Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/sound/soc/fsl/fsl_ssi.c
10817 views
1
/*
2
* Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3
*
4
* Author: Timur Tabi <[email protected]>
5
*
6
* Copyright 2007-2010 Freescale Semiconductor, Inc.
7
*
8
* This file is licensed under the terms of the GNU General Public License
9
* version 2. This program is licensed "as is" without any warranty of any
10
* kind, whether express or implied.
11
*/
12
13
#include <linux/init.h>
14
#include <linux/module.h>
15
#include <linux/interrupt.h>
16
#include <linux/device.h>
17
#include <linux/delay.h>
18
#include <linux/slab.h>
19
#include <linux/of_platform.h>
20
21
#include <sound/core.h>
22
#include <sound/pcm.h>
23
#include <sound/pcm_params.h>
24
#include <sound/initval.h>
25
#include <sound/soc.h>
26
27
#include "fsl_ssi.h"
28
29
/**
30
* FSLSSI_I2S_RATES: sample rates supported by the I2S
31
*
32
* This driver currently only supports the SSI running in I2S slave mode,
33
* which means the codec determines the sample rate. Therefore, we tell
34
* ALSA that we support all rates and let the codec driver decide what rates
35
* are really supported.
36
*/
37
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
38
SNDRV_PCM_RATE_CONTINUOUS)
39
40
/**
41
* FSLSSI_I2S_FORMATS: audio formats supported by the SSI
42
*
43
* This driver currently only supports the SSI running in I2S slave mode.
44
*
45
* The SSI has a limitation in that the samples must be in the same byte
46
* order as the host CPU. This is because when multiple bytes are written
47
* to the STX register, the bytes and bits must be written in the same
48
* order. The STX is a shift register, so all the bits need to be aligned
49
* (bit-endianness must match byte-endianness). Processors typically write
50
* the bits within a byte in the same order that the bytes of a word are
51
* written in. So if the host CPU is big-endian, then only big-endian
52
* samples will be written to STX properly.
53
*/
54
#ifdef __BIG_ENDIAN
55
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
56
SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
57
SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
58
#else
59
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
60
SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
61
SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
62
#endif
63
64
/* SIER bitflag of interrupts to enable */
65
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
66
CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
67
CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
68
CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
69
CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
70
71
/**
72
* fsl_ssi_private: per-SSI private data
73
*
74
* @ssi: pointer to the SSI's registers
75
* @ssi_phys: physical address of the SSI registers
76
* @irq: IRQ of this SSI
77
* @first_stream: pointer to the stream that was opened first
78
* @second_stream: pointer to second stream
79
* @playback: the number of playback streams opened
80
* @capture: the number of capture streams opened
81
* @asynchronous: 0=synchronous mode, 1=asynchronous mode
82
* @cpu_dai: the CPU DAI for this device
83
* @dev_attr: the sysfs device attribute structure
84
* @stats: SSI statistics
85
* @name: name for this device
86
*/
87
struct fsl_ssi_private {
88
struct ccsr_ssi __iomem *ssi;
89
dma_addr_t ssi_phys;
90
unsigned int irq;
91
struct snd_pcm_substream *first_stream;
92
struct snd_pcm_substream *second_stream;
93
unsigned int playback;
94
unsigned int capture;
95
int asynchronous;
96
unsigned int fifo_depth;
97
struct snd_soc_dai_driver cpu_dai_drv;
98
struct device_attribute dev_attr;
99
struct platform_device *pdev;
100
101
struct {
102
unsigned int rfrc;
103
unsigned int tfrc;
104
unsigned int cmdau;
105
unsigned int cmddu;
106
unsigned int rxt;
107
unsigned int rdr1;
108
unsigned int rdr0;
109
unsigned int tde1;
110
unsigned int tde0;
111
unsigned int roe1;
112
unsigned int roe0;
113
unsigned int tue1;
114
unsigned int tue0;
115
unsigned int tfs;
116
unsigned int rfs;
117
unsigned int tls;
118
unsigned int rls;
119
unsigned int rff1;
120
unsigned int rff0;
121
unsigned int tfe1;
122
unsigned int tfe0;
123
} stats;
124
125
char name[1];
126
};
127
128
/**
129
* fsl_ssi_isr: SSI interrupt handler
130
*
131
* Although it's possible to use the interrupt handler to send and receive
132
* data to/from the SSI, we use the DMA instead. Programming is more
133
* complicated, but the performance is much better.
134
*
135
* This interrupt handler is used only to gather statistics.
136
*
137
* @irq: IRQ of the SSI device
138
* @dev_id: pointer to the ssi_private structure for this SSI device
139
*/
140
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
141
{
142
struct fsl_ssi_private *ssi_private = dev_id;
143
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
144
irqreturn_t ret = IRQ_NONE;
145
__be32 sisr;
146
__be32 sisr2 = 0;
147
148
/* We got an interrupt, so read the status register to see what we
149
were interrupted for. We mask it with the Interrupt Enable register
150
so that we only check for events that we're interested in.
151
*/
152
sisr = in_be32(&ssi->sisr) & SIER_FLAGS;
153
154
if (sisr & CCSR_SSI_SISR_RFRC) {
155
ssi_private->stats.rfrc++;
156
sisr2 |= CCSR_SSI_SISR_RFRC;
157
ret = IRQ_HANDLED;
158
}
159
160
if (sisr & CCSR_SSI_SISR_TFRC) {
161
ssi_private->stats.tfrc++;
162
sisr2 |= CCSR_SSI_SISR_TFRC;
163
ret = IRQ_HANDLED;
164
}
165
166
if (sisr & CCSR_SSI_SISR_CMDAU) {
167
ssi_private->stats.cmdau++;
168
ret = IRQ_HANDLED;
169
}
170
171
if (sisr & CCSR_SSI_SISR_CMDDU) {
172
ssi_private->stats.cmddu++;
173
ret = IRQ_HANDLED;
174
}
175
176
if (sisr & CCSR_SSI_SISR_RXT) {
177
ssi_private->stats.rxt++;
178
ret = IRQ_HANDLED;
179
}
180
181
if (sisr & CCSR_SSI_SISR_RDR1) {
182
ssi_private->stats.rdr1++;
183
ret = IRQ_HANDLED;
184
}
185
186
if (sisr & CCSR_SSI_SISR_RDR0) {
187
ssi_private->stats.rdr0++;
188
ret = IRQ_HANDLED;
189
}
190
191
if (sisr & CCSR_SSI_SISR_TDE1) {
192
ssi_private->stats.tde1++;
193
ret = IRQ_HANDLED;
194
}
195
196
if (sisr & CCSR_SSI_SISR_TDE0) {
197
ssi_private->stats.tde0++;
198
ret = IRQ_HANDLED;
199
}
200
201
if (sisr & CCSR_SSI_SISR_ROE1) {
202
ssi_private->stats.roe1++;
203
sisr2 |= CCSR_SSI_SISR_ROE1;
204
ret = IRQ_HANDLED;
205
}
206
207
if (sisr & CCSR_SSI_SISR_ROE0) {
208
ssi_private->stats.roe0++;
209
sisr2 |= CCSR_SSI_SISR_ROE0;
210
ret = IRQ_HANDLED;
211
}
212
213
if (sisr & CCSR_SSI_SISR_TUE1) {
214
ssi_private->stats.tue1++;
215
sisr2 |= CCSR_SSI_SISR_TUE1;
216
ret = IRQ_HANDLED;
217
}
218
219
if (sisr & CCSR_SSI_SISR_TUE0) {
220
ssi_private->stats.tue0++;
221
sisr2 |= CCSR_SSI_SISR_TUE0;
222
ret = IRQ_HANDLED;
223
}
224
225
if (sisr & CCSR_SSI_SISR_TFS) {
226
ssi_private->stats.tfs++;
227
ret = IRQ_HANDLED;
228
}
229
230
if (sisr & CCSR_SSI_SISR_RFS) {
231
ssi_private->stats.rfs++;
232
ret = IRQ_HANDLED;
233
}
234
235
if (sisr & CCSR_SSI_SISR_TLS) {
236
ssi_private->stats.tls++;
237
ret = IRQ_HANDLED;
238
}
239
240
if (sisr & CCSR_SSI_SISR_RLS) {
241
ssi_private->stats.rls++;
242
ret = IRQ_HANDLED;
243
}
244
245
if (sisr & CCSR_SSI_SISR_RFF1) {
246
ssi_private->stats.rff1++;
247
ret = IRQ_HANDLED;
248
}
249
250
if (sisr & CCSR_SSI_SISR_RFF0) {
251
ssi_private->stats.rff0++;
252
ret = IRQ_HANDLED;
253
}
254
255
if (sisr & CCSR_SSI_SISR_TFE1) {
256
ssi_private->stats.tfe1++;
257
ret = IRQ_HANDLED;
258
}
259
260
if (sisr & CCSR_SSI_SISR_TFE0) {
261
ssi_private->stats.tfe0++;
262
ret = IRQ_HANDLED;
263
}
264
265
/* Clear the bits that we set */
266
if (sisr2)
267
out_be32(&ssi->sisr, sisr2);
268
269
return ret;
270
}
271
272
/**
273
* fsl_ssi_startup: create a new substream
274
*
275
* This is the first function called when a stream is opened.
276
*
277
* If this is the first stream open, then grab the IRQ and program most of
278
* the SSI registers.
279
*/
280
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
281
struct snd_soc_dai *dai)
282
{
283
struct snd_soc_pcm_runtime *rtd = substream->private_data;
284
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
285
286
/*
287
* If this is the first stream opened, then request the IRQ
288
* and initialize the SSI registers.
289
*/
290
if (!ssi_private->playback && !ssi_private->capture) {
291
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
292
int ret;
293
294
/* The 'name' should not have any slashes in it. */
295
ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
296
ssi_private->name, ssi_private);
297
if (ret < 0) {
298
dev_err(substream->pcm->card->dev,
299
"could not claim irq %u\n", ssi_private->irq);
300
return ret;
301
}
302
303
/*
304
* Section 16.5 of the MPC8610 reference manual says that the
305
* SSI needs to be disabled before updating the registers we set
306
* here.
307
*/
308
clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
309
310
/*
311
* Program the SSI into I2S Slave Non-Network Synchronous mode.
312
* Also enable the transmit and receive FIFO.
313
*
314
* FIXME: Little-endian samples require a different shift dir
315
*/
316
clrsetbits_be32(&ssi->scr,
317
CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
318
CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
319
| (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN));
320
321
out_be32(&ssi->stcr,
322
CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
323
CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
324
CCSR_SSI_STCR_TSCKP);
325
326
out_be32(&ssi->srcr,
327
CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
328
CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
329
CCSR_SSI_SRCR_RSCKP);
330
331
/*
332
* The DC and PM bits are only used if the SSI is the clock
333
* master.
334
*/
335
336
/* 4. Enable the interrupts and DMA requests */
337
out_be32(&ssi->sier, SIER_FLAGS);
338
339
/*
340
* Set the watermark for transmit FIFI 0 and receive FIFO 0. We
341
* don't use FIFO 1. We program the transmit water to signal a
342
* DMA transfer if there are only two (or fewer) elements left
343
* in the FIFO. Two elements equals one frame (left channel,
344
* right channel). This value, however, depends on the depth of
345
* the transmit buffer.
346
*
347
* We program the receive FIFO to notify us if at least two
348
* elements (one frame) have been written to the FIFO. We could
349
* make this value larger (and maybe we should), but this way
350
* data will be written to memory as soon as it's available.
351
*/
352
out_be32(&ssi->sfcsr,
353
CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
354
CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2));
355
356
/*
357
* We keep the SSI disabled because if we enable it, then the
358
* DMA controller will start. It's not supposed to start until
359
* the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
360
* DMA controller will transfer one "BWC" of data (i.e. the
361
* amount of data that the MR.BWC bits are set to). The reason
362
* this is bad is because at this point, the PCM driver has not
363
* finished initializing the DMA controller.
364
*/
365
}
366
367
if (!ssi_private->first_stream)
368
ssi_private->first_stream = substream;
369
else {
370
/* This is the second stream open, so we need to impose sample
371
* rate and maybe sample size constraints. Note that this can
372
* cause a race condition if the second stream is opened before
373
* the first stream is fully initialized.
374
*
375
* We provide some protection by checking to make sure the first
376
* stream is initialized, but it's not perfect. ALSA sometimes
377
* re-initializes the driver with a different sample rate or
378
* size. If the second stream is opened before the first stream
379
* has received its final parameters, then the second stream may
380
* be constrained to the wrong sample rate or size.
381
*
382
* FIXME: This code does not handle opening and closing streams
383
* repeatedly. If you open two streams and then close the first
384
* one, you may not be able to open another stream until you
385
* close the second one as well.
386
*/
387
struct snd_pcm_runtime *first_runtime =
388
ssi_private->first_stream->runtime;
389
390
if (!first_runtime->sample_bits) {
391
dev_err(substream->pcm->card->dev,
392
"set sample size in %s stream first\n",
393
substream->stream == SNDRV_PCM_STREAM_PLAYBACK
394
? "capture" : "playback");
395
return -EAGAIN;
396
}
397
398
/* If we're in synchronous mode, then we need to constrain
399
* the sample size as well. We don't support independent sample
400
* rates in asynchronous mode.
401
*/
402
if (!ssi_private->asynchronous)
403
snd_pcm_hw_constraint_minmax(substream->runtime,
404
SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
405
first_runtime->sample_bits,
406
first_runtime->sample_bits);
407
408
ssi_private->second_stream = substream;
409
}
410
411
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
412
ssi_private->playback++;
413
414
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
415
ssi_private->capture++;
416
417
return 0;
418
}
419
420
/**
421
* fsl_ssi_hw_params - program the sample size
422
*
423
* Most of the SSI registers have been programmed in the startup function,
424
* but the word length must be programmed here. Unfortunately, programming
425
* the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
426
* cause a problem with supporting simultaneous playback and capture. If
427
* the SSI is already playing a stream, then that stream may be temporarily
428
* stopped when you start capture.
429
*
430
* Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
431
* clock master.
432
*/
433
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
434
struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
435
{
436
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
437
438
if (substream == ssi_private->first_stream) {
439
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
440
unsigned int sample_size =
441
snd_pcm_format_width(params_format(hw_params));
442
u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
443
444
/* The SSI should always be disabled at this points (SSIEN=0) */
445
446
/* In synchronous mode, the SSI uses STCCR for capture */
447
if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
448
!ssi_private->asynchronous)
449
clrsetbits_be32(&ssi->stccr,
450
CCSR_SSI_SxCCR_WL_MASK, wl);
451
else
452
clrsetbits_be32(&ssi->srccr,
453
CCSR_SSI_SxCCR_WL_MASK, wl);
454
}
455
456
return 0;
457
}
458
459
/**
460
* fsl_ssi_trigger: start and stop the DMA transfer.
461
*
462
* This function is called by ALSA to start, stop, pause, and resume the DMA
463
* transfer of data.
464
*
465
* The DMA channel is in external master start and pause mode, which
466
* means the SSI completely controls the flow of data.
467
*/
468
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
469
struct snd_soc_dai *dai)
470
{
471
struct snd_soc_pcm_runtime *rtd = substream->private_data;
472
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
473
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
474
475
switch (cmd) {
476
case SNDRV_PCM_TRIGGER_START:
477
clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
478
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
479
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
480
setbits32(&ssi->scr,
481
CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
482
else
483
setbits32(&ssi->scr,
484
CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
485
break;
486
487
case SNDRV_PCM_TRIGGER_STOP:
488
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
489
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
490
clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
491
else
492
clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
493
break;
494
495
default:
496
return -EINVAL;
497
}
498
499
return 0;
500
}
501
502
/**
503
* fsl_ssi_shutdown: shutdown the SSI
504
*
505
* Shutdown the SSI if there are no other substreams open.
506
*/
507
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
508
struct snd_soc_dai *dai)
509
{
510
struct snd_soc_pcm_runtime *rtd = substream->private_data;
511
struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
512
513
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
514
ssi_private->playback--;
515
516
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
517
ssi_private->capture--;
518
519
if (ssi_private->first_stream == substream)
520
ssi_private->first_stream = ssi_private->second_stream;
521
522
ssi_private->second_stream = NULL;
523
524
/*
525
* If this is the last active substream, disable the SSI and release
526
* the IRQ.
527
*/
528
if (!ssi_private->playback && !ssi_private->capture) {
529
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
530
531
clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
532
533
free_irq(ssi_private->irq, ssi_private);
534
}
535
}
536
537
static struct snd_soc_dai_ops fsl_ssi_dai_ops = {
538
.startup = fsl_ssi_startup,
539
.hw_params = fsl_ssi_hw_params,
540
.shutdown = fsl_ssi_shutdown,
541
.trigger = fsl_ssi_trigger,
542
};
543
544
/* Template for the CPU dai driver structure */
545
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
546
.playback = {
547
/* The SSI does not support monaural audio. */
548
.channels_min = 2,
549
.channels_max = 2,
550
.rates = FSLSSI_I2S_RATES,
551
.formats = FSLSSI_I2S_FORMATS,
552
},
553
.capture = {
554
.channels_min = 2,
555
.channels_max = 2,
556
.rates = FSLSSI_I2S_RATES,
557
.formats = FSLSSI_I2S_FORMATS,
558
},
559
.ops = &fsl_ssi_dai_ops,
560
};
561
562
/* Show the statistics of a flag only if its interrupt is enabled. The
563
* compiler will optimze this code to a no-op if the interrupt is not
564
* enabled.
565
*/
566
#define SIER_SHOW(flag, name) \
567
do { \
568
if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
569
length += sprintf(buf + length, #name "=%u\n", \
570
ssi_private->stats.name); \
571
} while (0)
572
573
574
/**
575
* fsl_sysfs_ssi_show: display SSI statistics
576
*
577
* Display the statistics for the current SSI device. To avoid confusion,
578
* we only show those counts that are enabled.
579
*/
580
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
581
struct device_attribute *attr, char *buf)
582
{
583
struct fsl_ssi_private *ssi_private =
584
container_of(attr, struct fsl_ssi_private, dev_attr);
585
ssize_t length = 0;
586
587
SIER_SHOW(RFRC_EN, rfrc);
588
SIER_SHOW(TFRC_EN, tfrc);
589
SIER_SHOW(CMDAU_EN, cmdau);
590
SIER_SHOW(CMDDU_EN, cmddu);
591
SIER_SHOW(RXT_EN, rxt);
592
SIER_SHOW(RDR1_EN, rdr1);
593
SIER_SHOW(RDR0_EN, rdr0);
594
SIER_SHOW(TDE1_EN, tde1);
595
SIER_SHOW(TDE0_EN, tde0);
596
SIER_SHOW(ROE1_EN, roe1);
597
SIER_SHOW(ROE0_EN, roe0);
598
SIER_SHOW(TUE1_EN, tue1);
599
SIER_SHOW(TUE0_EN, tue0);
600
SIER_SHOW(TFS_EN, tfs);
601
SIER_SHOW(RFS_EN, rfs);
602
SIER_SHOW(TLS_EN, tls);
603
SIER_SHOW(RLS_EN, rls);
604
SIER_SHOW(RFF1_EN, rff1);
605
SIER_SHOW(RFF0_EN, rff0);
606
SIER_SHOW(TFE1_EN, tfe1);
607
SIER_SHOW(TFE0_EN, tfe0);
608
609
return length;
610
}
611
612
/**
613
* Make every character in a string lower-case
614
*/
615
static void make_lowercase(char *s)
616
{
617
char *p = s;
618
char c;
619
620
while ((c = *p)) {
621
if ((c >= 'A') && (c <= 'Z'))
622
*p = c + ('a' - 'A');
623
p++;
624
}
625
}
626
627
static int __devinit fsl_ssi_probe(struct platform_device *pdev)
628
{
629
struct fsl_ssi_private *ssi_private;
630
int ret = 0;
631
struct device_attribute *dev_attr = NULL;
632
struct device_node *np = pdev->dev.of_node;
633
const char *p, *sprop;
634
const uint32_t *iprop;
635
struct resource res;
636
char name[64];
637
638
/* SSIs that are not connected on the board should have a
639
* status = "disabled"
640
* property in their device tree nodes.
641
*/
642
if (!of_device_is_available(np))
643
return -ENODEV;
644
645
/* Check for a codec-handle property. */
646
if (!of_get_property(np, "codec-handle", NULL)) {
647
dev_err(&pdev->dev, "missing codec-handle property\n");
648
return -ENODEV;
649
}
650
651
/* We only support the SSI in "I2S Slave" mode */
652
sprop = of_get_property(np, "fsl,mode", NULL);
653
if (!sprop || strcmp(sprop, "i2s-slave")) {
654
dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
655
return -ENODEV;
656
}
657
658
/* The DAI name is the last part of the full name of the node. */
659
p = strrchr(np->full_name, '/') + 1;
660
ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
661
GFP_KERNEL);
662
if (!ssi_private) {
663
dev_err(&pdev->dev, "could not allocate DAI object\n");
664
return -ENOMEM;
665
}
666
667
strcpy(ssi_private->name, p);
668
669
/* Initialize this copy of the CPU DAI driver structure */
670
memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
671
sizeof(fsl_ssi_dai_template));
672
ssi_private->cpu_dai_drv.name = ssi_private->name;
673
674
/* Get the addresses and IRQ */
675
ret = of_address_to_resource(np, 0, &res);
676
if (ret) {
677
dev_err(&pdev->dev, "could not determine device resources\n");
678
kfree(ssi_private);
679
return ret;
680
}
681
ssi_private->ssi = ioremap(res.start, 1 + res.end - res.start);
682
ssi_private->ssi_phys = res.start;
683
ssi_private->irq = irq_of_parse_and_map(np, 0);
684
685
/* Are the RX and the TX clocks locked? */
686
if (of_find_property(np, "fsl,ssi-asynchronous", NULL))
687
ssi_private->asynchronous = 1;
688
else
689
ssi_private->cpu_dai_drv.symmetric_rates = 1;
690
691
/* Determine the FIFO depth. */
692
iprop = of_get_property(np, "fsl,fifo-depth", NULL);
693
if (iprop)
694
ssi_private->fifo_depth = *iprop;
695
else
696
/* Older 8610 DTs didn't have the fifo-depth property */
697
ssi_private->fifo_depth = 8;
698
699
/* Initialize the the device_attribute structure */
700
dev_attr = &ssi_private->dev_attr;
701
dev_attr->attr.name = "statistics";
702
dev_attr->attr.mode = S_IRUGO;
703
dev_attr->show = fsl_sysfs_ssi_show;
704
705
ret = device_create_file(&pdev->dev, dev_attr);
706
if (ret) {
707
dev_err(&pdev->dev, "could not create sysfs %s file\n",
708
ssi_private->dev_attr.attr.name);
709
goto error;
710
}
711
712
/* Register with ASoC */
713
dev_set_drvdata(&pdev->dev, ssi_private);
714
715
ret = snd_soc_register_dai(&pdev->dev, &ssi_private->cpu_dai_drv);
716
if (ret) {
717
dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
718
goto error;
719
}
720
721
/* Trigger the machine driver's probe function. The platform driver
722
* name of the machine driver is taken from the /model property of the
723
* device tree. We also pass the address of the CPU DAI driver
724
* structure.
725
*/
726
sprop = of_get_property(of_find_node_by_path("/"), "model", NULL);
727
/* Sometimes the model name has a "fsl," prefix, so we strip that. */
728
p = strrchr(sprop, ',');
729
if (p)
730
sprop = p + 1;
731
snprintf(name, sizeof(name), "snd-soc-%s", sprop);
732
make_lowercase(name);
733
734
ssi_private->pdev =
735
platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
736
if (IS_ERR(ssi_private->pdev)) {
737
ret = PTR_ERR(ssi_private->pdev);
738
dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
739
goto error;
740
}
741
742
return 0;
743
744
error:
745
snd_soc_unregister_dai(&pdev->dev);
746
dev_set_drvdata(&pdev->dev, NULL);
747
if (dev_attr)
748
device_remove_file(&pdev->dev, dev_attr);
749
irq_dispose_mapping(ssi_private->irq);
750
iounmap(ssi_private->ssi);
751
kfree(ssi_private);
752
753
return ret;
754
}
755
756
static int fsl_ssi_remove(struct platform_device *pdev)
757
{
758
struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
759
760
platform_device_unregister(ssi_private->pdev);
761
snd_soc_unregister_dai(&pdev->dev);
762
device_remove_file(&pdev->dev, &ssi_private->dev_attr);
763
764
kfree(ssi_private);
765
dev_set_drvdata(&pdev->dev, NULL);
766
767
return 0;
768
}
769
770
static const struct of_device_id fsl_ssi_ids[] = {
771
{ .compatible = "fsl,mpc8610-ssi", },
772
{}
773
};
774
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
775
776
static struct platform_driver fsl_ssi_driver = {
777
.driver = {
778
.name = "fsl-ssi-dai",
779
.owner = THIS_MODULE,
780
.of_match_table = fsl_ssi_ids,
781
},
782
.probe = fsl_ssi_probe,
783
.remove = fsl_ssi_remove,
784
};
785
786
static int __init fsl_ssi_init(void)
787
{
788
printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n");
789
790
return platform_driver_register(&fsl_ssi_driver);
791
}
792
793
static void __exit fsl_ssi_exit(void)
794
{
795
platform_driver_unregister(&fsl_ssi_driver);
796
}
797
798
module_init(fsl_ssi_init);
799
module_exit(fsl_ssi_exit);
800
801
MODULE_AUTHOR("Timur Tabi <[email protected]>");
802
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
803
MODULE_LICENSE("GPL v2");
804
805