Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/sound/pci/ctxfi/cthw20k2.c
10817 views
1
/**
2
* Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
3
*
4
* This source file is released under GPL v2 license (no other versions).
5
* See the COPYING file included in the main directory of this source
6
* distribution for the license terms and conditions.
7
*
8
* @File cthw20k2.c
9
*
10
* @Brief
11
* This file contains the implementation of hardware access methord for 20k2.
12
*
13
* @Author Liu Chun
14
* @Date May 14 2008
15
*
16
*/
17
18
#include <linux/types.h>
19
#include <linux/slab.h>
20
#include <linux/pci.h>
21
#include <linux/io.h>
22
#include <linux/string.h>
23
#include <linux/kernel.h>
24
#include <linux/interrupt.h>
25
#include <linux/delay.h>
26
#include "cthw20k2.h"
27
#include "ct20k2reg.h"
28
29
#if BITS_PER_LONG == 32
30
#define CT_XFI_DMA_MASK DMA_BIT_MASK(32) /* 32 bit PTE */
31
#else
32
#define CT_XFI_DMA_MASK DMA_BIT_MASK(64) /* 64 bit PTE */
33
#endif
34
35
struct hw20k2 {
36
struct hw hw;
37
/* for i2c */
38
unsigned char dev_id;
39
unsigned char addr_size;
40
unsigned char data_size;
41
};
42
43
static u32 hw_read_20kx(struct hw *hw, u32 reg);
44
static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
45
46
/*
47
* Type definition block.
48
* The layout of control structures can be directly applied on 20k2 chip.
49
*/
50
51
/*
52
* SRC control block definitions.
53
*/
54
55
/* SRC resource control block */
56
#define SRCCTL_STATE 0x00000007
57
#define SRCCTL_BM 0x00000008
58
#define SRCCTL_RSR 0x00000030
59
#define SRCCTL_SF 0x000001C0
60
#define SRCCTL_WR 0x00000200
61
#define SRCCTL_PM 0x00000400
62
#define SRCCTL_ROM 0x00001800
63
#define SRCCTL_VO 0x00002000
64
#define SRCCTL_ST 0x00004000
65
#define SRCCTL_IE 0x00008000
66
#define SRCCTL_ILSZ 0x000F0000
67
#define SRCCTL_BP 0x00100000
68
69
#define SRCCCR_CISZ 0x000007FF
70
#define SRCCCR_CWA 0x001FF800
71
#define SRCCCR_D 0x00200000
72
#define SRCCCR_RS 0x01C00000
73
#define SRCCCR_NAL 0x3E000000
74
#define SRCCCR_RA 0xC0000000
75
76
#define SRCCA_CA 0x0FFFFFFF
77
#define SRCCA_RS 0xE0000000
78
79
#define SRCSA_SA 0x0FFFFFFF
80
81
#define SRCLA_LA 0x0FFFFFFF
82
83
/* Mixer Parameter Ring ram Low and Hight register.
84
* Fixed-point value in 8.24 format for parameter channel */
85
#define MPRLH_PITCH 0xFFFFFFFF
86
87
/* SRC resource register dirty flags */
88
union src_dirty {
89
struct {
90
u16 ctl:1;
91
u16 ccr:1;
92
u16 sa:1;
93
u16 la:1;
94
u16 ca:1;
95
u16 mpr:1;
96
u16 czbfs:1; /* Clear Z-Buffers */
97
u16 rsv:9;
98
} bf;
99
u16 data;
100
};
101
102
struct src_rsc_ctrl_blk {
103
unsigned int ctl;
104
unsigned int ccr;
105
unsigned int ca;
106
unsigned int sa;
107
unsigned int la;
108
unsigned int mpr;
109
union src_dirty dirty;
110
};
111
112
/* SRC manager control block */
113
union src_mgr_dirty {
114
struct {
115
u16 enb0:1;
116
u16 enb1:1;
117
u16 enb2:1;
118
u16 enb3:1;
119
u16 enb4:1;
120
u16 enb5:1;
121
u16 enb6:1;
122
u16 enb7:1;
123
u16 enbsa:1;
124
u16 rsv:7;
125
} bf;
126
u16 data;
127
};
128
129
struct src_mgr_ctrl_blk {
130
unsigned int enbsa;
131
unsigned int enb[8];
132
union src_mgr_dirty dirty;
133
};
134
135
/* SRCIMP manager control block */
136
#define SRCAIM_ARC 0x00000FFF
137
#define SRCAIM_NXT 0x00FF0000
138
#define SRCAIM_SRC 0xFF000000
139
140
struct srcimap {
141
unsigned int srcaim;
142
unsigned int idx;
143
};
144
145
/* SRCIMP manager register dirty flags */
146
union srcimp_mgr_dirty {
147
struct {
148
u16 srcimap:1;
149
u16 rsv:15;
150
} bf;
151
u16 data;
152
};
153
154
struct srcimp_mgr_ctrl_blk {
155
struct srcimap srcimap;
156
union srcimp_mgr_dirty dirty;
157
};
158
159
/*
160
* Function implementation block.
161
*/
162
163
static int src_get_rsc_ctrl_blk(void **rblk)
164
{
165
struct src_rsc_ctrl_blk *blk;
166
167
*rblk = NULL;
168
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
169
if (!blk)
170
return -ENOMEM;
171
172
*rblk = blk;
173
174
return 0;
175
}
176
177
static int src_put_rsc_ctrl_blk(void *blk)
178
{
179
kfree(blk);
180
181
return 0;
182
}
183
184
static int src_set_state(void *blk, unsigned int state)
185
{
186
struct src_rsc_ctrl_blk *ctl = blk;
187
188
set_field(&ctl->ctl, SRCCTL_STATE, state);
189
ctl->dirty.bf.ctl = 1;
190
return 0;
191
}
192
193
static int src_set_bm(void *blk, unsigned int bm)
194
{
195
struct src_rsc_ctrl_blk *ctl = blk;
196
197
set_field(&ctl->ctl, SRCCTL_BM, bm);
198
ctl->dirty.bf.ctl = 1;
199
return 0;
200
}
201
202
static int src_set_rsr(void *blk, unsigned int rsr)
203
{
204
struct src_rsc_ctrl_blk *ctl = blk;
205
206
set_field(&ctl->ctl, SRCCTL_RSR, rsr);
207
ctl->dirty.bf.ctl = 1;
208
return 0;
209
}
210
211
static int src_set_sf(void *blk, unsigned int sf)
212
{
213
struct src_rsc_ctrl_blk *ctl = blk;
214
215
set_field(&ctl->ctl, SRCCTL_SF, sf);
216
ctl->dirty.bf.ctl = 1;
217
return 0;
218
}
219
220
static int src_set_wr(void *blk, unsigned int wr)
221
{
222
struct src_rsc_ctrl_blk *ctl = blk;
223
224
set_field(&ctl->ctl, SRCCTL_WR, wr);
225
ctl->dirty.bf.ctl = 1;
226
return 0;
227
}
228
229
static int src_set_pm(void *blk, unsigned int pm)
230
{
231
struct src_rsc_ctrl_blk *ctl = blk;
232
233
set_field(&ctl->ctl, SRCCTL_PM, pm);
234
ctl->dirty.bf.ctl = 1;
235
return 0;
236
}
237
238
static int src_set_rom(void *blk, unsigned int rom)
239
{
240
struct src_rsc_ctrl_blk *ctl = blk;
241
242
set_field(&ctl->ctl, SRCCTL_ROM, rom);
243
ctl->dirty.bf.ctl = 1;
244
return 0;
245
}
246
247
static int src_set_vo(void *blk, unsigned int vo)
248
{
249
struct src_rsc_ctrl_blk *ctl = blk;
250
251
set_field(&ctl->ctl, SRCCTL_VO, vo);
252
ctl->dirty.bf.ctl = 1;
253
return 0;
254
}
255
256
static int src_set_st(void *blk, unsigned int st)
257
{
258
struct src_rsc_ctrl_blk *ctl = blk;
259
260
set_field(&ctl->ctl, SRCCTL_ST, st);
261
ctl->dirty.bf.ctl = 1;
262
return 0;
263
}
264
265
static int src_set_ie(void *blk, unsigned int ie)
266
{
267
struct src_rsc_ctrl_blk *ctl = blk;
268
269
set_field(&ctl->ctl, SRCCTL_IE, ie);
270
ctl->dirty.bf.ctl = 1;
271
return 0;
272
}
273
274
static int src_set_ilsz(void *blk, unsigned int ilsz)
275
{
276
struct src_rsc_ctrl_blk *ctl = blk;
277
278
set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
279
ctl->dirty.bf.ctl = 1;
280
return 0;
281
}
282
283
static int src_set_bp(void *blk, unsigned int bp)
284
{
285
struct src_rsc_ctrl_blk *ctl = blk;
286
287
set_field(&ctl->ctl, SRCCTL_BP, bp);
288
ctl->dirty.bf.ctl = 1;
289
return 0;
290
}
291
292
static int src_set_cisz(void *blk, unsigned int cisz)
293
{
294
struct src_rsc_ctrl_blk *ctl = blk;
295
296
set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
297
ctl->dirty.bf.ccr = 1;
298
return 0;
299
}
300
301
static int src_set_ca(void *blk, unsigned int ca)
302
{
303
struct src_rsc_ctrl_blk *ctl = blk;
304
305
set_field(&ctl->ca, SRCCA_CA, ca);
306
ctl->dirty.bf.ca = 1;
307
return 0;
308
}
309
310
static int src_set_sa(void *blk, unsigned int sa)
311
{
312
struct src_rsc_ctrl_blk *ctl = blk;
313
314
set_field(&ctl->sa, SRCSA_SA, sa);
315
ctl->dirty.bf.sa = 1;
316
return 0;
317
}
318
319
static int src_set_la(void *blk, unsigned int la)
320
{
321
struct src_rsc_ctrl_blk *ctl = blk;
322
323
set_field(&ctl->la, SRCLA_LA, la);
324
ctl->dirty.bf.la = 1;
325
return 0;
326
}
327
328
static int src_set_pitch(void *blk, unsigned int pitch)
329
{
330
struct src_rsc_ctrl_blk *ctl = blk;
331
332
set_field(&ctl->mpr, MPRLH_PITCH, pitch);
333
ctl->dirty.bf.mpr = 1;
334
return 0;
335
}
336
337
static int src_set_clear_zbufs(void *blk, unsigned int clear)
338
{
339
((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
340
return 0;
341
}
342
343
static int src_set_dirty(void *blk, unsigned int flags)
344
{
345
((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
346
return 0;
347
}
348
349
static int src_set_dirty_all(void *blk)
350
{
351
((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
352
return 0;
353
}
354
355
#define AR_SLOT_SIZE 4096
356
#define AR_SLOT_BLOCK_SIZE 16
357
#define AR_PTS_PITCH 6
358
#define AR_PARAM_SRC_OFFSET 0x60
359
360
static unsigned int src_param_pitch_mixer(unsigned int src_idx)
361
{
362
return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
363
- AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
364
365
}
366
367
static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
368
{
369
struct src_rsc_ctrl_blk *ctl = blk;
370
int i;
371
372
if (ctl->dirty.bf.czbfs) {
373
/* Clear Z-Buffer registers */
374
for (i = 0; i < 8; i++)
375
hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0);
376
377
for (i = 0; i < 4; i++)
378
hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0);
379
380
for (i = 0; i < 8; i++)
381
hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0);
382
383
ctl->dirty.bf.czbfs = 0;
384
}
385
if (ctl->dirty.bf.mpr) {
386
/* Take the parameter mixer resource in the same group as that
387
* the idx src is in for simplicity. Unlike src, all conjugate
388
* parameter mixer resources must be programmed for
389
* corresponding conjugate src resources. */
390
unsigned int pm_idx = src_param_pitch_mixer(idx);
391
hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr);
392
hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3);
393
hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0);
394
ctl->dirty.bf.mpr = 0;
395
}
396
if (ctl->dirty.bf.sa) {
397
hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa);
398
ctl->dirty.bf.sa = 0;
399
}
400
if (ctl->dirty.bf.la) {
401
hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la);
402
ctl->dirty.bf.la = 0;
403
}
404
if (ctl->dirty.bf.ca) {
405
hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca);
406
ctl->dirty.bf.ca = 0;
407
}
408
409
/* Write srccf register */
410
hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0);
411
412
if (ctl->dirty.bf.ccr) {
413
hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr);
414
ctl->dirty.bf.ccr = 0;
415
}
416
if (ctl->dirty.bf.ctl) {
417
hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl);
418
ctl->dirty.bf.ctl = 0;
419
}
420
421
return 0;
422
}
423
424
static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
425
{
426
struct src_rsc_ctrl_blk *ctl = blk;
427
428
ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100);
429
ctl->dirty.bf.ca = 0;
430
431
return get_field(ctl->ca, SRCCA_CA);
432
}
433
434
static unsigned int src_get_dirty(void *blk)
435
{
436
return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
437
}
438
439
static unsigned int src_dirty_conj_mask(void)
440
{
441
return 0x20;
442
}
443
444
static int src_mgr_enbs_src(void *blk, unsigned int idx)
445
{
446
((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4));
447
((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
448
((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
449
return 0;
450
}
451
452
static int src_mgr_enb_src(void *blk, unsigned int idx)
453
{
454
((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
455
((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
456
return 0;
457
}
458
459
static int src_mgr_dsb_src(void *blk, unsigned int idx)
460
{
461
((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
462
((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
463
return 0;
464
}
465
466
static int src_mgr_commit_write(struct hw *hw, void *blk)
467
{
468
struct src_mgr_ctrl_blk *ctl = blk;
469
int i;
470
unsigned int ret;
471
472
if (ctl->dirty.bf.enbsa) {
473
do {
474
ret = hw_read_20kx(hw, SRC_ENBSTAT);
475
} while (ret & 0x1);
476
hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa);
477
ctl->dirty.bf.enbsa = 0;
478
}
479
for (i = 0; i < 8; i++) {
480
if ((ctl->dirty.data & (0x1 << i))) {
481
hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]);
482
ctl->dirty.data &= ~(0x1 << i);
483
}
484
}
485
486
return 0;
487
}
488
489
static int src_mgr_get_ctrl_blk(void **rblk)
490
{
491
struct src_mgr_ctrl_blk *blk;
492
493
*rblk = NULL;
494
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
495
if (!blk)
496
return -ENOMEM;
497
498
*rblk = blk;
499
500
return 0;
501
}
502
503
static int src_mgr_put_ctrl_blk(void *blk)
504
{
505
kfree(blk);
506
507
return 0;
508
}
509
510
static int srcimp_mgr_get_ctrl_blk(void **rblk)
511
{
512
struct srcimp_mgr_ctrl_blk *blk;
513
514
*rblk = NULL;
515
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
516
if (!blk)
517
return -ENOMEM;
518
519
*rblk = blk;
520
521
return 0;
522
}
523
524
static int srcimp_mgr_put_ctrl_blk(void *blk)
525
{
526
kfree(blk);
527
528
return 0;
529
}
530
531
static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
532
{
533
struct srcimp_mgr_ctrl_blk *ctl = blk;
534
535
set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
536
ctl->dirty.bf.srcimap = 1;
537
return 0;
538
}
539
540
static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
541
{
542
struct srcimp_mgr_ctrl_blk *ctl = blk;
543
544
set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
545
ctl->dirty.bf.srcimap = 1;
546
return 0;
547
}
548
549
static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
550
{
551
struct srcimp_mgr_ctrl_blk *ctl = blk;
552
553
set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
554
ctl->dirty.bf.srcimap = 1;
555
return 0;
556
}
557
558
static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
559
{
560
((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr;
561
((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1;
562
return 0;
563
}
564
565
static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
566
{
567
struct srcimp_mgr_ctrl_blk *ctl = blk;
568
569
if (ctl->dirty.bf.srcimap) {
570
hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100,
571
ctl->srcimap.srcaim);
572
ctl->dirty.bf.srcimap = 0;
573
}
574
575
return 0;
576
}
577
578
/*
579
* AMIXER control block definitions.
580
*/
581
582
#define AMOPLO_M 0x00000003
583
#define AMOPLO_IV 0x00000004
584
#define AMOPLO_X 0x0003FFF0
585
#define AMOPLO_Y 0xFFFC0000
586
587
#define AMOPHI_SADR 0x000000FF
588
#define AMOPHI_SE 0x80000000
589
590
/* AMIXER resource register dirty flags */
591
union amixer_dirty {
592
struct {
593
u16 amoplo:1;
594
u16 amophi:1;
595
u16 rsv:14;
596
} bf;
597
u16 data;
598
};
599
600
/* AMIXER resource control block */
601
struct amixer_rsc_ctrl_blk {
602
unsigned int amoplo;
603
unsigned int amophi;
604
union amixer_dirty dirty;
605
};
606
607
static int amixer_set_mode(void *blk, unsigned int mode)
608
{
609
struct amixer_rsc_ctrl_blk *ctl = blk;
610
611
set_field(&ctl->amoplo, AMOPLO_M, mode);
612
ctl->dirty.bf.amoplo = 1;
613
return 0;
614
}
615
616
static int amixer_set_iv(void *blk, unsigned int iv)
617
{
618
struct amixer_rsc_ctrl_blk *ctl = blk;
619
620
set_field(&ctl->amoplo, AMOPLO_IV, iv);
621
ctl->dirty.bf.amoplo = 1;
622
return 0;
623
}
624
625
static int amixer_set_x(void *blk, unsigned int x)
626
{
627
struct amixer_rsc_ctrl_blk *ctl = blk;
628
629
set_field(&ctl->amoplo, AMOPLO_X, x);
630
ctl->dirty.bf.amoplo = 1;
631
return 0;
632
}
633
634
static int amixer_set_y(void *blk, unsigned int y)
635
{
636
struct amixer_rsc_ctrl_blk *ctl = blk;
637
638
set_field(&ctl->amoplo, AMOPLO_Y, y);
639
ctl->dirty.bf.amoplo = 1;
640
return 0;
641
}
642
643
static int amixer_set_sadr(void *blk, unsigned int sadr)
644
{
645
struct amixer_rsc_ctrl_blk *ctl = blk;
646
647
set_field(&ctl->amophi, AMOPHI_SADR, sadr);
648
ctl->dirty.bf.amophi = 1;
649
return 0;
650
}
651
652
static int amixer_set_se(void *blk, unsigned int se)
653
{
654
struct amixer_rsc_ctrl_blk *ctl = blk;
655
656
set_field(&ctl->amophi, AMOPHI_SE, se);
657
ctl->dirty.bf.amophi = 1;
658
return 0;
659
}
660
661
static int amixer_set_dirty(void *blk, unsigned int flags)
662
{
663
((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
664
return 0;
665
}
666
667
static int amixer_set_dirty_all(void *blk)
668
{
669
((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
670
return 0;
671
}
672
673
static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
674
{
675
struct amixer_rsc_ctrl_blk *ctl = blk;
676
677
if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
678
hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo);
679
ctl->dirty.bf.amoplo = 0;
680
hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi);
681
ctl->dirty.bf.amophi = 0;
682
}
683
684
return 0;
685
}
686
687
static int amixer_get_y(void *blk)
688
{
689
struct amixer_rsc_ctrl_blk *ctl = blk;
690
691
return get_field(ctl->amoplo, AMOPLO_Y);
692
}
693
694
static unsigned int amixer_get_dirty(void *blk)
695
{
696
return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
697
}
698
699
static int amixer_rsc_get_ctrl_blk(void **rblk)
700
{
701
struct amixer_rsc_ctrl_blk *blk;
702
703
*rblk = NULL;
704
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
705
if (!blk)
706
return -ENOMEM;
707
708
*rblk = blk;
709
710
return 0;
711
}
712
713
static int amixer_rsc_put_ctrl_blk(void *blk)
714
{
715
kfree(blk);
716
717
return 0;
718
}
719
720
static int amixer_mgr_get_ctrl_blk(void **rblk)
721
{
722
*rblk = NULL;
723
724
return 0;
725
}
726
727
static int amixer_mgr_put_ctrl_blk(void *blk)
728
{
729
return 0;
730
}
731
732
/*
733
* DAIO control block definitions.
734
*/
735
736
/* Receiver Sample Rate Tracker Control register */
737
#define SRTCTL_SRCO 0x000000FF
738
#define SRTCTL_SRCM 0x0000FF00
739
#define SRTCTL_RSR 0x00030000
740
#define SRTCTL_DRAT 0x00300000
741
#define SRTCTL_EC 0x01000000
742
#define SRTCTL_ET 0x10000000
743
744
/* DAIO Receiver register dirty flags */
745
union dai_dirty {
746
struct {
747
u16 srt:1;
748
u16 rsv:15;
749
} bf;
750
u16 data;
751
};
752
753
/* DAIO Receiver control block */
754
struct dai_ctrl_blk {
755
unsigned int srt;
756
union dai_dirty dirty;
757
};
758
759
/* Audio Input Mapper RAM */
760
#define AIM_ARC 0x00000FFF
761
#define AIM_NXT 0x007F0000
762
763
struct daoimap {
764
unsigned int aim;
765
unsigned int idx;
766
};
767
768
/* Audio Transmitter Control and Status register */
769
#define ATXCTL_EN 0x00000001
770
#define ATXCTL_MODE 0x00000010
771
#define ATXCTL_CD 0x00000020
772
#define ATXCTL_RAW 0x00000100
773
#define ATXCTL_MT 0x00000200
774
#define ATXCTL_NUC 0x00003000
775
#define ATXCTL_BEN 0x00010000
776
#define ATXCTL_BMUX 0x00700000
777
#define ATXCTL_B24 0x01000000
778
#define ATXCTL_CPF 0x02000000
779
#define ATXCTL_RIV 0x10000000
780
#define ATXCTL_LIV 0x20000000
781
#define ATXCTL_RSAT 0x40000000
782
#define ATXCTL_LSAT 0x80000000
783
784
/* XDIF Transmitter register dirty flags */
785
union dao_dirty {
786
struct {
787
u16 atxcsl:1;
788
u16 rsv:15;
789
} bf;
790
u16 data;
791
};
792
793
/* XDIF Transmitter control block */
794
struct dao_ctrl_blk {
795
/* XDIF Transmitter Channel Status Low Register */
796
unsigned int atxcsl;
797
union dao_dirty dirty;
798
};
799
800
/* Audio Receiver Control register */
801
#define ARXCTL_EN 0x00000001
802
803
/* DAIO manager register dirty flags */
804
union daio_mgr_dirty {
805
struct {
806
u32 atxctl:8;
807
u32 arxctl:8;
808
u32 daoimap:1;
809
u32 rsv:15;
810
} bf;
811
u32 data;
812
};
813
814
/* DAIO manager control block */
815
struct daio_mgr_ctrl_blk {
816
struct daoimap daoimap;
817
unsigned int txctl[8];
818
unsigned int rxctl[8];
819
union daio_mgr_dirty dirty;
820
};
821
822
static int dai_srt_set_srco(void *blk, unsigned int src)
823
{
824
struct dai_ctrl_blk *ctl = blk;
825
826
set_field(&ctl->srt, SRTCTL_SRCO, src);
827
ctl->dirty.bf.srt = 1;
828
return 0;
829
}
830
831
static int dai_srt_set_srcm(void *blk, unsigned int src)
832
{
833
struct dai_ctrl_blk *ctl = blk;
834
835
set_field(&ctl->srt, SRTCTL_SRCM, src);
836
ctl->dirty.bf.srt = 1;
837
return 0;
838
}
839
840
static int dai_srt_set_rsr(void *blk, unsigned int rsr)
841
{
842
struct dai_ctrl_blk *ctl = blk;
843
844
set_field(&ctl->srt, SRTCTL_RSR, rsr);
845
ctl->dirty.bf.srt = 1;
846
return 0;
847
}
848
849
static int dai_srt_set_drat(void *blk, unsigned int drat)
850
{
851
struct dai_ctrl_blk *ctl = blk;
852
853
set_field(&ctl->srt, SRTCTL_DRAT, drat);
854
ctl->dirty.bf.srt = 1;
855
return 0;
856
}
857
858
static int dai_srt_set_ec(void *blk, unsigned int ec)
859
{
860
struct dai_ctrl_blk *ctl = blk;
861
862
set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0);
863
ctl->dirty.bf.srt = 1;
864
return 0;
865
}
866
867
static int dai_srt_set_et(void *blk, unsigned int et)
868
{
869
struct dai_ctrl_blk *ctl = blk;
870
871
set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0);
872
ctl->dirty.bf.srt = 1;
873
return 0;
874
}
875
876
static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
877
{
878
struct dai_ctrl_blk *ctl = blk;
879
880
if (ctl->dirty.bf.srt) {
881
hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt);
882
ctl->dirty.bf.srt = 0;
883
}
884
885
return 0;
886
}
887
888
static int dai_get_ctrl_blk(void **rblk)
889
{
890
struct dai_ctrl_blk *blk;
891
892
*rblk = NULL;
893
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
894
if (!blk)
895
return -ENOMEM;
896
897
*rblk = blk;
898
899
return 0;
900
}
901
902
static int dai_put_ctrl_blk(void *blk)
903
{
904
kfree(blk);
905
906
return 0;
907
}
908
909
static int dao_set_spos(void *blk, unsigned int spos)
910
{
911
((struct dao_ctrl_blk *)blk)->atxcsl = spos;
912
((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1;
913
return 0;
914
}
915
916
static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
917
{
918
struct dao_ctrl_blk *ctl = blk;
919
920
if (ctl->dirty.bf.atxcsl) {
921
if (idx < 4) {
922
/* S/PDIF SPOSx */
923
hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx,
924
ctl->atxcsl);
925
}
926
ctl->dirty.bf.atxcsl = 0;
927
}
928
929
return 0;
930
}
931
932
static int dao_get_spos(void *blk, unsigned int *spos)
933
{
934
*spos = ((struct dao_ctrl_blk *)blk)->atxcsl;
935
return 0;
936
}
937
938
static int dao_get_ctrl_blk(void **rblk)
939
{
940
struct dao_ctrl_blk *blk;
941
942
*rblk = NULL;
943
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
944
if (!blk)
945
return -ENOMEM;
946
947
*rblk = blk;
948
949
return 0;
950
}
951
952
static int dao_put_ctrl_blk(void *blk)
953
{
954
kfree(blk);
955
956
return 0;
957
}
958
959
static int daio_mgr_enb_dai(void *blk, unsigned int idx)
960
{
961
struct daio_mgr_ctrl_blk *ctl = blk;
962
963
set_field(&ctl->rxctl[idx], ARXCTL_EN, 1);
964
ctl->dirty.bf.arxctl |= (0x1 << idx);
965
return 0;
966
}
967
968
static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
969
{
970
struct daio_mgr_ctrl_blk *ctl = blk;
971
972
set_field(&ctl->rxctl[idx], ARXCTL_EN, 0);
973
974
ctl->dirty.bf.arxctl |= (0x1 << idx);
975
return 0;
976
}
977
978
static int daio_mgr_enb_dao(void *blk, unsigned int idx)
979
{
980
struct daio_mgr_ctrl_blk *ctl = blk;
981
982
set_field(&ctl->txctl[idx], ATXCTL_EN, 1);
983
ctl->dirty.bf.atxctl |= (0x1 << idx);
984
return 0;
985
}
986
987
static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
988
{
989
struct daio_mgr_ctrl_blk *ctl = blk;
990
991
set_field(&ctl->txctl[idx], ATXCTL_EN, 0);
992
ctl->dirty.bf.atxctl |= (0x1 << idx);
993
return 0;
994
}
995
996
static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
997
{
998
struct daio_mgr_ctrl_blk *ctl = blk;
999
1000
if (idx < 4) {
1001
/* S/PDIF output */
1002
switch ((conf & 0x7)) {
1003
case 1:
1004
set_field(&ctl->txctl[idx], ATXCTL_NUC, 0);
1005
break;
1006
case 2:
1007
set_field(&ctl->txctl[idx], ATXCTL_NUC, 1);
1008
break;
1009
case 4:
1010
set_field(&ctl->txctl[idx], ATXCTL_NUC, 2);
1011
break;
1012
case 8:
1013
set_field(&ctl->txctl[idx], ATXCTL_NUC, 3);
1014
break;
1015
default:
1016
break;
1017
}
1018
/* CDIF */
1019
set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7)));
1020
/* Non-audio */
1021
set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1);
1022
/* Non-audio */
1023
set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1);
1024
set_field(&ctl->txctl[idx], ATXCTL_RAW,
1025
((conf >> 3) & 0x1) ? 0 : 0);
1026
ctl->dirty.bf.atxctl |= (0x1 << idx);
1027
} else {
1028
/* I2S output */
1029
/*idx %= 4; */
1030
}
1031
return 0;
1032
}
1033
1034
static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
1035
{
1036
struct daio_mgr_ctrl_blk *ctl = blk;
1037
1038
set_field(&ctl->daoimap.aim, AIM_ARC, slot);
1039
ctl->dirty.bf.daoimap = 1;
1040
return 0;
1041
}
1042
1043
static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
1044
{
1045
struct daio_mgr_ctrl_blk *ctl = blk;
1046
1047
set_field(&ctl->daoimap.aim, AIM_NXT, next);
1048
ctl->dirty.bf.daoimap = 1;
1049
return 0;
1050
}
1051
1052
static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
1053
{
1054
((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr;
1055
((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1;
1056
return 0;
1057
}
1058
1059
static int daio_mgr_commit_write(struct hw *hw, void *blk)
1060
{
1061
struct daio_mgr_ctrl_blk *ctl = blk;
1062
unsigned int data;
1063
int i;
1064
1065
for (i = 0; i < 8; i++) {
1066
if ((ctl->dirty.bf.atxctl & (0x1 << i))) {
1067
data = ctl->txctl[i];
1068
hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1069
ctl->dirty.bf.atxctl &= ~(0x1 << i);
1070
mdelay(1);
1071
}
1072
if ((ctl->dirty.bf.arxctl & (0x1 << i))) {
1073
data = ctl->rxctl[i];
1074
hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1075
ctl->dirty.bf.arxctl &= ~(0x1 << i);
1076
mdelay(1);
1077
}
1078
}
1079
if (ctl->dirty.bf.daoimap) {
1080
hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4,
1081
ctl->daoimap.aim);
1082
ctl->dirty.bf.daoimap = 0;
1083
}
1084
1085
return 0;
1086
}
1087
1088
static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
1089
{
1090
struct daio_mgr_ctrl_blk *blk;
1091
int i;
1092
1093
*rblk = NULL;
1094
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
1095
if (!blk)
1096
return -ENOMEM;
1097
1098
for (i = 0; i < 8; i++) {
1099
blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i));
1100
blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i));
1101
}
1102
1103
*rblk = blk;
1104
1105
return 0;
1106
}
1107
1108
static int daio_mgr_put_ctrl_blk(void *blk)
1109
{
1110
kfree(blk);
1111
1112
return 0;
1113
}
1114
1115
/* Timer interrupt */
1116
static int set_timer_irq(struct hw *hw, int enable)
1117
{
1118
hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
1119
return 0;
1120
}
1121
1122
static int set_timer_tick(struct hw *hw, unsigned int ticks)
1123
{
1124
if (ticks)
1125
ticks |= TIMR_IE | TIMR_IP;
1126
hw_write_20kx(hw, TIMR, ticks);
1127
return 0;
1128
}
1129
1130
static unsigned int get_wc(struct hw *hw)
1131
{
1132
return hw_read_20kx(hw, WC);
1133
}
1134
1135
/* Card hardware initialization block */
1136
struct dac_conf {
1137
unsigned int msr; /* master sample rate in rsrs */
1138
};
1139
1140
struct adc_conf {
1141
unsigned int msr; /* master sample rate in rsrs */
1142
unsigned char input; /* the input source of ADC */
1143
unsigned char mic20db; /* boost mic by 20db if input is microphone */
1144
};
1145
1146
struct daio_conf {
1147
unsigned int msr; /* master sample rate in rsrs */
1148
};
1149
1150
struct trn_conf {
1151
unsigned long vm_pgt_phys;
1152
};
1153
1154
static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
1155
{
1156
u32 data;
1157
int i;
1158
1159
/* Program I2S with proper sample rate and enable the correct I2S
1160
* channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */
1161
if (1 == info->msr) {
1162
hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101);
1163
hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101);
1164
hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1165
} else if (2 == info->msr) {
1166
hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111);
1167
/* Specify all playing 96khz
1168
* EA [0] - Enabled
1169
* RTA [4:5] - 96kHz
1170
* EB [8] - Enabled
1171
* RTB [12:13] - 96kHz
1172
* EC [16] - Enabled
1173
* RTC [20:21] - 96kHz
1174
* ED [24] - Enabled
1175
* RTD [28:29] - 96kHz */
1176
hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111);
1177
hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1178
} else {
1179
printk(KERN_ALERT "ctxfi: ERROR!!! Invalid sampling rate!!!\n");
1180
return -EINVAL;
1181
}
1182
1183
for (i = 0; i < 8; i++) {
1184
if (i <= 3) {
1185
/* 1st 3 channels are SPDIFs (SB0960) */
1186
if (i == 3)
1187
data = 0x1001001;
1188
else
1189
data = 0x1000001;
1190
1191
hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1192
hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1193
1194
/* Initialize the SPDIF Out Channel status registers.
1195
* The value specified here is based on the typical
1196
* values provided in the specification, namely: Clock
1197
* Accuracy of 1000ppm, Sample Rate of 48KHz,
1198
* unspecified source number, Generation status = 1,
1199
* Category code = 0x12 (Digital Signal Mixer),
1200
* Mode = 0, Emph = 0, Copy Permitted, AN = 0
1201
* (indicating that we're transmitting digital audio,
1202
* and the Professional Use bit is 0. */
1203
1204
hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i),
1205
0x02109204); /* Default to 48kHz */
1206
1207
hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B);
1208
} else {
1209
/* Next 5 channels are I2S (SB0960) */
1210
data = 0x11;
1211
hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data);
1212
if (2 == info->msr) {
1213
/* Four channels per sample period */
1214
data |= 0x1000;
1215
}
1216
hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data);
1217
}
1218
}
1219
1220
return 0;
1221
}
1222
1223
/* TRANSPORT operations */
1224
static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
1225
{
1226
u32 vmctl, data;
1227
u32 ptp_phys_low, ptp_phys_high;
1228
int i;
1229
1230
/* Set up device page table */
1231
if ((~0UL) == info->vm_pgt_phys) {
1232
printk(KERN_ALERT "ctxfi: "
1233
"Wrong device page table page address!!!\n");
1234
return -1;
1235
}
1236
1237
vmctl = 0x80000C0F; /* 32-bit, 4k-size page */
1238
ptp_phys_low = (u32)info->vm_pgt_phys;
1239
ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
1240
if (sizeof(void *) == 8) /* 64bit address */
1241
vmctl |= (3 << 8);
1242
/* Write page table physical address to all PTPAL registers */
1243
for (i = 0; i < 64; i++) {
1244
hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low);
1245
hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high);
1246
}
1247
/* Enable virtual memory transfer */
1248
hw_write_20kx(hw, VMEM_CTL, vmctl);
1249
/* Enable transport bus master and queueing of request */
1250
hw_write_20kx(hw, TRANSPORT_CTL, 0x03);
1251
hw_write_20kx(hw, TRANSPORT_INT, 0x200c01);
1252
/* Enable transport ring */
1253
data = hw_read_20kx(hw, TRANSPORT_ENB);
1254
hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03));
1255
1256
return 0;
1257
}
1258
1259
/* Card initialization */
1260
#define GCTL_AIE 0x00000001
1261
#define GCTL_UAA 0x00000002
1262
#define GCTL_DPC 0x00000004
1263
#define GCTL_DBP 0x00000008
1264
#define GCTL_ABP 0x00000010
1265
#define GCTL_TBP 0x00000020
1266
#define GCTL_SBP 0x00000040
1267
#define GCTL_FBP 0x00000080
1268
#define GCTL_ME 0x00000100
1269
#define GCTL_AID 0x00001000
1270
1271
#define PLLCTL_SRC 0x00000007
1272
#define PLLCTL_SPE 0x00000008
1273
#define PLLCTL_RD 0x000000F0
1274
#define PLLCTL_FD 0x0001FF00
1275
#define PLLCTL_OD 0x00060000
1276
#define PLLCTL_B 0x00080000
1277
#define PLLCTL_AS 0x00100000
1278
#define PLLCTL_LF 0x03E00000
1279
#define PLLCTL_SPS 0x1C000000
1280
#define PLLCTL_AD 0x60000000
1281
1282
#define PLLSTAT_CCS 0x00000007
1283
#define PLLSTAT_SPL 0x00000008
1284
#define PLLSTAT_CRD 0x000000F0
1285
#define PLLSTAT_CFD 0x0001FF00
1286
#define PLLSTAT_SL 0x00020000
1287
#define PLLSTAT_FAS 0x00040000
1288
#define PLLSTAT_B 0x00080000
1289
#define PLLSTAT_PD 0x00100000
1290
#define PLLSTAT_OCA 0x00200000
1291
#define PLLSTAT_NCA 0x00400000
1292
1293
static int hw_pll_init(struct hw *hw, unsigned int rsr)
1294
{
1295
unsigned int pllenb;
1296
unsigned int pllctl;
1297
unsigned int pllstat;
1298
int i;
1299
1300
pllenb = 0xB;
1301
hw_write_20kx(hw, PLL_ENB, pllenb);
1302
pllctl = 0x20D00000;
1303
set_field(&pllctl, PLLCTL_FD, 16 - 4);
1304
hw_write_20kx(hw, PLL_CTL, pllctl);
1305
mdelay(40);
1306
pllctl = hw_read_20kx(hw, PLL_CTL);
1307
set_field(&pllctl, PLLCTL_B, 0);
1308
if (48000 == rsr) {
1309
set_field(&pllctl, PLLCTL_FD, 16 - 2);
1310
set_field(&pllctl, PLLCTL_RD, 1 - 1); /* 3000*16/1 = 48000 */
1311
} else { /* 44100 */
1312
set_field(&pllctl, PLLCTL_FD, 147 - 2);
1313
set_field(&pllctl, PLLCTL_RD, 10 - 1); /* 3000*147/10 = 44100 */
1314
}
1315
hw_write_20kx(hw, PLL_CTL, pllctl);
1316
mdelay(40);
1317
for (i = 0; i < 1000; i++) {
1318
pllstat = hw_read_20kx(hw, PLL_STAT);
1319
if (get_field(pllstat, PLLSTAT_PD))
1320
continue;
1321
1322
if (get_field(pllstat, PLLSTAT_B) !=
1323
get_field(pllctl, PLLCTL_B))
1324
continue;
1325
1326
if (get_field(pllstat, PLLSTAT_CCS) !=
1327
get_field(pllctl, PLLCTL_SRC))
1328
continue;
1329
1330
if (get_field(pllstat, PLLSTAT_CRD) !=
1331
get_field(pllctl, PLLCTL_RD))
1332
continue;
1333
1334
if (get_field(pllstat, PLLSTAT_CFD) !=
1335
get_field(pllctl, PLLCTL_FD))
1336
continue;
1337
1338
break;
1339
}
1340
if (i >= 1000) {
1341
printk(KERN_ALERT "ctxfi: PLL initialization failed!!!\n");
1342
return -EBUSY;
1343
}
1344
1345
return 0;
1346
}
1347
1348
static int hw_auto_init(struct hw *hw)
1349
{
1350
unsigned int gctl;
1351
int i;
1352
1353
gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1354
set_field(&gctl, GCTL_AIE, 0);
1355
hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1356
set_field(&gctl, GCTL_AIE, 1);
1357
hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1358
mdelay(10);
1359
for (i = 0; i < 400000; i++) {
1360
gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1361
if (get_field(gctl, GCTL_AID))
1362
break;
1363
}
1364
if (!get_field(gctl, GCTL_AID)) {
1365
printk(KERN_ALERT "ctxfi: Card Auto-init failed!!!\n");
1366
return -EBUSY;
1367
}
1368
1369
return 0;
1370
}
1371
1372
/* DAC operations */
1373
1374
#define CS4382_MC1 0x1
1375
#define CS4382_MC2 0x2
1376
#define CS4382_MC3 0x3
1377
#define CS4382_FC 0x4
1378
#define CS4382_IC 0x5
1379
#define CS4382_XC1 0x6
1380
#define CS4382_VCA1 0x7
1381
#define CS4382_VCB1 0x8
1382
#define CS4382_XC2 0x9
1383
#define CS4382_VCA2 0xA
1384
#define CS4382_VCB2 0xB
1385
#define CS4382_XC3 0xC
1386
#define CS4382_VCA3 0xD
1387
#define CS4382_VCB3 0xE
1388
#define CS4382_XC4 0xF
1389
#define CS4382_VCA4 0x10
1390
#define CS4382_VCB4 0x11
1391
#define CS4382_CREV 0x12
1392
1393
/* I2C status */
1394
#define STATE_LOCKED 0x00
1395
#define STATE_UNLOCKED 0xAA
1396
#define DATA_READY 0x800000 /* Used with I2C_IF_STATUS */
1397
#define DATA_ABORT 0x10000 /* Used with I2C_IF_STATUS */
1398
1399
#define I2C_STATUS_DCM 0x00000001
1400
#define I2C_STATUS_BC 0x00000006
1401
#define I2C_STATUS_APD 0x00000008
1402
#define I2C_STATUS_AB 0x00010000
1403
#define I2C_STATUS_DR 0x00800000
1404
1405
#define I2C_ADDRESS_PTAD 0x0000FFFF
1406
#define I2C_ADDRESS_SLAD 0x007F0000
1407
1408
struct regs_cs4382 {
1409
u32 mode_control_1;
1410
u32 mode_control_2;
1411
u32 mode_control_3;
1412
1413
u32 filter_control;
1414
u32 invert_control;
1415
1416
u32 mix_control_P1;
1417
u32 vol_control_A1;
1418
u32 vol_control_B1;
1419
1420
u32 mix_control_P2;
1421
u32 vol_control_A2;
1422
u32 vol_control_B2;
1423
1424
u32 mix_control_P3;
1425
u32 vol_control_A3;
1426
u32 vol_control_B3;
1427
1428
u32 mix_control_P4;
1429
u32 vol_control_A4;
1430
u32 vol_control_B4;
1431
};
1432
1433
static int hw20k2_i2c_unlock_full_access(struct hw *hw)
1434
{
1435
u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] = {0xB3, 0xD4};
1436
1437
/* Send keys for forced BIOS mode */
1438
hw_write_20kx(hw, I2C_IF_WLOCK,
1439
UnlockKeySequence_FLASH_FULLACCESS_MODE[0]);
1440
hw_write_20kx(hw, I2C_IF_WLOCK,
1441
UnlockKeySequence_FLASH_FULLACCESS_MODE[1]);
1442
/* Check whether the chip is unlocked */
1443
if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED)
1444
return 0;
1445
1446
return -1;
1447
}
1448
1449
static int hw20k2_i2c_lock_chip(struct hw *hw)
1450
{
1451
/* Write twice */
1452
hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1453
hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1454
if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED)
1455
return 0;
1456
1457
return -1;
1458
}
1459
1460
static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size)
1461
{
1462
struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1463
int err;
1464
unsigned int i2c_status;
1465
unsigned int i2c_addr;
1466
1467
err = hw20k2_i2c_unlock_full_access(hw);
1468
if (err < 0)
1469
return err;
1470
1471
hw20k2->addr_size = addr_size;
1472
hw20k2->data_size = data_size;
1473
hw20k2->dev_id = dev_id;
1474
1475
i2c_addr = 0;
1476
set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id);
1477
1478
hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1479
1480
i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1481
1482
set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */
1483
1484
hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1485
1486
return 0;
1487
}
1488
1489
static int hw20k2_i2c_uninit(struct hw *hw)
1490
{
1491
unsigned int i2c_status;
1492
unsigned int i2c_addr;
1493
1494
i2c_addr = 0;
1495
set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */
1496
1497
hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1498
1499
i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1500
1501
set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */
1502
1503
hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1504
1505
return hw20k2_i2c_lock_chip(hw);
1506
}
1507
1508
static int hw20k2_i2c_wait_data_ready(struct hw *hw)
1509
{
1510
int i = 0x400000;
1511
unsigned int ret;
1512
1513
do {
1514
ret = hw_read_20kx(hw, I2C_IF_STATUS);
1515
} while ((!(ret & DATA_READY)) && --i);
1516
1517
return i;
1518
}
1519
1520
static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap)
1521
{
1522
struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1523
unsigned int i2c_status;
1524
1525
i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1526
set_field(&i2c_status, I2C_STATUS_BC,
1527
(4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size);
1528
hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1529
if (!hw20k2_i2c_wait_data_ready(hw))
1530
return -1;
1531
1532
hw_write_20kx(hw, I2C_IF_WDATA, addr);
1533
if (!hw20k2_i2c_wait_data_ready(hw))
1534
return -1;
1535
1536
/* Force a read operation */
1537
hw_write_20kx(hw, I2C_IF_RDATA, 0);
1538
if (!hw20k2_i2c_wait_data_ready(hw))
1539
return -1;
1540
1541
*datap = hw_read_20kx(hw, I2C_IF_RDATA);
1542
1543
return 0;
1544
}
1545
1546
static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data)
1547
{
1548
struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1549
unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr;
1550
unsigned int i2c_status;
1551
1552
i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1553
1554
set_field(&i2c_status, I2C_STATUS_BC,
1555
(4 == (hw20k2->addr_size + hw20k2->data_size)) ?
1556
0 : (hw20k2->addr_size + hw20k2->data_size));
1557
1558
hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1559
hw20k2_i2c_wait_data_ready(hw);
1560
/* Dummy write to trigger the write oprtation */
1561
hw_write_20kx(hw, I2C_IF_WDATA, 0);
1562
hw20k2_i2c_wait_data_ready(hw);
1563
1564
/* This is the real data */
1565
hw_write_20kx(hw, I2C_IF_WDATA, i2c_data);
1566
hw20k2_i2c_wait_data_ready(hw);
1567
1568
return 0;
1569
}
1570
1571
static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
1572
{
1573
int err;
1574
u32 data;
1575
int i;
1576
struct regs_cs4382 cs_read = {0};
1577
struct regs_cs4382 cs_def = {
1578
0x00000001, /* Mode Control 1 */
1579
0x00000000, /* Mode Control 2 */
1580
0x00000084, /* Mode Control 3 */
1581
0x00000000, /* Filter Control */
1582
0x00000000, /* Invert Control */
1583
0x00000024, /* Mixing Control Pair 1 */
1584
0x00000000, /* Vol Control A1 */
1585
0x00000000, /* Vol Control B1 */
1586
0x00000024, /* Mixing Control Pair 2 */
1587
0x00000000, /* Vol Control A2 */
1588
0x00000000, /* Vol Control B2 */
1589
0x00000024, /* Mixing Control Pair 3 */
1590
0x00000000, /* Vol Control A3 */
1591
0x00000000, /* Vol Control B3 */
1592
0x00000024, /* Mixing Control Pair 4 */
1593
0x00000000, /* Vol Control A4 */
1594
0x00000000 /* Vol Control B4 */
1595
};
1596
1597
/* Set DAC reset bit as output */
1598
data = hw_read_20kx(hw, GPIO_CTRL);
1599
data |= 0x02;
1600
hw_write_20kx(hw, GPIO_CTRL, data);
1601
1602
err = hw20k2_i2c_init(hw, 0x18, 1, 1);
1603
if (err < 0)
1604
goto End;
1605
1606
for (i = 0; i < 2; i++) {
1607
/* Reset DAC twice just in-case the chip
1608
* didn't initialized properly */
1609
data = hw_read_20kx(hw, GPIO_DATA);
1610
/* GPIO data bit 1 */
1611
data &= 0xFFFFFFFD;
1612
hw_write_20kx(hw, GPIO_DATA, data);
1613
mdelay(10);
1614
data |= 0x2;
1615
hw_write_20kx(hw, GPIO_DATA, data);
1616
mdelay(50);
1617
1618
/* Reset the 2nd time */
1619
data &= 0xFFFFFFFD;
1620
hw_write_20kx(hw, GPIO_DATA, data);
1621
mdelay(10);
1622
data |= 0x2;
1623
hw_write_20kx(hw, GPIO_DATA, data);
1624
mdelay(50);
1625
1626
if (hw20k2_i2c_read(hw, CS4382_MC1, &cs_read.mode_control_1))
1627
continue;
1628
1629
if (hw20k2_i2c_read(hw, CS4382_MC2, &cs_read.mode_control_2))
1630
continue;
1631
1632
if (hw20k2_i2c_read(hw, CS4382_MC3, &cs_read.mode_control_3))
1633
continue;
1634
1635
if (hw20k2_i2c_read(hw, CS4382_FC, &cs_read.filter_control))
1636
continue;
1637
1638
if (hw20k2_i2c_read(hw, CS4382_IC, &cs_read.invert_control))
1639
continue;
1640
1641
if (hw20k2_i2c_read(hw, CS4382_XC1, &cs_read.mix_control_P1))
1642
continue;
1643
1644
if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1))
1645
continue;
1646
1647
if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1))
1648
continue;
1649
1650
if (hw20k2_i2c_read(hw, CS4382_XC2, &cs_read.mix_control_P2))
1651
continue;
1652
1653
if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2))
1654
continue;
1655
1656
if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2))
1657
continue;
1658
1659
if (hw20k2_i2c_read(hw, CS4382_XC3, &cs_read.mix_control_P3))
1660
continue;
1661
1662
if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3))
1663
continue;
1664
1665
if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3))
1666
continue;
1667
1668
if (hw20k2_i2c_read(hw, CS4382_XC4, &cs_read.mix_control_P4))
1669
continue;
1670
1671
if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4))
1672
continue;
1673
1674
if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4))
1675
continue;
1676
1677
if (memcmp(&cs_read, &cs_def, sizeof(cs_read)))
1678
continue;
1679
else
1680
break;
1681
}
1682
1683
if (i >= 2)
1684
goto End;
1685
1686
/* Note: Every I2C write must have some delay.
1687
* This is not a requirement but the delay works here... */
1688
hw20k2_i2c_write(hw, CS4382_MC1, 0x80);
1689
hw20k2_i2c_write(hw, CS4382_MC2, 0x10);
1690
if (1 == info->msr) {
1691
hw20k2_i2c_write(hw, CS4382_XC1, 0x24);
1692
hw20k2_i2c_write(hw, CS4382_XC2, 0x24);
1693
hw20k2_i2c_write(hw, CS4382_XC3, 0x24);
1694
hw20k2_i2c_write(hw, CS4382_XC4, 0x24);
1695
} else if (2 == info->msr) {
1696
hw20k2_i2c_write(hw, CS4382_XC1, 0x25);
1697
hw20k2_i2c_write(hw, CS4382_XC2, 0x25);
1698
hw20k2_i2c_write(hw, CS4382_XC3, 0x25);
1699
hw20k2_i2c_write(hw, CS4382_XC4, 0x25);
1700
} else {
1701
hw20k2_i2c_write(hw, CS4382_XC1, 0x26);
1702
hw20k2_i2c_write(hw, CS4382_XC2, 0x26);
1703
hw20k2_i2c_write(hw, CS4382_XC3, 0x26);
1704
hw20k2_i2c_write(hw, CS4382_XC4, 0x26);
1705
}
1706
1707
return 0;
1708
End:
1709
1710
hw20k2_i2c_uninit(hw);
1711
return -1;
1712
}
1713
1714
/* ADC operations */
1715
#define MAKE_WM8775_ADDR(addr, data) (u32)(((addr<<1)&0xFE)|((data>>8)&0x1))
1716
#define MAKE_WM8775_DATA(data) (u32)(data&0xFF)
1717
1718
#define WM8775_IC 0x0B
1719
#define WM8775_MMC 0x0C
1720
#define WM8775_AADCL 0x0E
1721
#define WM8775_AADCR 0x0F
1722
#define WM8775_ADCMC 0x15
1723
#define WM8775_RESET 0x17
1724
1725
static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
1726
{
1727
u32 data;
1728
1729
data = hw_read_20kx(hw, GPIO_DATA);
1730
switch (type) {
1731
case ADC_MICIN:
1732
data = (data & (0x1 << 14)) ? 1 : 0;
1733
break;
1734
case ADC_LINEIN:
1735
data = (data & (0x1 << 14)) ? 0 : 1;
1736
break;
1737
default:
1738
data = 0;
1739
}
1740
return data;
1741
}
1742
1743
#define MIC_BOOST_0DB 0xCF
1744
#define MIC_BOOST_STEPS_PER_DB 2
1745
#define MIC_BOOST_20DB (MIC_BOOST_0DB + 20 * MIC_BOOST_STEPS_PER_DB)
1746
1747
static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
1748
{
1749
u32 data;
1750
1751
data = hw_read_20kx(hw, GPIO_DATA);
1752
switch (type) {
1753
case ADC_MICIN:
1754
data |= (0x1 << 14);
1755
hw_write_20kx(hw, GPIO_DATA, data);
1756
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, 0x101),
1757
MAKE_WM8775_DATA(0x101)); /* Mic-in */
1758
hw20k2_i2c_write(hw,
1759
MAKE_WM8775_ADDR(WM8775_AADCL, MIC_BOOST_20DB),
1760
MAKE_WM8775_DATA(MIC_BOOST_20DB)); /* +20dB */
1761
hw20k2_i2c_write(hw,
1762
MAKE_WM8775_ADDR(WM8775_AADCR, MIC_BOOST_20DB),
1763
MAKE_WM8775_DATA(MIC_BOOST_20DB)); /* +20dB */
1764
break;
1765
case ADC_LINEIN:
1766
data &= ~(0x1 << 14);
1767
hw_write_20kx(hw, GPIO_DATA, data);
1768
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, 0x102),
1769
MAKE_WM8775_DATA(0x102)); /* Line-in */
1770
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, 0xCF),
1771
MAKE_WM8775_DATA(0xCF)); /* No boost */
1772
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, 0xCF),
1773
MAKE_WM8775_DATA(0xCF)); /* No boost */
1774
break;
1775
default:
1776
break;
1777
}
1778
1779
return 0;
1780
}
1781
1782
static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
1783
{
1784
int err;
1785
u32 mux = 2, data, ctl;
1786
1787
/* Set ADC reset bit as output */
1788
data = hw_read_20kx(hw, GPIO_CTRL);
1789
data |= (0x1 << 15);
1790
hw_write_20kx(hw, GPIO_CTRL, data);
1791
1792
/* Initialize I2C */
1793
err = hw20k2_i2c_init(hw, 0x1A, 1, 1);
1794
if (err < 0) {
1795
printk(KERN_ALERT "ctxfi: Failure to acquire I2C!!!\n");
1796
goto error;
1797
}
1798
1799
/* Make ADC in normal operation */
1800
data = hw_read_20kx(hw, GPIO_DATA);
1801
data &= ~(0x1 << 15);
1802
mdelay(10);
1803
data |= (0x1 << 15);
1804
hw_write_20kx(hw, GPIO_DATA, data);
1805
mdelay(50);
1806
1807
/* Set the master mode (256fs) */
1808
if (1 == info->msr) {
1809
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02),
1810
MAKE_WM8775_DATA(0x02));
1811
} else if (2 == info->msr) {
1812
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A),
1813
MAKE_WM8775_DATA(0x0A));
1814
} else {
1815
printk(KERN_ALERT "ctxfi: Invalid master sampling "
1816
"rate (msr %d)!!!\n", info->msr);
1817
err = -EINVAL;
1818
goto error;
1819
}
1820
1821
/* Configure GPIO bit 14 change to line-in/mic-in */
1822
ctl = hw_read_20kx(hw, GPIO_CTRL);
1823
ctl |= 0x1 << 14;
1824
hw_write_20kx(hw, GPIO_CTRL, ctl);
1825
1826
/* Check using Mic-in or Line-in */
1827
data = hw_read_20kx(hw, GPIO_DATA);
1828
1829
if (mux == 1) {
1830
/* Configures GPIO data to select Mic-in */
1831
data |= 0x1 << 14;
1832
hw_write_20kx(hw, GPIO_DATA, data);
1833
1834
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, 0x101),
1835
MAKE_WM8775_DATA(0x101)); /* Mic-in */
1836
hw20k2_i2c_write(hw,
1837
MAKE_WM8775_ADDR(WM8775_AADCL, MIC_BOOST_20DB),
1838
MAKE_WM8775_DATA(MIC_BOOST_20DB)); /* +20dB */
1839
hw20k2_i2c_write(hw,
1840
MAKE_WM8775_ADDR(WM8775_AADCR, MIC_BOOST_20DB),
1841
MAKE_WM8775_DATA(MIC_BOOST_20DB)); /* +20dB */
1842
} else if (mux == 2) {
1843
/* Configures GPIO data to select Line-in */
1844
data &= ~(0x1 << 14);
1845
hw_write_20kx(hw, GPIO_DATA, data);
1846
1847
/* Setup ADC */
1848
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, 0x102),
1849
MAKE_WM8775_DATA(0x102)); /* Line-in */
1850
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, 0xCF),
1851
MAKE_WM8775_DATA(0xCF)); /* No boost */
1852
hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, 0xCF),
1853
MAKE_WM8775_DATA(0xCF)); /* No boost */
1854
} else {
1855
printk(KERN_ALERT "ctxfi: ERROR!!! Invalid input mux!!!\n");
1856
err = -EINVAL;
1857
goto error;
1858
}
1859
1860
return 0;
1861
1862
error:
1863
hw20k2_i2c_uninit(hw);
1864
return err;
1865
}
1866
1867
static int hw_have_digit_io_switch(struct hw *hw)
1868
{
1869
return 0;
1870
}
1871
1872
static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id)
1873
{
1874
struct hw *hw = dev_id;
1875
unsigned int status;
1876
1877
status = hw_read_20kx(hw, GIP);
1878
if (!status)
1879
return IRQ_NONE;
1880
1881
if (hw->irq_callback)
1882
hw->irq_callback(hw->irq_callback_data, status);
1883
1884
hw_write_20kx(hw, GIP, status);
1885
return IRQ_HANDLED;
1886
}
1887
1888
static int hw_card_start(struct hw *hw)
1889
{
1890
int err = 0;
1891
struct pci_dev *pci = hw->pci;
1892
unsigned int gctl;
1893
1894
err = pci_enable_device(pci);
1895
if (err < 0)
1896
return err;
1897
1898
/* Set DMA transfer mask */
1899
if (pci_set_dma_mask(pci, CT_XFI_DMA_MASK) < 0 ||
1900
pci_set_consistent_dma_mask(pci, CT_XFI_DMA_MASK) < 0) {
1901
printk(KERN_ERR "ctxfi: architecture does not support PCI "
1902
"busmaster DMA with mask 0x%llx\n", CT_XFI_DMA_MASK);
1903
err = -ENXIO;
1904
goto error1;
1905
}
1906
1907
if (!hw->io_base) {
1908
err = pci_request_regions(pci, "XFi");
1909
if (err < 0)
1910
goto error1;
1911
1912
hw->io_base = pci_resource_start(hw->pci, 2);
1913
hw->mem_base = (unsigned long)ioremap(hw->io_base,
1914
pci_resource_len(hw->pci, 2));
1915
if (!hw->mem_base) {
1916
err = -ENOENT;
1917
goto error2;
1918
}
1919
}
1920
1921
/* Switch to 20k2 mode from UAA mode. */
1922
gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1923
set_field(&gctl, GCTL_UAA, 0);
1924
hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1925
1926
if (hw->irq < 0) {
1927
err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED,
1928
"ctxfi", hw);
1929
if (err < 0) {
1930
printk(KERN_ERR "XFi: Cannot get irq %d\n", pci->irq);
1931
goto error2;
1932
}
1933
hw->irq = pci->irq;
1934
}
1935
1936
pci_set_master(pci);
1937
1938
return 0;
1939
1940
/*error3:
1941
iounmap((void *)hw->mem_base);
1942
hw->mem_base = (unsigned long)NULL;*/
1943
error2:
1944
pci_release_regions(pci);
1945
hw->io_base = 0;
1946
error1:
1947
pci_disable_device(pci);
1948
return err;
1949
}
1950
1951
static int hw_card_stop(struct hw *hw)
1952
{
1953
unsigned int data;
1954
1955
/* disable transport bus master and queueing of request */
1956
hw_write_20kx(hw, TRANSPORT_CTL, 0x00);
1957
1958
/* disable pll */
1959
data = hw_read_20kx(hw, PLL_ENB);
1960
hw_write_20kx(hw, PLL_ENB, (data & (~0x07)));
1961
1962
/* TODO: Disable interrupt and so on... */
1963
return 0;
1964
}
1965
1966
static int hw_card_shutdown(struct hw *hw)
1967
{
1968
if (hw->irq >= 0)
1969
free_irq(hw->irq, hw);
1970
1971
hw->irq = -1;
1972
1973
if (hw->mem_base)
1974
iounmap((void *)hw->mem_base);
1975
1976
hw->mem_base = (unsigned long)NULL;
1977
1978
if (hw->io_base)
1979
pci_release_regions(hw->pci);
1980
1981
hw->io_base = 0;
1982
1983
pci_disable_device(hw->pci);
1984
1985
return 0;
1986
}
1987
1988
static int hw_card_init(struct hw *hw, struct card_conf *info)
1989
{
1990
int err;
1991
unsigned int gctl;
1992
u32 data = 0;
1993
struct dac_conf dac_info = {0};
1994
struct adc_conf adc_info = {0};
1995
struct daio_conf daio_info = {0};
1996
struct trn_conf trn_info = {0};
1997
1998
/* Get PCI io port/memory base address and
1999
* do 20kx core switch if needed. */
2000
err = hw_card_start(hw);
2001
if (err)
2002
return err;
2003
2004
/* PLL init */
2005
err = hw_pll_init(hw, info->rsr);
2006
if (err < 0)
2007
return err;
2008
2009
/* kick off auto-init */
2010
err = hw_auto_init(hw);
2011
if (err < 0)
2012
return err;
2013
2014
gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2015
set_field(&gctl, GCTL_DBP, 1);
2016
set_field(&gctl, GCTL_TBP, 1);
2017
set_field(&gctl, GCTL_FBP, 1);
2018
set_field(&gctl, GCTL_DPC, 0);
2019
hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2020
2021
/* Reset all global pending interrupts */
2022
hw_write_20kx(hw, GIE, 0);
2023
/* Reset all SRC pending interrupts */
2024
hw_write_20kx(hw, SRC_IP, 0);
2025
2026
/* TODO: detect the card ID and configure GPIO accordingly. */
2027
/* Configures GPIO (0xD802 0x98028) */
2028
/*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/
2029
/* Configures GPIO (SB0880) */
2030
/*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/
2031
hw_write_20kx(hw, GPIO_CTRL, 0xD802);
2032
2033
/* Enable audio ring */
2034
hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01);
2035
2036
trn_info.vm_pgt_phys = info->vm_pgt_phys;
2037
err = hw_trn_init(hw, &trn_info);
2038
if (err < 0)
2039
return err;
2040
2041
daio_info.msr = info->msr;
2042
err = hw_daio_init(hw, &daio_info);
2043
if (err < 0)
2044
return err;
2045
2046
dac_info.msr = info->msr;
2047
err = hw_dac_init(hw, &dac_info);
2048
if (err < 0)
2049
return err;
2050
2051
adc_info.msr = info->msr;
2052
adc_info.input = ADC_LINEIN;
2053
adc_info.mic20db = 0;
2054
err = hw_adc_init(hw, &adc_info);
2055
if (err < 0)
2056
return err;
2057
2058
data = hw_read_20kx(hw, SRC_MCTL);
2059
data |= 0x1; /* Enables input from the audio ring */
2060
hw_write_20kx(hw, SRC_MCTL, data);
2061
2062
return 0;
2063
}
2064
2065
#ifdef CONFIG_PM
2066
static int hw_suspend(struct hw *hw, pm_message_t state)
2067
{
2068
struct pci_dev *pci = hw->pci;
2069
2070
hw_card_stop(hw);
2071
2072
pci_disable_device(pci);
2073
pci_save_state(pci);
2074
pci_set_power_state(pci, pci_choose_state(pci, state));
2075
2076
return 0;
2077
}
2078
2079
static int hw_resume(struct hw *hw, struct card_conf *info)
2080
{
2081
struct pci_dev *pci = hw->pci;
2082
2083
pci_set_power_state(pci, PCI_D0);
2084
pci_restore_state(pci);
2085
2086
/* Re-initialize card hardware. */
2087
return hw_card_init(hw, info);
2088
}
2089
#endif
2090
2091
static u32 hw_read_20kx(struct hw *hw, u32 reg)
2092
{
2093
return readl((void *)(hw->mem_base + reg));
2094
}
2095
2096
static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
2097
{
2098
writel(data, (void *)(hw->mem_base + reg));
2099
}
2100
2101
static struct hw ct20k2_preset __devinitdata = {
2102
.irq = -1,
2103
2104
.card_init = hw_card_init,
2105
.card_stop = hw_card_stop,
2106
.pll_init = hw_pll_init,
2107
.is_adc_source_selected = hw_is_adc_input_selected,
2108
.select_adc_source = hw_adc_input_select,
2109
.have_digit_io_switch = hw_have_digit_io_switch,
2110
#ifdef CONFIG_PM
2111
.suspend = hw_suspend,
2112
.resume = hw_resume,
2113
#endif
2114
2115
.src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
2116
.src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
2117
.src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
2118
.src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
2119
.src_set_state = src_set_state,
2120
.src_set_bm = src_set_bm,
2121
.src_set_rsr = src_set_rsr,
2122
.src_set_sf = src_set_sf,
2123
.src_set_wr = src_set_wr,
2124
.src_set_pm = src_set_pm,
2125
.src_set_rom = src_set_rom,
2126
.src_set_vo = src_set_vo,
2127
.src_set_st = src_set_st,
2128
.src_set_ie = src_set_ie,
2129
.src_set_ilsz = src_set_ilsz,
2130
.src_set_bp = src_set_bp,
2131
.src_set_cisz = src_set_cisz,
2132
.src_set_ca = src_set_ca,
2133
.src_set_sa = src_set_sa,
2134
.src_set_la = src_set_la,
2135
.src_set_pitch = src_set_pitch,
2136
.src_set_dirty = src_set_dirty,
2137
.src_set_clear_zbufs = src_set_clear_zbufs,
2138
.src_set_dirty_all = src_set_dirty_all,
2139
.src_commit_write = src_commit_write,
2140
.src_get_ca = src_get_ca,
2141
.src_get_dirty = src_get_dirty,
2142
.src_dirty_conj_mask = src_dirty_conj_mask,
2143
.src_mgr_enbs_src = src_mgr_enbs_src,
2144
.src_mgr_enb_src = src_mgr_enb_src,
2145
.src_mgr_dsb_src = src_mgr_dsb_src,
2146
.src_mgr_commit_write = src_mgr_commit_write,
2147
2148
.srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
2149
.srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
2150
.srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
2151
.srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
2152
.srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
2153
.srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
2154
.srcimp_mgr_commit_write = srcimp_mgr_commit_write,
2155
2156
.amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
2157
.amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
2158
.amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
2159
.amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
2160
.amixer_set_mode = amixer_set_mode,
2161
.amixer_set_iv = amixer_set_iv,
2162
.amixer_set_x = amixer_set_x,
2163
.amixer_set_y = amixer_set_y,
2164
.amixer_set_sadr = amixer_set_sadr,
2165
.amixer_set_se = amixer_set_se,
2166
.amixer_set_dirty = amixer_set_dirty,
2167
.amixer_set_dirty_all = amixer_set_dirty_all,
2168
.amixer_commit_write = amixer_commit_write,
2169
.amixer_get_y = amixer_get_y,
2170
.amixer_get_dirty = amixer_get_dirty,
2171
2172
.dai_get_ctrl_blk = dai_get_ctrl_blk,
2173
.dai_put_ctrl_blk = dai_put_ctrl_blk,
2174
.dai_srt_set_srco = dai_srt_set_srco,
2175
.dai_srt_set_srcm = dai_srt_set_srcm,
2176
.dai_srt_set_rsr = dai_srt_set_rsr,
2177
.dai_srt_set_drat = dai_srt_set_drat,
2178
.dai_srt_set_ec = dai_srt_set_ec,
2179
.dai_srt_set_et = dai_srt_set_et,
2180
.dai_commit_write = dai_commit_write,
2181
2182
.dao_get_ctrl_blk = dao_get_ctrl_blk,
2183
.dao_put_ctrl_blk = dao_put_ctrl_blk,
2184
.dao_set_spos = dao_set_spos,
2185
.dao_commit_write = dao_commit_write,
2186
.dao_get_spos = dao_get_spos,
2187
2188
.daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
2189
.daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
2190
.daio_mgr_enb_dai = daio_mgr_enb_dai,
2191
.daio_mgr_dsb_dai = daio_mgr_dsb_dai,
2192
.daio_mgr_enb_dao = daio_mgr_enb_dao,
2193
.daio_mgr_dsb_dao = daio_mgr_dsb_dao,
2194
.daio_mgr_dao_init = daio_mgr_dao_init,
2195
.daio_mgr_set_imaparc = daio_mgr_set_imaparc,
2196
.daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
2197
.daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
2198
.daio_mgr_commit_write = daio_mgr_commit_write,
2199
2200
.set_timer_irq = set_timer_irq,
2201
.set_timer_tick = set_timer_tick,
2202
.get_wc = get_wc,
2203
};
2204
2205
int __devinit create_20k2_hw_obj(struct hw **rhw)
2206
{
2207
struct hw20k2 *hw20k2;
2208
2209
*rhw = NULL;
2210
hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL);
2211
if (!hw20k2)
2212
return -ENOMEM;
2213
2214
hw20k2->hw = ct20k2_preset;
2215
*rhw = &hw20k2->hw;
2216
2217
return 0;
2218
}
2219
2220
int destroy_20k2_hw_obj(struct hw *hw)
2221
{
2222
if (hw->io_base)
2223
hw_card_shutdown(hw);
2224
2225
kfree(hw);
2226
return 0;
2227
}
2228
2229