Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/sound/soc/fsl/fsl_dma.c
10817 views
1
/*
2
* Freescale DMA ALSA SoC PCM driver
3
*
4
* Author: Timur Tabi <[email protected]>
5
*
6
* Copyright 2007-2010 Freescale Semiconductor, Inc.
7
*
8
* This file is licensed under the terms of the GNU General Public License
9
* version 2. This program is licensed "as is" without any warranty of any
10
* kind, whether express or implied.
11
*
12
* This driver implements ASoC support for the Elo DMA controller, which is
13
* the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14
* the PCM driver is what handles the DMA buffer.
15
*/
16
17
#include <linux/module.h>
18
#include <linux/init.h>
19
#include <linux/platform_device.h>
20
#include <linux/dma-mapping.h>
21
#include <linux/interrupt.h>
22
#include <linux/delay.h>
23
#include <linux/gfp.h>
24
#include <linux/of_platform.h>
25
#include <linux/list.h>
26
#include <linux/slab.h>
27
28
#include <sound/core.h>
29
#include <sound/pcm.h>
30
#include <sound/pcm_params.h>
31
#include <sound/soc.h>
32
33
#include <asm/io.h>
34
35
#include "fsl_dma.h"
36
#include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
37
38
/*
39
* The formats that the DMA controller supports, which is anything
40
* that is 8, 16, or 32 bits.
41
*/
42
#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
43
SNDRV_PCM_FMTBIT_U8 | \
44
SNDRV_PCM_FMTBIT_S16_LE | \
45
SNDRV_PCM_FMTBIT_S16_BE | \
46
SNDRV_PCM_FMTBIT_U16_LE | \
47
SNDRV_PCM_FMTBIT_U16_BE | \
48
SNDRV_PCM_FMTBIT_S24_LE | \
49
SNDRV_PCM_FMTBIT_S24_BE | \
50
SNDRV_PCM_FMTBIT_U24_LE | \
51
SNDRV_PCM_FMTBIT_U24_BE | \
52
SNDRV_PCM_FMTBIT_S32_LE | \
53
SNDRV_PCM_FMTBIT_S32_BE | \
54
SNDRV_PCM_FMTBIT_U32_LE | \
55
SNDRV_PCM_FMTBIT_U32_BE)
56
57
#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
58
SNDRV_PCM_RATE_CONTINUOUS)
59
60
struct dma_object {
61
struct snd_soc_platform_driver dai;
62
dma_addr_t ssi_stx_phys;
63
dma_addr_t ssi_srx_phys;
64
unsigned int ssi_fifo_depth;
65
struct ccsr_dma_channel __iomem *channel;
66
unsigned int irq;
67
bool assigned;
68
char path[1];
69
};
70
71
/*
72
* The number of DMA links to use. Two is the bare minimum, but if you
73
* have really small links you might need more.
74
*/
75
#define NUM_DMA_LINKS 2
76
77
/** fsl_dma_private: p-substream DMA data
78
*
79
* Each substream has a 1-to-1 association with a DMA channel.
80
*
81
* The link[] array is first because it needs to be aligned on a 32-byte
82
* boundary, so putting it first will ensure alignment without padding the
83
* structure.
84
*
85
* @link[]: array of link descriptors
86
* @dma_channel: pointer to the DMA channel's registers
87
* @irq: IRQ for this DMA channel
88
* @substream: pointer to the substream object, needed by the ISR
89
* @ssi_sxx_phys: bus address of the STX or SRX register to use
90
* @ld_buf_phys: physical address of the LD buffer
91
* @current_link: index into link[] of the link currently being processed
92
* @dma_buf_phys: physical address of the DMA buffer
93
* @dma_buf_next: physical address of the next period to process
94
* @dma_buf_end: physical address of the byte after the end of the DMA
95
* @buffer period_size: the size of a single period
96
* @num_periods: the number of periods in the DMA buffer
97
*/
98
struct fsl_dma_private {
99
struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
100
struct ccsr_dma_channel __iomem *dma_channel;
101
unsigned int irq;
102
struct snd_pcm_substream *substream;
103
dma_addr_t ssi_sxx_phys;
104
unsigned int ssi_fifo_depth;
105
dma_addr_t ld_buf_phys;
106
unsigned int current_link;
107
dma_addr_t dma_buf_phys;
108
dma_addr_t dma_buf_next;
109
dma_addr_t dma_buf_end;
110
size_t period_size;
111
unsigned int num_periods;
112
};
113
114
/**
115
* fsl_dma_hardare: define characteristics of the PCM hardware.
116
*
117
* The PCM hardware is the Freescale DMA controller. This structure defines
118
* the capabilities of that hardware.
119
*
120
* Since the sampling rate and data format are not controlled by the DMA
121
* controller, we specify no limits for those values. The only exception is
122
* period_bytes_min, which is set to a reasonably low value to prevent the
123
* DMA controller from generating too many interrupts per second.
124
*
125
* Since each link descriptor has a 32-bit byte count field, we set
126
* period_bytes_max to the largest 32-bit number. We also have no maximum
127
* number of periods.
128
*
129
* Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
130
* limitation in the SSI driver requires the sample rates for playback and
131
* capture to be the same.
132
*/
133
static const struct snd_pcm_hardware fsl_dma_hardware = {
134
135
.info = SNDRV_PCM_INFO_INTERLEAVED |
136
SNDRV_PCM_INFO_MMAP |
137
SNDRV_PCM_INFO_MMAP_VALID |
138
SNDRV_PCM_INFO_JOINT_DUPLEX |
139
SNDRV_PCM_INFO_PAUSE,
140
.formats = FSLDMA_PCM_FORMATS,
141
.rates = FSLDMA_PCM_RATES,
142
.rate_min = 5512,
143
.rate_max = 192000,
144
.period_bytes_min = 512, /* A reasonable limit */
145
.period_bytes_max = (u32) -1,
146
.periods_min = NUM_DMA_LINKS,
147
.periods_max = (unsigned int) -1,
148
.buffer_bytes_max = 128 * 1024, /* A reasonable limit */
149
};
150
151
/**
152
* fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
153
*
154
* This function should be called by the ISR whenever the DMA controller
155
* halts data transfer.
156
*/
157
static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
158
{
159
unsigned long flags;
160
161
snd_pcm_stream_lock_irqsave(substream, flags);
162
163
if (snd_pcm_running(substream))
164
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
165
166
snd_pcm_stream_unlock_irqrestore(substream, flags);
167
}
168
169
/**
170
* fsl_dma_update_pointers - update LD pointers to point to the next period
171
*
172
* As each period is completed, this function changes the the link
173
* descriptor pointers for that period to point to the next period.
174
*/
175
static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
176
{
177
struct fsl_dma_link_descriptor *link =
178
&dma_private->link[dma_private->current_link];
179
180
/* Update our link descriptors to point to the next period. On a 36-bit
181
* system, we also need to update the ESAD bits. We also set (keep) the
182
* snoop bits. See the comments in fsl_dma_hw_params() about snooping.
183
*/
184
if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
185
link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
186
#ifdef CONFIG_PHYS_64BIT
187
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
188
upper_32_bits(dma_private->dma_buf_next));
189
#endif
190
} else {
191
link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
192
#ifdef CONFIG_PHYS_64BIT
193
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
194
upper_32_bits(dma_private->dma_buf_next));
195
#endif
196
}
197
198
/* Update our variables for next time */
199
dma_private->dma_buf_next += dma_private->period_size;
200
201
if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
202
dma_private->dma_buf_next = dma_private->dma_buf_phys;
203
204
if (++dma_private->current_link >= NUM_DMA_LINKS)
205
dma_private->current_link = 0;
206
}
207
208
/**
209
* fsl_dma_isr: interrupt handler for the DMA controller
210
*
211
* @irq: IRQ of the DMA channel
212
* @dev_id: pointer to the dma_private structure for this DMA channel
213
*/
214
static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
215
{
216
struct fsl_dma_private *dma_private = dev_id;
217
struct snd_pcm_substream *substream = dma_private->substream;
218
struct snd_soc_pcm_runtime *rtd = substream->private_data;
219
struct device *dev = rtd->platform->dev;
220
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
221
irqreturn_t ret = IRQ_NONE;
222
u32 sr, sr2 = 0;
223
224
/* We got an interrupt, so read the status register to see what we
225
were interrupted for.
226
*/
227
sr = in_be32(&dma_channel->sr);
228
229
if (sr & CCSR_DMA_SR_TE) {
230
dev_err(dev, "dma transmit error\n");
231
fsl_dma_abort_stream(substream);
232
sr2 |= CCSR_DMA_SR_TE;
233
ret = IRQ_HANDLED;
234
}
235
236
if (sr & CCSR_DMA_SR_CH)
237
ret = IRQ_HANDLED;
238
239
if (sr & CCSR_DMA_SR_PE) {
240
dev_err(dev, "dma programming error\n");
241
fsl_dma_abort_stream(substream);
242
sr2 |= CCSR_DMA_SR_PE;
243
ret = IRQ_HANDLED;
244
}
245
246
if (sr & CCSR_DMA_SR_EOLNI) {
247
sr2 |= CCSR_DMA_SR_EOLNI;
248
ret = IRQ_HANDLED;
249
}
250
251
if (sr & CCSR_DMA_SR_CB)
252
ret = IRQ_HANDLED;
253
254
if (sr & CCSR_DMA_SR_EOSI) {
255
/* Tell ALSA we completed a period. */
256
snd_pcm_period_elapsed(substream);
257
258
/*
259
* Update our link descriptors to point to the next period. We
260
* only need to do this if the number of periods is not equal to
261
* the number of links.
262
*/
263
if (dma_private->num_periods != NUM_DMA_LINKS)
264
fsl_dma_update_pointers(dma_private);
265
266
sr2 |= CCSR_DMA_SR_EOSI;
267
ret = IRQ_HANDLED;
268
}
269
270
if (sr & CCSR_DMA_SR_EOLSI) {
271
sr2 |= CCSR_DMA_SR_EOLSI;
272
ret = IRQ_HANDLED;
273
}
274
275
/* Clear the bits that we set */
276
if (sr2)
277
out_be32(&dma_channel->sr, sr2);
278
279
return ret;
280
}
281
282
/**
283
* fsl_dma_new: initialize this PCM driver.
284
*
285
* This function is called when the codec driver calls snd_soc_new_pcms(),
286
* once for each .dai_link in the machine driver's snd_soc_card
287
* structure.
288
*
289
* snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
290
* (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
291
* is specified. Therefore, any DMA buffers we allocate will always be in low
292
* memory, but we support for 36-bit physical addresses anyway.
293
*
294
* Regardless of where the memory is actually allocated, since the device can
295
* technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
296
*/
297
static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
298
struct snd_pcm *pcm)
299
{
300
static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
301
int ret;
302
303
if (!card->dev->dma_mask)
304
card->dev->dma_mask = &fsl_dma_dmamask;
305
306
if (!card->dev->coherent_dma_mask)
307
card->dev->coherent_dma_mask = fsl_dma_dmamask;
308
309
/* Some codecs have separate DAIs for playback and capture, so we
310
* should allocate a DMA buffer only for the streams that are valid.
311
*/
312
313
if (pcm->streams[0].substream) {
314
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
315
fsl_dma_hardware.buffer_bytes_max,
316
&pcm->streams[0].substream->dma_buffer);
317
if (ret) {
318
dev_err(card->dev, "can't alloc playback dma buffer\n");
319
return ret;
320
}
321
}
322
323
if (pcm->streams[1].substream) {
324
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
325
fsl_dma_hardware.buffer_bytes_max,
326
&pcm->streams[1].substream->dma_buffer);
327
if (ret) {
328
dev_err(card->dev, "can't alloc capture dma buffer\n");
329
snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
330
return ret;
331
}
332
}
333
334
return 0;
335
}
336
337
/**
338
* fsl_dma_open: open a new substream.
339
*
340
* Each substream has its own DMA buffer.
341
*
342
* ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
343
* descriptors that ping-pong from one period to the next. For example, if
344
* there are six periods and two link descriptors, this is how they look
345
* before playback starts:
346
*
347
* The last link descriptor
348
* ____________ points back to the first
349
* | |
350
* V |
351
* ___ ___ |
352
* | |->| |->|
353
* |___| |___|
354
* | |
355
* | |
356
* V V
357
* _________________________________________
358
* | | | | | | | The DMA buffer is
359
* | | | | | | | divided into 6 parts
360
* |______|______|______|______|______|______|
361
*
362
* and here's how they look after the first period is finished playing:
363
*
364
* ____________
365
* | |
366
* V |
367
* ___ ___ |
368
* | |->| |->|
369
* |___| |___|
370
* | |
371
* |______________
372
* | |
373
* V V
374
* _________________________________________
375
* | | | | | | |
376
* | | | | | | |
377
* |______|______|______|______|______|______|
378
*
379
* The first link descriptor now points to the third period. The DMA
380
* controller is currently playing the second period. When it finishes, it
381
* will jump back to the first descriptor and play the third period.
382
*
383
* There are four reasons we do this:
384
*
385
* 1. The only way to get the DMA controller to automatically restart the
386
* transfer when it gets to the end of the buffer is to use chaining
387
* mode. Basic direct mode doesn't offer that feature.
388
* 2. We need to receive an interrupt at the end of every period. The DMA
389
* controller can generate an interrupt at the end of every link transfer
390
* (aka segment). Making each period into a DMA segment will give us the
391
* interrupts we need.
392
* 3. By creating only two link descriptors, regardless of the number of
393
* periods, we do not need to reallocate the link descriptors if the
394
* number of periods changes.
395
* 4. All of the audio data is still stored in a single, contiguous DMA
396
* buffer, which is what ALSA expects. We're just dividing it into
397
* contiguous parts, and creating a link descriptor for each one.
398
*/
399
static int fsl_dma_open(struct snd_pcm_substream *substream)
400
{
401
struct snd_pcm_runtime *runtime = substream->runtime;
402
struct snd_soc_pcm_runtime *rtd = substream->private_data;
403
struct device *dev = rtd->platform->dev;
404
struct dma_object *dma =
405
container_of(rtd->platform->driver, struct dma_object, dai);
406
struct fsl_dma_private *dma_private;
407
struct ccsr_dma_channel __iomem *dma_channel;
408
dma_addr_t ld_buf_phys;
409
u64 temp_link; /* Pointer to next link descriptor */
410
u32 mr;
411
unsigned int channel;
412
int ret = 0;
413
unsigned int i;
414
415
/*
416
* Reject any DMA buffer whose size is not a multiple of the period
417
* size. We need to make sure that the DMA buffer can be evenly divided
418
* into periods.
419
*/
420
ret = snd_pcm_hw_constraint_integer(runtime,
421
SNDRV_PCM_HW_PARAM_PERIODS);
422
if (ret < 0) {
423
dev_err(dev, "invalid buffer size\n");
424
return ret;
425
}
426
427
channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
428
429
if (dma->assigned) {
430
dev_err(dev, "dma channel already assigned\n");
431
return -EBUSY;
432
}
433
434
dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
435
&ld_buf_phys, GFP_KERNEL);
436
if (!dma_private) {
437
dev_err(dev, "can't allocate dma private data\n");
438
return -ENOMEM;
439
}
440
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
441
dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
442
else
443
dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
444
445
dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
446
dma_private->dma_channel = dma->channel;
447
dma_private->irq = dma->irq;
448
dma_private->substream = substream;
449
dma_private->ld_buf_phys = ld_buf_phys;
450
dma_private->dma_buf_phys = substream->dma_buffer.addr;
451
452
ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
453
dma_private);
454
if (ret) {
455
dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
456
dma_private->irq, ret);
457
dma_free_coherent(dev, sizeof(struct fsl_dma_private),
458
dma_private, dma_private->ld_buf_phys);
459
return ret;
460
}
461
462
dma->assigned = 1;
463
464
snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
465
snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
466
runtime->private_data = dma_private;
467
468
/* Program the fixed DMA controller parameters */
469
470
dma_channel = dma_private->dma_channel;
471
472
temp_link = dma_private->ld_buf_phys +
473
sizeof(struct fsl_dma_link_descriptor);
474
475
for (i = 0; i < NUM_DMA_LINKS; i++) {
476
dma_private->link[i].next = cpu_to_be64(temp_link);
477
478
temp_link += sizeof(struct fsl_dma_link_descriptor);
479
}
480
/* The last link descriptor points to the first */
481
dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
482
483
/* Tell the DMA controller where the first link descriptor is */
484
out_be32(&dma_channel->clndar,
485
CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
486
out_be32(&dma_channel->eclndar,
487
CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
488
489
/* The manual says the BCR must be clear before enabling EMP */
490
out_be32(&dma_channel->bcr, 0);
491
492
/*
493
* Program the mode register for interrupts, external master control,
494
* and source/destination hold. Also clear the Channel Abort bit.
495
*/
496
mr = in_be32(&dma_channel->mr) &
497
~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
498
499
/*
500
* We want External Master Start and External Master Pause enabled,
501
* because the SSI is controlling the DMA controller. We want the DMA
502
* controller to be set up in advance, and then we signal only the SSI
503
* to start transferring.
504
*
505
* We want End-Of-Segment Interrupts enabled, because this will generate
506
* an interrupt at the end of each segment (each link descriptor
507
* represents one segment). Each DMA segment is the same thing as an
508
* ALSA period, so this is how we get an interrupt at the end of every
509
* period.
510
*
511
* We want Error Interrupt enabled, so that we can get an error if
512
* the DMA controller is mis-programmed somehow.
513
*/
514
mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
515
CCSR_DMA_MR_EMS_EN;
516
517
/* For playback, we want the destination address to be held. For
518
capture, set the source address to be held. */
519
mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
520
CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
521
522
out_be32(&dma_channel->mr, mr);
523
524
return 0;
525
}
526
527
/**
528
* fsl_dma_hw_params: continue initializing the DMA links
529
*
530
* This function obtains hardware parameters about the opened stream and
531
* programs the DMA controller accordingly.
532
*
533
* One drawback of big-endian is that when copying integers of different
534
* sizes to a fixed-sized register, the address to which the integer must be
535
* copied is dependent on the size of the integer.
536
*
537
* For example, if P is the address of a 32-bit register, and X is a 32-bit
538
* integer, then X should be copied to address P. However, if X is a 16-bit
539
* integer, then it should be copied to P+2. If X is an 8-bit register,
540
* then it should be copied to P+3.
541
*
542
* So for playback of 8-bit samples, the DMA controller must transfer single
543
* bytes from the DMA buffer to the last byte of the STX0 register, i.e.
544
* offset by 3 bytes. For 16-bit samples, the offset is two bytes.
545
*
546
* For 24-bit samples, the offset is 1 byte. However, the DMA controller
547
* does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
548
* and 8 bytes at a time). So we do not support packed 24-bit samples.
549
* 24-bit data must be padded to 32 bits.
550
*/
551
static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
552
struct snd_pcm_hw_params *hw_params)
553
{
554
struct snd_pcm_runtime *runtime = substream->runtime;
555
struct fsl_dma_private *dma_private = runtime->private_data;
556
struct snd_soc_pcm_runtime *rtd = substream->private_data;
557
struct device *dev = rtd->platform->dev;
558
559
/* Number of bits per sample */
560
unsigned int sample_bits =
561
snd_pcm_format_physical_width(params_format(hw_params));
562
563
/* Number of bytes per frame */
564
unsigned int sample_bytes = sample_bits / 8;
565
566
/* Bus address of SSI STX register */
567
dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
568
569
/* Size of the DMA buffer, in bytes */
570
size_t buffer_size = params_buffer_bytes(hw_params);
571
572
/* Number of bytes per period */
573
size_t period_size = params_period_bytes(hw_params);
574
575
/* Pointer to next period */
576
dma_addr_t temp_addr = substream->dma_buffer.addr;
577
578
/* Pointer to DMA controller */
579
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
580
581
u32 mr; /* DMA Mode Register */
582
583
unsigned int i;
584
585
/* Initialize our DMA tracking variables */
586
dma_private->period_size = period_size;
587
dma_private->num_periods = params_periods(hw_params);
588
dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
589
dma_private->dma_buf_next = dma_private->dma_buf_phys +
590
(NUM_DMA_LINKS * period_size);
591
592
if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
593
/* This happens if the number of periods == NUM_DMA_LINKS */
594
dma_private->dma_buf_next = dma_private->dma_buf_phys;
595
596
mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
597
CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
598
599
/* Due to a quirk of the SSI's STX register, the target address
600
* for the DMA operations depends on the sample size. So we calculate
601
* that offset here. While we're at it, also tell the DMA controller
602
* how much data to transfer per sample.
603
*/
604
switch (sample_bits) {
605
case 8:
606
mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
607
ssi_sxx_phys += 3;
608
break;
609
case 16:
610
mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
611
ssi_sxx_phys += 2;
612
break;
613
case 32:
614
mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
615
break;
616
default:
617
/* We should never get here */
618
dev_err(dev, "unsupported sample size %u\n", sample_bits);
619
return -EINVAL;
620
}
621
622
/*
623
* BWC determines how many bytes are sent/received before the DMA
624
* controller checks the SSI to see if it needs to stop. BWC should
625
* always be a multiple of the frame size, so that we always transmit
626
* whole frames. Each frame occupies two slots in the FIFO. The
627
* parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
628
* (MR[BWC] can only represent even powers of two).
629
*
630
* To simplify the process, we set BWC to the largest value that is
631
* less than or equal to the FIFO watermark. For playback, this ensures
632
* that we transfer the maximum amount without overrunning the FIFO.
633
* For capture, this ensures that we transfer the maximum amount without
634
* underrunning the FIFO.
635
*
636
* f = SSI FIFO depth
637
* w = SSI watermark value (which equals f - 2)
638
* b = DMA bandwidth count (in bytes)
639
* s = sample size (in bytes, which equals frame_size * 2)
640
*
641
* For playback, we never transmit more than the transmit FIFO
642
* watermark, otherwise we might write more data than the FIFO can hold.
643
* The watermark is equal to the FIFO depth minus two.
644
*
645
* For capture, two equations must hold:
646
* w > f - (b / s)
647
* w >= b / s
648
*
649
* So, b > 2 * s, but b must also be <= s * w. To simplify, we set
650
* b = s * w, which is equal to
651
* (dma_private->ssi_fifo_depth - 2) * sample_bytes.
652
*/
653
mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
654
655
out_be32(&dma_channel->mr, mr);
656
657
for (i = 0; i < NUM_DMA_LINKS; i++) {
658
struct fsl_dma_link_descriptor *link = &dma_private->link[i];
659
660
link->count = cpu_to_be32(period_size);
661
662
/* The snoop bit tells the DMA controller whether it should tell
663
* the ECM to snoop during a read or write to an address. For
664
* audio, we use DMA to transfer data between memory and an I/O
665
* device (the SSI's STX0 or SRX0 register). Snooping is only
666
* needed if there is a cache, so we need to snoop memory
667
* addresses only. For playback, that means we snoop the source
668
* but not the destination. For capture, we snoop the
669
* destination but not the source.
670
*
671
* Note that failing to snoop properly is unlikely to cause
672
* cache incoherency if the period size is larger than the
673
* size of L1 cache. This is because filling in one period will
674
* flush out the data for the previous period. So if you
675
* increased period_bytes_min to a large enough size, you might
676
* get more performance by not snooping, and you'll still be
677
* okay. You'll need to update fsl_dma_update_pointers() also.
678
*/
679
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
680
link->source_addr = cpu_to_be32(temp_addr);
681
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
682
upper_32_bits(temp_addr));
683
684
link->dest_addr = cpu_to_be32(ssi_sxx_phys);
685
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
686
upper_32_bits(ssi_sxx_phys));
687
} else {
688
link->source_addr = cpu_to_be32(ssi_sxx_phys);
689
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
690
upper_32_bits(ssi_sxx_phys));
691
692
link->dest_addr = cpu_to_be32(temp_addr);
693
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
694
upper_32_bits(temp_addr));
695
}
696
697
temp_addr += period_size;
698
}
699
700
return 0;
701
}
702
703
/**
704
* fsl_dma_pointer: determine the current position of the DMA transfer
705
*
706
* This function is called by ALSA when ALSA wants to know where in the
707
* stream buffer the hardware currently is.
708
*
709
* For playback, the SAR register contains the physical address of the most
710
* recent DMA transfer. For capture, the value is in the DAR register.
711
*
712
* The base address of the buffer is stored in the source_addr field of the
713
* first link descriptor.
714
*/
715
static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
716
{
717
struct snd_pcm_runtime *runtime = substream->runtime;
718
struct fsl_dma_private *dma_private = runtime->private_data;
719
struct snd_soc_pcm_runtime *rtd = substream->private_data;
720
struct device *dev = rtd->platform->dev;
721
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
722
dma_addr_t position;
723
snd_pcm_uframes_t frames;
724
725
/* Obtain the current DMA pointer, but don't read the ESAD bits if we
726
* only have 32-bit DMA addresses. This function is typically called
727
* in interrupt context, so we need to optimize it.
728
*/
729
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
730
position = in_be32(&dma_channel->sar);
731
#ifdef CONFIG_PHYS_64BIT
732
position |= (u64)(in_be32(&dma_channel->satr) &
733
CCSR_DMA_ATR_ESAD_MASK) << 32;
734
#endif
735
} else {
736
position = in_be32(&dma_channel->dar);
737
#ifdef CONFIG_PHYS_64BIT
738
position |= (u64)(in_be32(&dma_channel->datr) &
739
CCSR_DMA_ATR_ESAD_MASK) << 32;
740
#endif
741
}
742
743
/*
744
* When capture is started, the SSI immediately starts to fill its FIFO.
745
* This means that the DMA controller is not started until the FIFO is
746
* full. However, ALSA calls this function before that happens, when
747
* MR.DAR is still zero. In this case, just return zero to indicate
748
* that nothing has been received yet.
749
*/
750
if (!position)
751
return 0;
752
753
if ((position < dma_private->dma_buf_phys) ||
754
(position > dma_private->dma_buf_end)) {
755
dev_err(dev, "dma pointer is out of range, halting stream\n");
756
return SNDRV_PCM_POS_XRUN;
757
}
758
759
frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
760
761
/*
762
* If the current address is just past the end of the buffer, wrap it
763
* around.
764
*/
765
if (frames == runtime->buffer_size)
766
frames = 0;
767
768
return frames;
769
}
770
771
/**
772
* fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
773
*
774
* Release the resources allocated in fsl_dma_hw_params() and de-program the
775
* registers.
776
*
777
* This function can be called multiple times.
778
*/
779
static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
780
{
781
struct snd_pcm_runtime *runtime = substream->runtime;
782
struct fsl_dma_private *dma_private = runtime->private_data;
783
784
if (dma_private) {
785
struct ccsr_dma_channel __iomem *dma_channel;
786
787
dma_channel = dma_private->dma_channel;
788
789
/* Stop the DMA */
790
out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
791
out_be32(&dma_channel->mr, 0);
792
793
/* Reset all the other registers */
794
out_be32(&dma_channel->sr, -1);
795
out_be32(&dma_channel->clndar, 0);
796
out_be32(&dma_channel->eclndar, 0);
797
out_be32(&dma_channel->satr, 0);
798
out_be32(&dma_channel->sar, 0);
799
out_be32(&dma_channel->datr, 0);
800
out_be32(&dma_channel->dar, 0);
801
out_be32(&dma_channel->bcr, 0);
802
out_be32(&dma_channel->nlndar, 0);
803
out_be32(&dma_channel->enlndar, 0);
804
}
805
806
return 0;
807
}
808
809
/**
810
* fsl_dma_close: close the stream.
811
*/
812
static int fsl_dma_close(struct snd_pcm_substream *substream)
813
{
814
struct snd_pcm_runtime *runtime = substream->runtime;
815
struct fsl_dma_private *dma_private = runtime->private_data;
816
struct snd_soc_pcm_runtime *rtd = substream->private_data;
817
struct device *dev = rtd->platform->dev;
818
struct dma_object *dma =
819
container_of(rtd->platform->driver, struct dma_object, dai);
820
821
if (dma_private) {
822
if (dma_private->irq)
823
free_irq(dma_private->irq, dma_private);
824
825
if (dma_private->ld_buf_phys) {
826
dma_unmap_single(dev, dma_private->ld_buf_phys,
827
sizeof(dma_private->link),
828
DMA_TO_DEVICE);
829
}
830
831
/* Deallocate the fsl_dma_private structure */
832
dma_free_coherent(dev, sizeof(struct fsl_dma_private),
833
dma_private, dma_private->ld_buf_phys);
834
substream->runtime->private_data = NULL;
835
}
836
837
dma->assigned = 0;
838
839
return 0;
840
}
841
842
/*
843
* Remove this PCM driver.
844
*/
845
static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
846
{
847
struct snd_pcm_substream *substream;
848
unsigned int i;
849
850
for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
851
substream = pcm->streams[i].substream;
852
if (substream) {
853
snd_dma_free_pages(&substream->dma_buffer);
854
substream->dma_buffer.area = NULL;
855
substream->dma_buffer.addr = 0;
856
}
857
}
858
}
859
860
/**
861
* find_ssi_node -- returns the SSI node that points to his DMA channel node
862
*
863
* Although this DMA driver attempts to operate independently of the other
864
* devices, it still needs to determine some information about the SSI device
865
* that it's working with. Unfortunately, the device tree does not contain
866
* a pointer from the DMA channel node to the SSI node -- the pointer goes the
867
* other way. So we need to scan the device tree for SSI nodes until we find
868
* the one that points to the given DMA channel node. It's ugly, but at least
869
* it's contained in this one function.
870
*/
871
static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
872
{
873
struct device_node *ssi_np, *np;
874
875
for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
876
/* Check each DMA phandle to see if it points to us. We
877
* assume that device_node pointers are a valid comparison.
878
*/
879
np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
880
if (np == dma_channel_np)
881
return ssi_np;
882
883
np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
884
if (np == dma_channel_np)
885
return ssi_np;
886
}
887
888
return NULL;
889
}
890
891
static struct snd_pcm_ops fsl_dma_ops = {
892
.open = fsl_dma_open,
893
.close = fsl_dma_close,
894
.ioctl = snd_pcm_lib_ioctl,
895
.hw_params = fsl_dma_hw_params,
896
.hw_free = fsl_dma_hw_free,
897
.pointer = fsl_dma_pointer,
898
};
899
900
static int __devinit fsl_soc_dma_probe(struct platform_device *pdev)
901
{
902
struct dma_object *dma;
903
struct device_node *np = pdev->dev.of_node;
904
struct device_node *ssi_np;
905
struct resource res;
906
const uint32_t *iprop;
907
int ret;
908
909
/* Find the SSI node that points to us. */
910
ssi_np = find_ssi_node(np);
911
if (!ssi_np) {
912
dev_err(&pdev->dev, "cannot find parent SSI node\n");
913
return -ENODEV;
914
}
915
916
ret = of_address_to_resource(ssi_np, 0, &res);
917
if (ret) {
918
dev_err(&pdev->dev, "could not determine resources for %s\n",
919
ssi_np->full_name);
920
of_node_put(ssi_np);
921
return ret;
922
}
923
924
dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
925
if (!dma) {
926
dev_err(&pdev->dev, "could not allocate dma object\n");
927
of_node_put(ssi_np);
928
return -ENOMEM;
929
}
930
931
strcpy(dma->path, np->full_name);
932
dma->dai.ops = &fsl_dma_ops;
933
dma->dai.pcm_new = fsl_dma_new;
934
dma->dai.pcm_free = fsl_dma_free_dma_buffers;
935
936
/* Store the SSI-specific information that we need */
937
dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
938
dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
939
940
iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
941
if (iprop)
942
dma->ssi_fifo_depth = *iprop;
943
else
944
/* Older 8610 DTs didn't have the fifo-depth property */
945
dma->ssi_fifo_depth = 8;
946
947
of_node_put(ssi_np);
948
949
ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
950
if (ret) {
951
dev_err(&pdev->dev, "could not register platform\n");
952
kfree(dma);
953
return ret;
954
}
955
956
dma->channel = of_iomap(np, 0);
957
dma->irq = irq_of_parse_and_map(np, 0);
958
959
dev_set_drvdata(&pdev->dev, dma);
960
961
return 0;
962
}
963
964
static int __devexit fsl_soc_dma_remove(struct platform_device *pdev)
965
{
966
struct dma_object *dma = dev_get_drvdata(&pdev->dev);
967
968
snd_soc_unregister_platform(&pdev->dev);
969
iounmap(dma->channel);
970
irq_dispose_mapping(dma->irq);
971
kfree(dma);
972
973
return 0;
974
}
975
976
static const struct of_device_id fsl_soc_dma_ids[] = {
977
{ .compatible = "fsl,ssi-dma-channel", },
978
{}
979
};
980
MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
981
982
static struct platform_driver fsl_soc_dma_driver = {
983
.driver = {
984
.name = "fsl-pcm-audio",
985
.owner = THIS_MODULE,
986
.of_match_table = fsl_soc_dma_ids,
987
},
988
.probe = fsl_soc_dma_probe,
989
.remove = __devexit_p(fsl_soc_dma_remove),
990
};
991
992
static int __init fsl_soc_dma_init(void)
993
{
994
pr_info("Freescale Elo DMA ASoC PCM Driver\n");
995
996
return platform_driver_register(&fsl_soc_dma_driver);
997
}
998
999
static void __exit fsl_soc_dma_exit(void)
1000
{
1001
platform_driver_unregister(&fsl_soc_dma_driver);
1002
}
1003
1004
module_init(fsl_soc_dma_init);
1005
module_exit(fsl_soc_dma_exit);
1006
1007
MODULE_AUTHOR("Timur Tabi <[email protected]>");
1008
MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
1009
MODULE_LICENSE("GPL v2");
1010
1011