
1124
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1125
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1126
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1127
.info = snd_cmipci_spdif_stream_info,
1128
.get = snd_cmipci_spdif_stream_get,
1129
.put = snd_cmipci_spdif_stream_put
1130
};
1131
1132
/*
1133
*/
1134
1135
/* save mixer setting and mute for AC3 playback */
1136
static int save_mixer_state(struct cmipci *cm)
1137
{
1138
if (! cm->mixer_insensitive) {
1139
struct snd_ctl_elem_value *val;
1140
unsigned int i;
1141
1142
val = kmalloc(sizeof(*val), GFP_ATOMIC);
1143
if (!val)
1144
return -ENOMEM;
1145
for (i = 0; i < CM_SAVED_MIXERS; i++) {
1146
struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1147
if (ctl) {
1148
int event;
1149
memset(val, 0, sizeof(*val));
1150
ctl->get(ctl, val);
1151
cm->mixer_res_status[i] = val->value.integer.value[0];
1152
val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1153
event = SNDRV_CTL_EVENT_MASK_INFO;
1154
if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1155
ctl->put(ctl, val); /* toggle */
1156
event |= SNDRV_CTL_EVENT_MASK_VALUE;
1157
}
1158
ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1159
snd_ctl_notify(cm->card, event, &ctl->id);
1160
}
1161
}
1162
kfree(val);
1163
cm->mixer_insensitive = 1;
1164
}
1165
return 0;
1166
}
1167
1168
1169
/* restore the previously saved mixer status */
1170
static void restore_mixer_state(struct cmipci *cm)
1171
{
1172
if (cm->mixer_insensitive) {
1173
struct snd_ctl_elem_value *val;
1174
unsigned int i;
1175
1176
val = kmalloc(sizeof(*val), GFP_KERNEL);
1177
if (!val)
1178
return;
1179
cm->mixer_insensitive = 0; /* at first clear this;
1180
otherwise the changes will be ignored */
1181
for (i = 0; i < CM_SAVED_MIXERS; i++) {
1182
struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1183
if (ctl) {
1184
int event;
1185
1186
memset(val, 0, sizeof(*val));
1187
ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1188
ctl->get(ctl, val);
1189
event = SNDRV_CTL_EVENT_MASK_INFO;
1190
if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1191
val->value.integer.value[0] = cm->mixer_res_status[i];
1192
ctl->put(ctl, val);
1193
event |= SNDRV_CTL_EVENT_MASK_VALUE;
1194
}
1195
snd_ctl_notify(cm->card, event, &ctl->id);
1196
}
1197
}
1198
kfree(val);
1199
}
1200
}
1201
1202
/* spinlock held! */
1203
static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1204
{
1205
if (do_ac3) {
1206
/* AC3EN for 037 */
1207
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1208
/* AC3EN for 039 */
1209
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1210
1211
if (cm->can_ac3_hw) {
1212
/* SPD24SEL for 037, 0x02 */
1213
/* SPD24SEL for 039, 0x20, but cannot be set */
1214
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1215
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216
} else { /* can_ac3_sw */
1217
/* SPD32SEL for 037 & 039, 0x20 */
1218
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219
/* set 176K sample rate to fix 033 HW bug */
1220
if (cm->chip_version == 33) {
1221
if (rate >= 48000) {
1222
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1223
} else {
1224
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1225
}
1226
}
1227
}
1228
1229
} else {
1230
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1231
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1232
1233
if (cm->can_ac3_hw) {
1234
/* chip model >= 37 */
1235
if (snd_pcm_format_width(subs->runtime->format) > 16) {
1236
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1237
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1238
} else {
1239
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1240
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1241
}
1242
} else {
1243
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1244
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1245
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1246
}
1247
}
1248
}
1249
1250
static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1251
{
1252
int rate, err;
1253
1254
rate = subs->runtime->rate;
1255
1256
if (up && do_ac3)
1257
if ((err = save_mixer_state(cm)) < 0)
1258
return err;
1259
1260
spin_lock_irq(&cm->reg_lock);
1261
cm->spdif_playback_avail = up;
1262
if (up) {
1263
/* they are controlled via "IEC958 Output Switch" */
1264
/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1265
/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1266
if (cm->spdif_playback_enabled)
1267
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1268
setup_ac3(cm, subs, do_ac3, rate);
1269
1270
if (rate == 48000 || rate == 96000)
1271
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1272
else
1273
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1274
if (rate > 48000)
1275
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1276
else
1277
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1278
} else {
1279
/* they are controlled via "IEC958 Output Switch" */
1280
/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1281
/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1282
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1283
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1284
setup_ac3(cm, subs, 0, 0);
1285
}
1286
spin_unlock_irq(&cm->reg_lock);
1287
return 0;
1288
}
1289
1290
1291
/*
1292
* preparation
1293
*/
1294
1295
/* playback - enable spdif only on the certain condition */
1296
static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1297
{
1298
struct cmipci *cm = snd_pcm_substream_chip(substream);
1299
int rate = substream->runtime->rate;
1300
int err, do_spdif, do_ac3 = 0;
1301
1302
do_spdif = (rate >= 44100 && rate <= 96000 &&
1303
substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1304
substream->runtime->channels == 2);
1305
if (do_spdif && cm->can_ac3_hw)
1306
do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307
if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1308
return err;
1309
return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1310
}
1311
1312
/* playback (via device #2) - enable spdif always */
1313
static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1314
{
1315
struct cmipci *cm = snd_pcm_substream_chip(substream);
1316
int err, do_ac3;
1317
1318
if (cm->can_ac3_hw)
1319
do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1320
else
1321
do_ac3 = 1; /* doesn't matter */
1322
if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1323
return err;
1324
return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1325
}
1326
1327
/*
1328
* Apparently, the samples last played on channel A stay in some buffer, even
1329
* after the channel is reset, and get added to the data for the rear DACs when
1330
* playing a multichannel stream on channel B. This is likely to generate
1331
* wraparounds and thus distortions.
1332
* To avoid this, we play at least one zero sample after the actual stream has
1333
* stopped.
1334
*/
1335
static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1336
{
1337
struct snd_pcm_runtime *runtime = rec->substream->runtime;
1338
unsigned int reg, val;
1339
1340
if (rec->needs_silencing && runtime && runtime->dma_area) {
1341
/* set up a small silence buffer */
1342
memset(runtime->dma_area, 0, PAGE_SIZE);
1343
reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1344
val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1345
snd_cmipci_write(cm, reg, val);
1346
1347
/* configure for 16 bits, 2 channels, 8 kHz */
1348
if (runtime->channels > 2)
1349
set_dac_channels(cm, rec, 2);
1350
spin_lock_irq(&cm->reg_lock);
1351
val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1352
val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1353
val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1354
snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1355
val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1356
val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1357
val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1358
if (cm->can_96k)
1359
val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1360
snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1361
1362
/* start stream (we don't need interrupts) */
1363
cm->ctrl |= CM_CHEN0 << rec->ch;
1364
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1365
spin_unlock_irq(&cm->reg_lock);
1366
1367
msleep(1);
1368
1369
/* stop and reset stream */
1370
spin_lock_irq(&cm->reg_lock);
1371
cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1372
val = CM_RST_CH0 << rec->ch;
1373
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1374
snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1375
spin_unlock_irq(&cm->reg_lock);
1376
1377
rec->needs_silencing = 0;
1378
}
1379
}
1380
1381
static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1382
{
1383
struct cmipci *cm = snd_pcm_substream_chip(substream);
1384
setup_spdif_playback(cm, substream, 0, 0);
1385
restore_mixer_state(cm);
1386
snd_cmipci_silence_hack(cm, &cm->channel[0]);
1387
return snd_cmipci_hw_free(substream);
1388
}
1389
1390
static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1391
{
1392
struct cmipci *cm = snd_pcm_substream_chip(substream);
1393
snd_cmipci_silence_hack(cm, &cm->channel[1]);
1394
return snd_cmipci_hw_free(substream);
1395
}
1396
1397
/* capture */
1398
static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1399
{
1400
struct cmipci *cm = snd_pcm_substream_chip(substream);
1401
return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1402
}
1403
1404
/* capture with spdif (via device #2) */
1405
static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1406
{
1407
struct cmipci *cm = snd_pcm_substream_chip(substream);
1408
1409
spin_lock_irq(&cm->reg_lock);
1410
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1411
if (cm->can_96k) {
1412
if (substream->runtime->rate > 48000)
1413
snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1414
else
1415
snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1416
}
1417
if (snd_pcm_format_width(substream->runtime->format) > 16)
1418
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1419
else
1420
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421
1422
spin_unlock_irq(&cm->reg_lock);
1423
1424
return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1425
}
1426
1427
static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1428
{
1429
struct cmipci *cm = snd_pcm_substream_chip(subs);
1430
1431
spin_lock_irq(&cm->reg_lock);
1432
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1433
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1434
spin_unlock_irq(&cm->reg_lock);
1435
1436
return snd_cmipci_hw_free(subs);
1437
}
1438
1439
1440
/*
1441
* interrupt handler
1442
*/
1443
static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1444
{
1445
struct cmipci *cm = dev_id;
1446
unsigned int status, mask = 0;
1447
1448
/* fastpath out, to ease interrupt sharing */
1449
status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1450
if (!(status & CM_INTR))
1451
return IRQ_NONE;
1452
1453
/* acknowledge interrupt */
1454
spin_lock(&cm->reg_lock);
1455
if (status & CM_CHINT0)
1456
mask |= CM_CH0_INT_EN;
1457
if (status & CM_CHINT1)
1458
mask |= CM_CH1_INT_EN;
1459
snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1460
snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1461
spin_unlock(&cm->reg_lock);
1462
1463
if (cm->rmidi && (status & CM_UARTINT))
1464
snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1465
1466
if (cm->pcm) {
1467
if ((status & CM_CHINT0) && cm->channel[0].running)
1468
snd_pcm_period_elapsed(cm->channel[0].substream);
1469
if ((status & CM_CHINT1) && cm->channel[1].running)
1470
snd_pcm_period_elapsed(cm->channel[1].substream);
1471
}
1472
return IRQ_HANDLED;
1473
}
1474
1475
/*
1476
* h/w infos
1477
*/
1478
1479
/* playback on channel A */
1480
static struct snd_pcm_hardware snd_cmipci_playback =
1481
{
1482
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1483
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1484
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1485
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1486
.rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1487
.rate_min = 5512,
1488
.rate_max = 48000,
1489
.channels_min = 1,
1490
.channels_max = 2,
1491
.buffer_bytes_max = (128*1024),
1492
.period_bytes_min = 64,
1493
.period_bytes_max = (128*1024),
1494
.periods_min = 2,
1495
.periods_max = 1024,
1496
.fifo_size = 0,
1497
};
1498
1499
/* capture on channel B */
1500
static struct snd_pcm_hardware snd_cmipci_capture =
1501
{
1502
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1503
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1504
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1505
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1506
.rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1507
.rate_min = 5512,
1508
.rate_max = 48000,
1509
.channels_min = 1,
1510
.channels_max = 2,
1511
.buffer_bytes_max = (128*1024),
1512
.period_bytes_min = 64,
1513
.period_bytes_max = (128*1024),
1514
.periods_min = 2,
1515
.periods_max = 1024,
1516
.fifo_size = 0,
1517
};
1518
1519
/* playback on channel B - stereo 16bit only? */
1520
static struct snd_pcm_hardware snd_cmipci_playback2 =
1521
{
1522
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1523
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1524
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1525
.formats = SNDRV_PCM_FMTBIT_S16_LE,
1526
.rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1527
.rate_min = 5512,
1528
.rate_max = 48000,
1529
.channels_min = 2,
1530
.channels_max = 2,
1531
.buffer_bytes_max = (128*1024),
1532
.period_bytes_min = 64,
1533
.period_bytes_max = (128*1024),
1534
.periods_min = 2,
1535
.periods_max = 1024,
1536
.fifo_size = 0,
1537
};
1538
1539
/* spdif playback on channel A */
1540
static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1541
{
1542
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1543
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1544
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1545
.formats = SNDRV_PCM_FMTBIT_S16_LE,
1546
.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1547
.rate_min = 44100,
1548
.rate_max = 48000,
1549
.channels_min = 2,
1550
.channels_max = 2,
1551
.buffer_bytes_max = (128*1024),
1552
.period_bytes_min = 64,
1553
.period_bytes_max = (128*1024),
1554
.periods_min = 2,
1555
.periods_max = 1024,
1556
.fifo_size = 0,
1557
};
1558
1559
/* spdif playback on channel A (32bit, IEC958 subframes) */
1560
static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1561
{
1562
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1563
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1564
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1565
.formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1566
.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1567
.rate_min = 44100,
1568
.rate_max = 48000,
1569
.channels_min = 2,
1570
.channels_max = 2,
1571
.buffer_bytes_max = (128*1024),
1572
.period_bytes_min = 64,
1573
.period_bytes_max = (128*1024),
1574
.periods_min = 2,
1575
.periods_max = 1024,
1576
.fifo_size = 0,
1577
};
1578
1579
/* spdif capture on channel B */
1580
static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1581
{
1582
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1583
SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1584
SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1585
.formats = SNDRV_PCM_FMTBIT_S16_LE |
1586
SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1587
.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1588
.rate_min = 44100,
1589
.rate_max = 48000,
1590
.channels_min = 2,
1591
.channels_max = 2,
1592
.buffer_bytes_max = (128*1024),
1593
.period_bytes_min = 64,
1594
.period_bytes_max = (128*1024),
1595
.periods_min = 2,
1596
.periods_max = 1024,
1597
.fifo_size = 0,
1598
};
1599
1600
static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1601
32000, 44100, 48000, 88200, 96000, 128000 };
1602
static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1603
.count = ARRAY_SIZE(rate_constraints),
1604
.list = rate_constraints,
1605
.mask = 0,
1606
};
1607
1608
/*
1609
* check device open/close
1610
*/
1611
static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1612
{
1613
int ch = mode & CM_OPEN_CH_MASK;
1614
1615
/* FIXME: a file should wait until the device becomes free
1616
* when it's opened on blocking mode. however, since the current
1617
* pcm framework doesn't pass file pointer before actually opened,
1618
* we can't know whether blocking mode or not in open callback..
1619
*/
1620
mutex_lock(&cm->open_mutex);
1621
if (cm->opened[ch]) {
1622
mutex_unlock(&cm->open_mutex);
1623
return -EBUSY;
1624
}
1625
cm->opened[ch] = mode;
1626
cm->channel[ch].substream = subs;
1627
if (! (mode & CM_OPEN_DAC)) {
1628
/* disable dual DAC mode */
1629
cm->channel[ch].is_dac = 0;
1630
spin_lock_irq(&cm->reg_lock);
1631
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1632
spin_unlock_irq(&cm->reg_lock);
1633
}
1634
mutex_unlock(&cm->open_mutex);
1635
return 0;
1636
}
1637
1638
static void close_device_check(struct cmipci *cm, int mode)
1639
{
1640
int ch = mode & CM_OPEN_CH_MASK;
1641
1642
mutex_lock(&cm->open_mutex);
1643
if (cm->opened[ch] == mode) {
1644
if (cm->channel[ch].substream) {
1645
snd_cmipci_ch_reset(cm, ch);
1646
cm->channel[ch].running = 0;
1647
cm->channel[ch].substream = NULL;
1648
}
1649
cm->opened[ch] = 0;
1650
if (! cm->channel[ch].is_dac) {
1651
/* enable dual DAC mode again */
1652
cm->channel[ch].is_dac = 1;
1653
spin_lock_irq(&cm->reg_lock);
1654
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1655
spin_unlock_irq(&cm->reg_lock);
1656
}
1657
}
1658
mutex_unlock(&cm->open_mutex);
1659
}
1660
1661
/*
1662
*/
1663
1664
static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1665
{
1666
struct cmipci *cm = snd_pcm_substream_chip(substream);
1667
struct snd_pcm_runtime *runtime = substream->runtime;
1668
int err;
1669
1670
if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1671
return err;
1672
runtime->hw = snd_cmipci_playback;
1673
if (cm->chip_version == 68) {
1674
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1675
SNDRV_PCM_RATE_96000;
1676
runtime->hw.rate_max = 96000;
1677
} else if (cm->chip_version == 55) {
1678
err = snd_pcm_hw_constraint_list(runtime, 0,
1679
SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680
if (err < 0)
1681
return err;
1682
runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683
runtime->hw.rate_max = 128000;
1684
}
1685
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1686
cm->dig_pcm_status = cm->dig_status;
1687
return 0;
1688
}
1689
1690
static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1691
{
1692
struct cmipci *cm = snd_pcm_substream_chip(substream);
1693
struct snd_pcm_runtime *runtime = substream->runtime;
1694
int err;
1695
1696
if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1697
return err;
1698
runtime->hw = snd_cmipci_capture;
1699
if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1700
runtime->hw.rate_min = 41000;
1701
runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1702
} else if (cm->chip_version == 55) {
1703
err = snd_pcm_hw_constraint_list(runtime, 0,
1704
SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1705
if (err < 0)
1706
return err;
1707
runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1708
runtime->hw.rate_max = 128000;
1709
}
1710
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1711
return 0;
1712
}
1713
1714
static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1715
{
1716
struct cmipci *cm = snd_pcm_substream_chip(substream);
1717
struct snd_pcm_runtime *runtime = substream->runtime;
1718
int err;
1719
1720
if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1721
return err;
1722
runtime->hw = snd_cmipci_playback2;
1723
mutex_lock(&cm->open_mutex);
1724
if (! cm->opened[CM_CH_PLAY]) {
1725
if (cm->can_multi_ch) {
1726
runtime->hw.channels_max = cm->max_channels;
1727
if (cm->max_channels == 4)
1728
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1729
else if (cm->max_channels == 6)
1730
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1731
else if (cm->max_channels == 8)
1732
snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1733
}
1734
}
1735
mutex_unlock(&cm->open_mutex);
1736
if (cm->chip_version == 68) {
1737
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1738
SNDRV_PCM_RATE_96000;
1739
runtime->hw.rate_max = 96000;
1740
} else if (cm->chip_version == 55) {
1741
err = snd_pcm_hw_constraint_list(runtime, 0,
1742
SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1743
if (err < 0)
1744
return err;
1745
runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1746
runtime->hw.rate_max = 128000;
1747
}
1748
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1749
return 0;
1750
}
1751
1752
static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1753
{
1754
struct cmipci *cm = snd_pcm_substream_chip(substream);
1755
struct snd_pcm_runtime *runtime = substream->runtime;
1756
int err;
1757
1758
if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1759
return err;
1760
if (cm->can_ac3_hw) {
1761
runtime->hw = snd_cmipci_playback_spdif;
1762
if (cm->chip_version >= 37) {
1763
runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1764
snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1765
}
1766
if (cm->can_96k) {
1767
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1768
SNDRV_PCM_RATE_96000;
1769
runtime->hw.rate_max = 96000;
1770
}
1771
} else {
1772
runtime->hw = snd_cmipci_playback_iec958_subframe;
1773
}
1774
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1775
cm->dig_pcm_status = cm->dig_status;
1776
return 0;
1777
}
1778
1779
static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1780
{
1781
struct cmipci *cm = snd_pcm_substream_chip(substream);
1782
struct snd_pcm_runtime *runtime = substream->runtime;
1783
int err;
1784
1785
if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1786
return err;
1787
runtime->hw = snd_cmipci_capture_spdif;
1788
if (cm->can_96k && !(cm->chip_version == 68)) {
1789
runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1790
SNDRV_PCM_RATE_96000;
1791
runtime->hw.rate_max = 96000;
1792
}
1793
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1794
return 0;
1795
}
1796
1797
1798
/*
1799
*/
1800
1801
static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1802
{
1803
struct cmipci *cm = snd_pcm_substream_chip(substream);
1804
close_device_check(cm, CM_OPEN_PLAYBACK);
1805
return 0;
1806
}
1807
1808
static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1809
{
1810
struct cmipci *cm = snd_pcm_substream_chip(substream);
1811
close_device_check(cm, CM_OPEN_CAPTURE);
1812
return 0;
1813
}
1814
1815
static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1816
{
1817
struct cmipci *cm = snd_pcm_substream_chip(substream);
1818
close_device_check(cm, CM_OPEN_PLAYBACK2);
1819
close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1820
return 0;
1821
}
1822
1823
static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1824
{
1825
struct cmipci *cm = snd_pcm_substream_chip(substream);
1826
close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1827
return 0;
1828
}
1829
1830
static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1831
{
1832
struct cmipci *cm = snd_pcm_substream_chip(substream);
1833
close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1834
return 0;
1835
}
1836
1837
1838
/*
1839
*/
1840
1841
static struct snd_pcm_ops snd_cmipci_playback_ops = {
1842
.open = snd_cmipci_playback_open,
1843
.close = snd_cmipci_playback_close,
1844
.ioctl = snd_pcm_lib_ioctl,
1845
.hw_params = snd_cmipci_hw_params,
1846
.hw_free = snd_cmipci_playback_hw_free,
1847
.prepare = snd_cmipci_playback_prepare,
1848
.trigger = snd_cmipci_playback_trigger,
1849
.pointer = snd_cmipci_playback_pointer,
1850
};
1851
1852
static struct snd_pcm_ops snd_cmipci_capture_ops = {
1853
.open = snd_cmipci_capture_open,
1854
.close = snd_cmipci_capture_close,
1855
.ioctl = snd_pcm_lib_ioctl,
1856
.hw_params = snd_cmipci_hw_params,
1857
.hw_free = snd_cmipci_hw_free,
1858
.prepare = snd_cmipci_capture_prepare,
1859
.trigger = snd_cmipci_capture_trigger,
1860
.pointer = snd_cmipci_capture_pointer,
1861
};
1862
1863
static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1864
.open = snd_cmipci_playback2_open,
1865
.close = snd_cmipci_playback2_close,
1866
.ioctl = snd_pcm_lib_ioctl,
1867
.hw_params = snd_cmipci_playback2_hw_params,
1868
.hw_free = snd_cmipci_playback2_hw_free,
1869
.prepare = snd_cmipci_capture_prepare, /* channel B */
1870
.trigger = snd_cmipci_capture_trigger, /* channel B */
1871
.pointer = snd_cmipci_capture_pointer, /* channel B */
1872
};
1873
1874
static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1875
.open = snd_cmipci_playback_spdif_open,
1876
.close = snd_cmipci_playback_spdif_close,
1877
.ioctl = snd_pcm_lib_ioctl,
1878
.hw_params = snd_cmipci_hw_params,
1879
.hw_free = snd_cmipci_playback_hw_free,
1880
.prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1881
.trigger = snd_cmipci_playback_trigger,
1882
.pointer = snd_cmipci_playback_pointer,
1883
};
1884
1885
static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1886
.open = snd_cmipci_capture_spdif_open,
1887
.close = snd_cmipci_capture_spdif_close,
1888
.ioctl = snd_pcm_lib_ioctl,
1889
.hw_params = snd_cmipci_hw_params,
1890
.hw_free = snd_cmipci_capture_spdif_hw_free,
1891
.prepare = snd_cmipci_capture_spdif_prepare,
1892
.trigger = snd_cmipci_capture_trigger,
1893
.pointer = snd_cmipci_capture_pointer,
1894
};
1895
1896
1897
/*
1898
*/
1899
1900
static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1901
{
1902
struct snd_pcm *pcm;
1903
int err;
1904
1905
err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1906
if (err < 0)
1907
return err;
1908
1909
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1910
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1911
1912
pcm->private_data = cm;
1913
pcm->info_flags = 0;
1914
strcpy(pcm->name, "C-Media PCI DAC/ADC");
1915
cm->pcm = pcm;
1916
1917
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1918
snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1919
1920
return 0;
1921
}
1922
1923
static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1924
{
1925
struct snd_pcm *pcm;
1926
int err;
1927
1928
err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1929
if (err < 0)
1930
return err;
1931
1932
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1933
1934
pcm->private_data = cm;
1935
pcm->info_flags = 0;
1936
strcpy(pcm->name, "C-Media PCI 2nd DAC");
1937
cm->pcm2 = pcm;
1938
1939
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1940
snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1941
1942
return 0;
1943
}
1944
1945
static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1946
{
1947
struct snd_pcm *pcm;
1948
int err;
1949
1950
err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1951
if (err < 0)
1952
return err;
1953
1954
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1955
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1956
1957
pcm->private_data = cm;
1958
pcm->info_flags = 0;
1959
strcpy(pcm->name, "C-Media PCI IEC958");
1960
cm->pcm_spdif = pcm;
1961
1962
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1963
snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1964
1965
return 0;
1966
}
1967
1968
/*
1969
* mixer interface:
1970
* - CM8338/8738 has a compatible mixer interface with SB16, but
1971
* lack of some elements like tone control, i/o gain and AGC.
1972
* - Access to native registers:
1973
* - A 3D switch
1974
* - Output mute switches
1975
*/
1976
1977
static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1978
{
1979
outb(idx, s->iobase + CM_REG_SB16_ADDR);
1980
outb(data, s->iobase + CM_REG_SB16_DATA);
1981
}
1982
1983
static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1984
{
1985
unsigned char v;
1986
1987
outb(idx, s->iobase + CM_REG_SB16_ADDR);
1988
v = inb(s->iobase + CM_REG_SB16_DATA);
1989
return v;
1990
}
1991
1992
/*
1993
* general mixer element
1994
*/
1995
struct cmipci_sb_reg {
1996
unsigned int left_reg, right_reg;
1997
unsigned int left_shift, right_shift;
1998
unsigned int mask;
1999
unsigned int invert: 1;
2000
unsigned int stereo: 1;
2001
};
2002
2003
#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
2004
((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
2005
2006
#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2007
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2008
.info = snd_cmipci_info_volume, \
2009
.get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2010
.private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2011
}
2012
2013
#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2014
#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2015
#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2016
#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2017
2018
static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2019
{
2020
r->left_reg = val & 0xff;
2021
r->right_reg = (val >> 8) & 0xff;
2022
r->left_shift = (val >> 16) & 0x07;
2023
r->right_shift = (val >> 19) & 0x07;
2024
r->invert = (val >> 22) & 1;
2025
r->stereo = (val >> 23) & 1;
2026
r->mask = (val >> 24) & 0xff;
2027
}
2028
2029
static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2030
struct snd_ctl_elem_info *uinfo)
2031
{
2032
struct cmipci_sb_reg reg;
2033
2034
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2035
uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2036
uinfo->count = reg.stereo + 1;
2037
uinfo->value.integer.min = 0;
2038
uinfo->value.integer.max = reg.mask;
2039
return 0;
2040
}
2041
2042
static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2043
struct snd_ctl_elem_value *ucontrol)
2044
{
2045
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2046
struct cmipci_sb_reg reg;
2047
int val;
2048
2049
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2050
spin_lock_irq(&cm->reg_lock);
2051
val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2052
if (reg.invert)
2053
val = reg.mask - val;
2054
ucontrol->value.integer.value[0] = val;
2055
if (reg.stereo) {
2056
val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2057
if (reg.invert)
2058
val = reg.mask - val;
2059
ucontrol->value.integer.value[1] = val;
2060
}
2061
spin_unlock_irq(&cm->reg_lock);
2062
return 0;
2063
}
2064
2065
static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2066
struct snd_ctl_elem_value *ucontrol)
2067
{
2068
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2069
struct cmipci_sb_reg reg;
2070
int change;
2071
int left, right, oleft, oright;
2072
2073
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2074
left = ucontrol->value.integer.value[0] & reg.mask;
2075
if (reg.invert)
2076
left = reg.mask - left;
2077
left <<= reg.left_shift;
2078
if (reg.stereo) {
2079
right = ucontrol->value.integer.value[1] & reg.mask;
2080
if (reg.invert)
2081
right = reg.mask - right;
2082
right <<= reg.right_shift;
2083
} else
2084
right = 0;
2085
spin_lock_irq(&cm->reg_lock);
2086
oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2087
left |= oleft & ~(reg.mask << reg.left_shift);
2088
change = left != oleft;
2089
if (reg.stereo) {
2090
if (reg.left_reg != reg.right_reg) {
2091
snd_cmipci_mixer_write(cm, reg.left_reg, left);
2092
oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2093
} else
2094
oright = left;
2095
right |= oright & ~(reg.mask << reg.right_shift);
2096
change |= right != oright;
2097
snd_cmipci_mixer_write(cm, reg.right_reg, right);
2098
} else
2099
snd_cmipci_mixer_write(cm, reg.left_reg, left);
2100
spin_unlock_irq(&cm->reg_lock);
2101
return change;
2102
}
2103
2104
/*
2105
* input route (left,right) -> (left,right)
2106
*/
2107
#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2108
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2109
.info = snd_cmipci_info_input_sw, \
2110
.get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2111
.private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2112
}
2113
2114
static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2115
struct snd_ctl_elem_info *uinfo)
2116
{
2117
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2118
uinfo->count = 4;
2119
uinfo->value.integer.min = 0;
2120
uinfo->value.integer.max = 1;
2121
return 0;
2122
}
2123
2124
static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2125
struct snd_ctl_elem_value *ucontrol)
2126
{
2127
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2128
struct cmipci_sb_reg reg;
2129
int val1, val2;
2130
2131
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2132
spin_lock_irq(&cm->reg_lock);
2133
val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2134
val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2135
spin_unlock_irq(&cm->reg_lock);
2136
ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2137
ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2138
ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2139
ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2140
return 0;
2141
}
2142
2143
static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2144
struct snd_ctl_elem_value *ucontrol)
2145
{
2146
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2147
struct cmipci_sb_reg reg;
2148
int change;
2149
int val1, val2, oval1, oval2;
2150
2151
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2152
spin_lock_irq(&cm->reg_lock);
2153
oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2154
oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2155
val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2156
val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2157
val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2158
val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2159
val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2160
val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2161
change = val1 != oval1 || val2 != oval2;
2162
snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2163
snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2164
spin_unlock_irq(&cm->reg_lock);
2165
return change;
2166
}
2167
2168
/*
2169
* native mixer switches/volumes
2170
*/
2171
2172
#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2173
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2174
.info = snd_cmipci_info_native_mixer, \
2175
.get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2176
.private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2177
}
2178
2179
#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2180
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2181
.info = snd_cmipci_info_native_mixer, \
2182
.get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2183
.private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2184
}
2185
2186
#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2187
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2188
.info = snd_cmipci_info_native_mixer, \
2189
.get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2190
.private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2191
}
2192
2193
#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2194
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2195
.info = snd_cmipci_info_native_mixer, \
2196
.get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2197
.private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2198
}
2199
2200
static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2201
struct snd_ctl_elem_info *uinfo)
2202
{
2203
struct cmipci_sb_reg reg;
2204
2205
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2206
uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2207
uinfo->count = reg.stereo + 1;
2208
uinfo->value.integer.min = 0;
2209
uinfo->value.integer.max = reg.mask;
2210
return 0;
2211
2212
}
2213
2214
static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2215
struct snd_ctl_elem_value *ucontrol)
2216
{
2217
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2218
struct cmipci_sb_reg reg;
2219
unsigned char oreg, val;
2220
2221
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2222
spin_lock_irq(&cm->reg_lock);
2223
oreg = inb(cm->iobase + reg.left_reg);
2224
val = (oreg >> reg.left_shift) & reg.mask;
2225
if (reg.invert)
2226
val = reg.mask - val;
2227
ucontrol->value.integer.value[0] = val;
2228
if (reg.stereo) {
2229
val = (oreg >> reg.right_shift) & reg.mask;
2230
if (reg.invert)
2231
val = reg.mask - val;
2232
ucontrol->value.integer.value[1] = val;
2233
}
2234
spin_unlock_irq(&cm->reg_lock);
2235
return 0;
2236
}
2237
2238
static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2239
struct snd_ctl_elem_value *ucontrol)
2240
{
2241
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2242
struct cmipci_sb_reg reg;
2243
unsigned char oreg, nreg, val;
2244
2245
cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2246
spin_lock_irq(&cm->reg_lock);
2247
oreg = inb(cm->iobase + reg.left_reg);
2248
val = ucontrol->value.integer.value[0] & reg.mask;
2249
if (reg.invert)
2250
val = reg.mask - val;
2251
nreg = oreg & ~(reg.mask << reg.left_shift);
2252
nreg |= (val << reg.left_shift);
2253
if (reg.stereo) {
2254
val = ucontrol->value.integer.value[1] & reg.mask;
2255
if (reg.invert)
2256
val = reg.mask - val;
2257
nreg &= ~(reg.mask << reg.right_shift);
2258
nreg |= (val << reg.right_shift);
2259
}
2260
outb(nreg, cm->iobase + reg.left_reg);
2261
spin_unlock_irq(&cm->reg_lock);
2262
return (nreg != oreg);
2263
}
2264
2265
/*
2266
* special case - check mixer sensitivity
2267
*/
2268
static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2269
struct snd_ctl_elem_value *ucontrol)
2270
{
2271
//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2272
return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2273
}
2274
2275
static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2276
struct snd_ctl_elem_value *ucontrol)
2277
{
2278
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2279
if (cm->mixer_insensitive) {
2280
/* ignored */
2281
return 0;
2282
}
2283
return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2284
}
2285
2286
2287
static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2288
CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2289
CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2290
CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2291
//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2292
{ /* switch with sensitivity */
2293
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2294
.name = "PCM Playback Switch",
2295
.info = snd_cmipci_info_native_mixer,
2296
.get = snd_cmipci_get_native_mixer_sensitive,
2297
.put = snd_cmipci_put_native_mixer_sensitive,
2298
.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2299
},
2300
CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2301
CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2302
CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2303
CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2304
CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2305
CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2306
CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2307
CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2308
CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2309
CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2310
CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2311
CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2312
CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2313
CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2314
CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2315
CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2316
CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2317
CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2318
CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2319
CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2320
CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2321
CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2322
CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2323
};
2324
2325
/*
2326
* other switches
2327
*/
2328
2329
struct cmipci_switch_args {
2330
int reg; /* register index */
2331
unsigned int mask; /* mask bits */
2332
unsigned int mask_on; /* mask bits to turn on */
2333
unsigned int is_byte: 1; /* byte access? */
2334
unsigned int ac3_sensitive: 1; /* access forbidden during
2335
* non-audio operation?
2336
*/
2337
};
2338
2339
#define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2340
2341
static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2342
struct snd_ctl_elem_value *ucontrol,
2343
struct cmipci_switch_args *args)
2344
{
2345
unsigned int val;
2346
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2347
2348
spin_lock_irq(&cm->reg_lock);
2349
if (args->ac3_sensitive && cm->mixer_insensitive) {
2350
ucontrol->value.integer.value[0] = 0;
2351
spin_unlock_irq(&cm->reg_lock);
2352
return 0;
2353
}
2354
if (args->is_byte)
2355
val = inb(cm->iobase + args->reg);
2356
else
2357
val = snd_cmipci_read(cm, args->reg);
2358
ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2359
spin_unlock_irq(&cm->reg_lock);
2360
return 0;
2361
}
2362
2363
static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2364
struct snd_ctl_elem_value *ucontrol)
2365
{
2366
struct cmipci_switch_args *args;
2367
args = (struct cmipci_switch_args *)kcontrol->private_value;
2368
if (snd_BUG_ON(!args))
2369
return -EINVAL;
2370
return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2371
}
2372
2373
static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2374
struct snd_ctl_elem_value *ucontrol,
2375
struct cmipci_switch_args *args)
2376
{
2377
unsigned int val;
2378
int change;
2379
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2380
2381
spin_lock_irq(&cm->reg_lock);
2382
if (args->ac3_sensitive && cm->mixer_insensitive) {
2383
/* ignored */
2384
spin_unlock_irq(&cm->reg_lock);
2385
return 0;
2386
}
2387
if (args->is_byte)
2388
val = inb(cm->iobase + args->reg);
2389
else
2390
val = snd_cmipci_read(cm, args->reg);
2391
change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2392
args->mask_on : (args->mask & ~args->mask_on));
2393
if (change) {
2394
val &= ~args->mask;
2395
if (ucontrol->value.integer.value[0])
2396
val |= args->mask_on;
2397
else
2398
val |= (args->mask & ~args->mask_on);
2399
if (args->is_byte)
2400
outb((unsigned char)val, cm->iobase + args->reg);
2401
else
2402
snd_cmipci_write(cm, args->reg, val);
2403
}
2404
spin_unlock_irq(&cm->reg_lock);
2405
return change;
2406
}
2407
2408
static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2409
struct snd_ctl_elem_value *ucontrol)
2410
{
2411
struct cmipci_switch_args *args;
2412
args = (struct cmipci_switch_args *)kcontrol->private_value;
2413
if (snd_BUG_ON(!args))
2414
return -EINVAL;
2415
return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2416
}
2417
2418
#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2419
static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2420
.reg = xreg, \
2421
.mask = xmask, \
2422
.mask_on = xmask_on, \
2423
.is_byte = xis_byte, \
2424
.ac3_sensitive = xac3, \
2425
}
2426
2427
#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2428
DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2429
2430
#if 0 /* these will be controlled in pcm device */
2431
DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2432
DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2433
#endif
2434
DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2435
DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2436
DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2437
DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2438
DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2439
DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2440
DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2441
DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2442
// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2443
DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2444
DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2445
/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2446
DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2447
DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2448
#if CM_CH_PLAY == 1
2449
DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2450
#else
2451
DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2452
#endif
2453
DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2454
// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2455
// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2456
// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2457
DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2458
2459
#define DEFINE_SWITCH(sname, stype, sarg) \
2460
{ .name = sname, \
2461
.iface = stype, \
2462
.info = snd_cmipci_uswitch_info, \
2463
.get = snd_cmipci_uswitch_get, \
2464
.put = snd_cmipci_uswitch_put, \
2465
.private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2466
}
2467
2468
#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2469
#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2470
2471
2472
/*
2473
* callbacks for spdif output switch
2474
* needs toggle two registers..
2475
*/
2476
static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2477
struct snd_ctl_elem_value *ucontrol)
2478
{
2479
int changed;
2480
changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2481
changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2482
return changed;
2483
}
2484
2485
static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2486
struct snd_ctl_elem_value *ucontrol)
2487
{
2488
struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2489
int changed;
2490
changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2491
changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2492
if (changed) {
2493
if (ucontrol->value.integer.value[0]) {
2494
if (chip->spdif_playback_avail)
2495
snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2496
} else {
2497
if (chip->spdif_playback_avail)
2498
snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2499
}
2500
}
2501
chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2502
return changed;
2503
}
2504
2505
2506
static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2507
struct snd_ctl_elem_info *uinfo)
2508
{
2509
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2510
static const char *const texts[3] = {
2511
"Line-In", "Rear Output", "Bass Output"
2512
};
2513
2514
return snd_ctl_enum_info(uinfo, 1,
2515
cm->chip_version >= 39 ? 3 : 2, texts);
2516
}
2517
2518
static inline unsigned int get_line_in_mode(struct cmipci *cm)
2519
{
2520
unsigned int val;
2521
if (cm->chip_version >= 39) {
2522
val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2523
if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2524
return 2;
2525
}
2526
val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2527
if (val & CM_REAR2LIN)
2528
return 1;
2529
return 0;
2530
}
2531
2532
static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2533
struct snd_ctl_elem_value *ucontrol)
2534
{
2535
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2536
2537
spin_lock_irq(&cm->reg_lock);
2538
ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2539
spin_unlock_irq(&cm->reg_lock);
2540
return 0;
2541
}
2542
2543
static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2544
struct snd_ctl_elem_value *ucontrol)
2545
{
2546
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2547
int change;
2548
2549
spin_lock_irq(&cm->reg_lock);
2550
if (ucontrol->value.enumerated.item[0] == 2)
2551
change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2552
else
2553
change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2554
if (ucontrol->value.enumerated.item[0] == 1)
2555
change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2556
else
2557
change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2558
spin_unlock_irq(&cm->reg_lock);
2559
return change;
2560
}
2561
2562
static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2563
struct snd_ctl_elem_info *uinfo)
2564
{
2565
static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2566
2567
return snd_ctl_enum_info(uinfo, 1, 2, texts);
2568
}
2569
2570
static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2571
struct snd_ctl_elem_value *ucontrol)
2572
{
2573
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2574
/* same bit as spdi_phase */
2575
spin_lock_irq(&cm->reg_lock);
2576
ucontrol->value.enumerated.item[0] =
2577
(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2578
spin_unlock_irq(&cm->reg_lock);
2579
return 0;
2580
}
2581
2582
static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2583
struct snd_ctl_elem_value *ucontrol)
2584
{
2585
struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2586
int change;
2587
2588
spin_lock_irq(&cm->reg_lock);
2589
if (ucontrol->value.enumerated.item[0])
2590
change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2591
else
2592
change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2593
spin_unlock_irq(&cm->reg_lock);
2594
return change;
2595
}
2596
2597
/* both for CM8338/8738 */
2598
static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2599
DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2600
{
2601
.name = "Line-In Mode",
2602
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2603
.info = snd_cmipci_line_in_mode_info,
2604
.get = snd_cmipci_line_in_mode_get,
2605
.put = snd_cmipci_line_in_mode_put,
2606
},
2607
};
2608
2609
/* for non-multichannel chips */
2610
static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2611
DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2612
2613
/* only for CM8738 */
2614
static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2615
#if 0 /* controlled in pcm device */
2616
DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2617
DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2618
DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2619
#endif
2620
// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2621
{ .name = "IEC958 Output Switch",
2622
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2623
.info = snd_cmipci_uswitch_info,
2624
.get = snd_cmipci_spdout_enable_get,
2625
.put = snd_cmipci_spdout_enable_put,
2626
},
2627
DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2628
DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2629
DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2630
// DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2631
DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2632
DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2633
};
2634
2635
/* only for model 033/037 */
2636
static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2637
DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2638
DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2639
DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2640
};
2641
2642
/* only for model 039 or later */
2643
static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2644
DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2645
DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2646
{
2647
.name = "Mic-In Mode",
2648
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2649
.info = snd_cmipci_mic_in_mode_info,
2650
.get = snd_cmipci_mic_in_mode_get,
2651
.put = snd_cmipci_mic_in_mode_put,
2652
}
2653
};
2654
2655
/* card control switches */
2656
static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata =
2657
DEFINE_CARD_SWITCH("Modem", modem);
2658
2659
2660
static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2661
{
2662
struct snd_card *card;
2663
struct snd_kcontrol_new *sw;
2664
struct snd_kcontrol *kctl;
2665
unsigned int idx;
2666
int err;
2667
2668
if (snd_BUG_ON(!cm || !cm->card))
2669
return -EINVAL;
2670
2671
card = cm->card;
2672
2673
strcpy(card->mixername, "CMedia PCI");
2674
2675
spin_lock_irq(&cm->reg_lock);
2676
snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2677
spin_unlock_irq(&cm->reg_lock);
2678
2679
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2680
if (cm->chip_version == 68) { // 8768 has no PCM volume
2681
if (!strcmp(snd_cmipci_mixers[idx].name,
2682
"PCM Playback Volume"))
2683
continue;
2684
}
2685
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2686
return err;
2687
}
2688
2689
/* mixer switches */
2690
sw = snd_cmipci_mixer_switches;
2691
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2692
err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2693
if (err < 0)
2694
return err;
2695
}
2696
if (! cm->can_multi_ch) {
2697
err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2698
if (err < 0)
2699
return err;
2700
}
2701
if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2702
cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2703
sw = snd_cmipci_8738_mixer_switches;
2704
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2705
err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2706
if (err < 0)
2707
return err;
2708
}
2709
if (cm->can_ac3_hw) {
2710
if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2711
return err;
2712
kctl->id.device = pcm_spdif_device;
2713
if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2714
return err;
2715
kctl->id.device = pcm_spdif_device;
2716
if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2717
return err;
2718
kctl->id.device = pcm_spdif_device;
2719
}
2720
if (cm->chip_version <= 37) {
2721
sw = snd_cmipci_old_mixer_switches;
2722
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2723
err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2724
if (err < 0)
2725
return err;
2726
}
2727
}
2728
}
2729
if (cm->chip_version >= 39) {
2730
sw = snd_cmipci_extra_mixer_switches;
2731
for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2732
err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2733
if (err < 0)
2734
return err;
2735
}
2736
}
2737
2738
/* card switches */
2739
/*
2740
* newer chips don't have the register bits to force modem link
2741
* detection; the bit that was FLINKON now mutes CH1
2742
*/
2743
if (cm->chip_version < 39) {
2744
err = snd_ctl_add(cm->card,
2745
snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2746
if (err < 0)
2747
return err;
2748
}
2749
2750
for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2751
struct snd_ctl_elem_id elem_id;
2752
struct snd_kcontrol *ctl;
2753
memset(&elem_id, 0, sizeof(elem_id));
2754
elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2755
strcpy(elem_id.name, cm_saved_mixer[idx].name);
2756
ctl = snd_ctl_find_id(cm->card, &elem_id);
2757
if (ctl)
2758
cm->mixer_res_ctl[idx] = ctl;
2759
}
2760
2761
return 0;
2762
}
2763
2764
2765
/*
2766
* proc interface
2767
*/
2768
2769
#ifdef CONFIG_PROC_FS
2770
static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2771
struct snd_info_buffer *buffer)
2772
{
2773
struct cmipci *cm = entry->private_data;
2774
int i, v;
2775
2776
snd_iprintf(buffer, "%s\n", cm->card->longname);
2777
for (i = 0; i < 0x94; i++) {
2778
if (i == 0x28)
2779
i = 0x90;
2780
v = inb(cm->iobase + i);
2781
if (i % 4 == 0)
2782
snd_iprintf(buffer, "\n%02x:", i);
2783
snd_iprintf(buffer, " %02x", v);
2784
}
2785
snd_iprintf(buffer, "\n");
2786
}
2787
2788
static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2789
{
2790
struct snd_info_entry *entry;
2791
2792
if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2793
snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2794
}
2795
#else /* !CONFIG_PROC_FS */
2796
static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2797
#endif
2798
2799
2800
static DEFINE_PCI_DEVICE_TABLE(snd_cmipci_ids) = {
2801
{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2802
{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2803
{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2804
{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2805
{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2806
{0,},
2807
};
2808
2809
2810
/*
2811
* check chip version and capabilities
2812
* driver name is modified according to the chip model
2813
*/
2814
static void __devinit query_chip(struct cmipci *cm)
2815
{
2816
unsigned int detect;
2817
2818
/* check reg 0Ch, bit 24-31 */
2819
detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2820
if (! detect) {
2821
/* check reg 08h, bit 24-28 */
2822
detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2823
switch (detect) {
2824
case 0:
2825
cm->chip_version = 33;
2826
if (cm->do_soft_ac3)
2827
cm->can_ac3_sw = 1;
2828
else
2829
cm->can_ac3_hw = 1;
2830
break;
2831
case CM_CHIP_037:
2832
cm->chip_version = 37;
2833
cm->can_ac3_hw = 1;
2834
break;
2835
default:
2836
cm->chip_version = 39;
2837
cm->can_ac3_hw = 1;
2838
break;
2839
}
2840
cm->max_channels = 2;
2841
} else {
2842
if (detect & CM_CHIP_039) {
2843
cm->chip_version = 39;
2844
if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2845
cm->max_channels = 6;
2846
else
2847
cm->max_channels = 4;
2848
} else if (detect & CM_CHIP_8768) {
2849
cm->chip_version = 68;
2850
cm->max_channels = 8;
2851
cm->can_96k = 1;
2852
} else {
2853
cm->chip_version = 55;
2854
cm->max_channels = 6;
2855
cm->can_96k = 1;
2856
}
2857
cm->can_ac3_hw = 1;
2858
cm->can_multi_ch = 1;
2859
}
2860
}
2861
2862
#ifdef SUPPORT_JOYSTICK
2863
static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2864
{
2865
static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2866
struct gameport *gp;
2867
struct resource *r = NULL;
2868
int i, io_port = 0;
2869
2870
if (joystick_port[dev] == 0)
2871
return -ENODEV;
2872
2873
if (joystick_port[dev] == 1) { /* auto-detect */
2874
for (i = 0; ports[i]; i++) {
2875
io_port = ports[i];
2876
r = request_region(io_port, 1, "CMIPCI gameport");
2877
if (r)
2878
break;
2879
}
2880
} else {
2881
io_port = joystick_port[dev];
2882
r = request_region(io_port, 1, "CMIPCI gameport");
2883
}
2884
2885
if (!r) {
2886
printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2887
return -EBUSY;
2888
}
2889
2890
cm->gameport = gp = gameport_allocate_port();
2891
if (!gp) {
2892
printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2893
release_and_free_resource(r);
2894
return -ENOMEM;
2895
}
2896
gameport_set_name(gp, "C-Media Gameport");
2897
gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2898
gameport_set_dev_parent(gp, &cm->pci->dev);
2899
gp->io = io_port;
2900
gameport_set_port_data(gp, r);
2901
2902
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2903
2904
gameport_register_port(cm->gameport);
2905
2906
return 0;
2907
}
2908
2909
static void snd_cmipci_free_gameport(struct cmipci *cm)
2910
{
2911
if (cm->gameport) {
2912
struct resource *r = gameport_get_port_data(cm->gameport);
2913
2914
gameport_unregister_port(cm->gameport);
2915
cm->gameport = NULL;
2916
2917
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2918
release_and_free_resource(r);
2919
}
2920
}
2921
#else
2922
static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2923
static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2924
#endif
2925
2926
static int snd_cmipci_free(struct cmipci *cm)
2927
{
2928
if (cm->irq >= 0) {
2929
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2930
snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2931
snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2932
snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2933
snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2934
snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2935
snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2936
2937
/* reset mixer */
2938
snd_cmipci_mixer_write(cm, 0, 0);
2939
2940
free_irq(cm->irq, cm);
2941
}
2942
2943
snd_cmipci_free_gameport(cm);
2944
pci_release_regions(cm->pci);
2945
pci_disable_device(cm->pci);
2946
kfree(cm);
2947
return 0;
2948
}
2949
2950
static int snd_cmipci_dev_free(struct snd_device *device)
2951
{
2952
struct cmipci *cm = device->device_data;
2953
return snd_cmipci_free(cm);
2954
}
2955
2956
static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2957
{
2958
long iosynth;
2959
unsigned int val;
2960
struct snd_opl3 *opl3;
2961
int err;
2962
2963
if (!fm_port)
2964
goto disable_fm;
2965
2966
if (cm->chip_version >= 39) {
2967
/* first try FM regs in PCI port range */
2968
iosynth = cm->iobase + CM_REG_FM_PCI;
2969
err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2970
OPL3_HW_OPL3, 1, &opl3);
2971
} else {
2972
err = -EIO;
2973
}
2974
if (err < 0) {
2975
/* then try legacy ports */
2976
val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2977
iosynth = fm_port;
2978
switch (iosynth) {
2979
case 0x3E8: val |= CM_FMSEL_3E8; break;
2980
case 0x3E0: val |= CM_FMSEL_3E0; break;
2981
case 0x3C8: val |= CM_FMSEL_3C8; break;
2982
case 0x388: val |= CM_FMSEL_388; break;
2983
default:
2984
goto disable_fm;
2985
}
2986
snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2987
/* enable FM */
2988
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2989
2990
if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2991
OPL3_HW_OPL3, 0, &opl3) < 0) {
2992
printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2993
"skipping...\n", iosynth);
2994
goto disable_fm;
2995
}
2996
}
2997
if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2998
printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2999
return err;
3000
}
3001
return 0;
3002
3003
disable_fm:
3004
snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3005
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3006
return 0;
3007
}
3008
3009
static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3010
int dev, struct cmipci **rcmipci)
3011
{
3012
struct cmipci *cm;
3013
int err;
3014
static struct snd_device_ops ops = {
3015
.dev_free = snd_cmipci_dev_free,
3016
};
3017
unsigned int val;
3018
long iomidi = 0;
3019
int integrated_midi = 0;
3020
char modelstr[16];
3021
int pcm_index, pcm_spdif_index;
3022
static DEFINE_PCI_DEVICE_TABLE(intel_82437vx) = {
3023
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3024
{ },
3025
};
3026
3027
*rcmipci = NULL;
3028
3029
if ((err = pci_enable_device(pci)) < 0)
3030
return err;
3031
3032
cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3033
if (cm == NULL) {
3034
pci_disable_device(pci);
3035
return -ENOMEM;
3036
}
3037
3038
spin_lock_init(&cm->reg_lock);
3039
mutex_init(&cm->open_mutex);
3040
cm->device = pci->device;
3041
cm->card = card;
3042
cm->pci = pci;
3043
cm->irq = -1;
3044
cm->channel[0].ch = 0;
3045
cm->channel[1].ch = 1;
3046
cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3047
3048
if ((err = pci_request_regions(pci, card->driver)) < 0) {
3049
kfree(cm);
3050
pci_disable_device(pci);
3051
return err;
3052
}
3053
cm->iobase = pci_resource_start(pci, 0);
3054
3055
if (request_irq(pci->irq, snd_cmipci_interrupt,
3056
IRQF_SHARED, card->driver, cm)) {
3057
snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
3058
snd_cmipci_free(cm);
3059
return -EBUSY;
3060
}
3061
cm->irq = pci->irq;
3062
3063
pci_set_master(cm->pci);
3064
3065
/*
3066
* check chip version, max channels and capabilities
3067
*/
3068
3069
cm->chip_version = 0;
3070
cm->max_channels = 2;
3071
cm->do_soft_ac3 = soft_ac3[dev];
3072
3073
if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3074
pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3075
query_chip(cm);
3076
/* added -MCx suffix for chip supporting multi-channels */
3077
if (cm->can_multi_ch)
3078
sprintf(cm->card->driver + strlen(cm->card->driver),
3079
"-MC%d", cm->max_channels);
3080
else if (cm->can_ac3_sw)
3081
strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3082
3083
cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3084
cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3085
3086
#if CM_CH_PLAY == 1
3087
cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
3088
#else
3089
cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
3090
#endif
3091
3092
/* initialize codec registers */
3093
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3094
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3095
snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
3096
snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3097
snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3098
snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
3099
snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3100
3101
snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3102
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3103
#if CM_CH_PLAY == 1
3104
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3105
#else
3106
snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3107
#endif
3108
if (cm->chip_version) {
3109
snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3110
snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3111
}
3112
/* Set Bus Master Request */
3113
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3114
3115
/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3116
switch (pci->device) {
3117
case PCI_DEVICE_ID_CMEDIA_CM8738:
3118
case PCI_DEVICE_ID_CMEDIA_CM8738B:
3119
if (!pci_dev_present(intel_82437vx))
3120
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3121
break;
3122
default:
3123
break;
3124
}
3125
3126
if (cm->chip_version < 68) {
3127
val = pci->device < 0x110 ? 8338 : 8738;
3128
} else {
3129
switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3130
case 0:
3131
val = 8769;
3132
break;
3133
case 2:
3134
val = 8762;
3135
break;
3136
default:
3137
switch ((pci->subsystem_vendor << 16) |
3138
pci->subsystem_device) {
3139
case 0x13f69761:
3140
case 0x584d3741:
3141
case 0x584d3751:
3142
case 0x584d3761:
3143
case 0x584d3771:
3144
case 0x72848384:
3145
val = 8770;
3146
break;
3147
default:
3148
val = 8768;
3149
break;
3150
}
3151
}
3152
}
3153
sprintf(card->shortname, "C-Media CMI%d", val);
3154
if (cm->chip_version < 68)
3155
sprintf(modelstr, " (model %d)", cm->chip_version);
3156
else
3157
modelstr[0] = '\0';
3158
sprintf(card->longname, "%s%s at %#lx, irq %i",
3159
card->shortname, modelstr, cm->iobase, cm->irq);
3160
3161
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3162
snd_cmipci_free(cm);
3163
return err;
3164
}
3165
3166
if (cm->chip_version >= 39) {
3167
val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3168
if (val != 0x00 && val != 0xff) {
3169
iomidi = cm->iobase + CM_REG_MPU_PCI;
3170
integrated_midi = 1;
3171
}
3172
}
3173
if (!integrated_midi) {
3174
val = 0;
3175
iomidi = mpu_port[dev];
3176
switch (iomidi) {
3177
case 0x320: val = CM_VMPU_320; break;
3178
case 0x310: val = CM_VMPU_310; break;
3179
case 0x300: val = CM_VMPU_300; break;
3180
case 0x330: val = CM_VMPU_330; break;
3181
default:
3182
iomidi = 0; break;
3183
}
3184
if (iomidi > 0) {
3185
snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3186
/* enable UART */
3187
snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3188
if (inb(iomidi + 1) == 0xff) {
3189
snd_printk(KERN_ERR "cannot enable MPU-401 port"
3190
" at %#lx\n", iomidi);
3191
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3192
CM_UART_EN);
3193
iomidi = 0;
3194
}
3195
}
3196
}
3197
3198
if (cm->chip_version < 68) {
3199
err = snd_cmipci_create_fm(cm, fm_port[dev]);
3200
if (err < 0)
3201
return err;
3202
}
3203
3204
/* reset mixer */
3205
snd_cmipci_mixer_write(cm, 0, 0);
3206
3207
snd_cmipci_proc_init(cm);
3208
3209
/* create pcm devices */
3210
pcm_index = pcm_spdif_index = 0;
3211
if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3212
return err;
3213
pcm_index++;
3214
if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3215
return err;
3216
pcm_index++;
3217
if (cm->can_ac3_hw || cm->can_ac3_sw) {
3218
pcm_spdif_index = pcm_index;
3219
if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3220
return err;
3221
}
3222
3223
/* create mixer interface & switches */
3224
if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3225
return err;
3226
3227
if (iomidi > 0) {
3228
if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3229
iomidi,
3230
(integrated_midi ?
3231
MPU401_INFO_INTEGRATED : 0),
3232
cm->irq, 0, &cm->rmidi)) < 0) {
3233
printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
3234
}
3235
}
3236
3237
#ifdef USE_VAR48KRATE
3238
for (val = 0; val < ARRAY_SIZE(rates); val++)
3239
snd_cmipci_set_pll(cm, rates[val], val);
3240
3241
/*
3242
* (Re-)Enable external switch spdo_48k
3243
*/
3244
snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3245
#endif /* USE_VAR48KRATE */
3246
3247
if (snd_cmipci_create_gameport(cm, dev) < 0)
3248
snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3249
3250
snd_card_set_dev(card, &pci->dev);
3251
3252
*rcmipci = cm;
3253
return 0;
3254
}
3255
3256
/*
3257
*/
3258
3259
MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3260
3261
static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3262
const struct pci_device_id *pci_id)
3263
{
3264
static int dev;
3265
struct snd_card *card;
3266
struct cmipci *cm;
3267
int err;
3268
3269
if (dev >= SNDRV_CARDS)
3270
return -ENODEV;
3271
if (! enable[dev]) {
3272
dev++;
3273
return -ENOENT;
3274
}
3275
3276
err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
3277
if (err < 0)
3278
return err;
3279
3280
switch (pci->device) {
3281
case PCI_DEVICE_ID_CMEDIA_CM8738:
3282
case PCI_DEVICE_ID_CMEDIA_CM8738B:
3283
strcpy(card->driver, "CMI8738");
3284
break;
3285
case PCI_DEVICE_ID_CMEDIA_CM8338A:
3286
case PCI_DEVICE_ID_CMEDIA_CM8338B:
3287
strcpy(card->driver, "CMI8338");
3288
break;
3289
default:
3290
strcpy(card->driver, "CMIPCI");
3291
break;
3292
}
3293
3294
if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3295
snd_card_free(card);
3296
return err;
3297
}
3298
card->private_data = cm;
3299
3300
if ((err = snd_card_register(card)) < 0) {
3301
snd_card_free(card);
3302
return err;
3303
}
3304
pci_set_drvdata(pci, card);
3305
dev++;
3306
return 0;
3307
3308
}
3309
3310
static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3311
{
3312
snd_card_free(pci_get_drvdata(pci));
3313
pci_set_drvdata(pci, NULL);
3314
}
3315
3316
3317
#ifdef CONFIG_PM
3318
/*
3319
* power management
3320
*/
3321
static unsigned char saved_regs[] = {
3322
CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3323
CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3324
CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3325
CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3326
CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3327
};
3328
3329
static unsigned char saved_mixers[] = {
3330
SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3331
SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3332
SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3333
SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3334
SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3335
SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3336
CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3337
SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3338
};
3339
3340
static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
3341
{
3342
struct snd_card *card = pci_get_drvdata(pci);
3343
struct cmipci *cm = card->private_data;
3344
int i;
3345
3346
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3347
3348
snd_pcm_suspend_all(cm->pcm);
3349
snd_pcm_suspend_all(cm->pcm2);
3350
snd_pcm_suspend_all(cm->pcm_spdif);
3351
3352
/* save registers */
3353
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3354
cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3355
for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3356
cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3357
3358
/* disable ints */
3359
snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3360
3361
pci_disable_device(pci);
3362
pci_save_state(pci);
3363
pci_set_power_state(pci, pci_choose_state(pci, state));
3364
return 0;
3365
}
3366
3367
static int snd_cmipci_resume(struct pci_dev *pci)
3368
{
3369
struct snd_card *card = pci_get_drvdata(pci);
3370
struct cmipci *cm = card->private_data;
3371
int i;
3372
3373
pci_set_power_state(pci, PCI_D0);
3374
pci_restore_state(pci);
3375
if (pci_enable_device(pci) < 0) {
3376
printk(KERN_ERR "cmipci: pci_enable_device failed, "
3377
"disabling device\n");
3378
snd_card_disconnect(card);
3379
return -EIO;
3380
}
3381
pci_set_master(pci);
3382
3383
/* reset / initialize to a sane state */
3384
snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3385
snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3386
snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3387
snd_cmipci_mixer_write(cm, 0, 0);
3388
3389
/* restore registers */
3390
for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3391
snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3392
for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3393
snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3394
3395
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3396
return 0;
3397
}
3398
#endif /* CONFIG_PM */
3399
3400
static struct pci_driver driver = {
3401
.name = "C-Media PCI",
3402
.id_table = snd_cmipci_ids,
3403
.probe = snd_cmipci_probe,
3404
.remove = __devexit_p(snd_cmipci_remove),
3405
#ifdef CONFIG_PM
3406
.suspend = snd_cmipci_suspend,
3407
.resume = snd_cmipci_resume,
3408
#endif
3409
};
3410
3411
static int __init alsa_card_cmipci_init(void)
3412
{
3413
return pci_register_driver(&driver);
3414
}
3415
3416
static void __exit alsa_card_cmipci_exit(void)
3417
{
3418
pci_unregister_driver(&driver);
3419
}
3420
3421
module_init(alsa_card_cmipci_init)
3422
module_exit(alsa_card_cmipci_exit)
3423
3424