Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/sound/sparc/dbri.c
10814 views
1
/*
2
* Driver for DBRI sound chip found on Sparcs.
3
* Copyright (C) 2004, 2005 Martin Habets ([email protected])
4
*
5
* Converted to ring buffered version by Krzysztof Helt ([email protected])
6
*
7
* Based entirely upon drivers/sbus/audio/dbri.c which is:
8
* Copyright (C) 1997 Rudolf Koenig ([email protected])
9
* Copyright (C) 1998, 1999 Brent Baccala ([email protected])
10
*
11
* This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
12
* on Sun SPARCStation 10, 20, LX and Voyager models.
13
*
14
* - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
15
* data time multiplexer with ISDN support (aka T7259)
16
* Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
17
* CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
18
* Documentation:
19
* - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
20
* Sparc Technology Business (courtesy of Sun Support)
21
* - Data sheet of the T7903, a newer but very similar ISA bus equivalent
22
* available from the Lucent (formerly AT&T microelectronics) home
23
* page.
24
* - http://www.freesoft.org/Linux/DBRI/
25
* - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
26
* Interfaces: CHI, Audio In & Out, 2 bits parallel
27
* Documentation: from the Crystal Semiconductor home page.
28
*
29
* The DBRI is a 32 pipe machine, each pipe can transfer some bits between
30
* memory and a serial device (long pipes, no. 0-15) or between two serial
31
* devices (short pipes, no. 16-31), or simply send a fixed data to a serial
32
* device (short pipes).
33
* A timeslot defines the bit-offset and no. of bits read from a serial device.
34
* The timeslots are linked to 6 circular lists, one for each direction for
35
* each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
36
* (the second one is a monitor/tee pipe, valid only for serial input).
37
*
38
* The mmcodec is connected via the CHI bus and needs the data & some
39
* parameters (volume, output selection) time multiplexed in 8 byte
40
* chunks. It also has a control mode, which serves for audio format setting.
41
*
42
* Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
43
* the same CHI bus, so I thought perhaps it is possible to use the on-board
44
* & the speakerbox codec simultaneously, giving 2 (not very independent :-)
45
* audio devices. But the SUN HW group decided against it, at least on my
46
* LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47
* connected.
48
*
49
* I've tried to stick to the following function naming conventions:
50
* snd_* ALSA stuff
51
* cs4215_* CS4215 codec specific stuff
52
* dbri_* DBRI high-level stuff
53
* other DBRI low-level stuff
54
*/
55
56
#include <linux/interrupt.h>
57
#include <linux/delay.h>
58
#include <linux/irq.h>
59
#include <linux/io.h>
60
#include <linux/dma-mapping.h>
61
#include <linux/gfp.h>
62
63
#include <sound/core.h>
64
#include <sound/pcm.h>
65
#include <sound/pcm_params.h>
66
#include <sound/info.h>
67
#include <sound/control.h>
68
#include <sound/initval.h>
69
70
#include <linux/of.h>
71
#include <linux/of_device.h>
72
#include <asm/atomic.h>
73
74
MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
75
MODULE_DESCRIPTION("Sun DBRI");
76
MODULE_LICENSE("GPL");
77
MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
78
79
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
80
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
81
/* Enable this card */
82
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
83
84
module_param_array(index, int, NULL, 0444);
85
MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
86
module_param_array(id, charp, NULL, 0444);
87
MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
88
module_param_array(enable, bool, NULL, 0444);
89
MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
90
91
#undef DBRI_DEBUG
92
93
#define D_INT (1<<0)
94
#define D_GEN (1<<1)
95
#define D_CMD (1<<2)
96
#define D_MM (1<<3)
97
#define D_USR (1<<4)
98
#define D_DESC (1<<5)
99
100
static int dbri_debug;
101
module_param(dbri_debug, int, 0644);
102
MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
103
104
#ifdef DBRI_DEBUG
105
static char *cmds[] = {
106
"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
107
"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
108
};
109
110
#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
111
112
#else
113
#define dprintk(a, x...) do { } while (0)
114
115
#endif /* DBRI_DEBUG */
116
117
#define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
118
(intr << 27) | \
119
value)
120
121
/***************************************************************************
122
CS4215 specific definitions and structures
123
****************************************************************************/
124
125
struct cs4215 {
126
__u8 data[4]; /* Data mode: Time slots 5-8 */
127
__u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
128
__u8 onboard;
129
__u8 offset; /* Bit offset from frame sync to time slot 1 */
130
volatile __u32 status;
131
volatile __u32 version;
132
__u8 precision; /* In bits, either 8 or 16 */
133
__u8 channels; /* 1 or 2 */
134
};
135
136
/*
137
* Control mode first
138
*/
139
140
/* Time Slot 1, Status register */
141
#define CS4215_CLB (1<<2) /* Control Latch Bit */
142
#define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
143
/* 0: line: 2.8V, speaker 8V */
144
#define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
145
#define CS4215_RSRVD_1 (1<<5)
146
147
/* Time Slot 2, Data Format Register */
148
#define CS4215_DFR_LINEAR16 0
149
#define CS4215_DFR_ULAW 1
150
#define CS4215_DFR_ALAW 2
151
#define CS4215_DFR_LINEAR8 3
152
#define CS4215_DFR_STEREO (1<<2)
153
static struct {
154
unsigned short freq;
155
unsigned char xtal;
156
unsigned char csval;
157
} CS4215_FREQ[] = {
158
{ 8000, (1 << 4), (0 << 3) },
159
{ 16000, (1 << 4), (1 << 3) },
160
{ 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
161
{ 32000, (1 << 4), (3 << 3) },
162
/* { NA, (1 << 4), (4 << 3) }, */
163
/* { NA, (1 << 4), (5 << 3) }, */
164
{ 48000, (1 << 4), (6 << 3) },
165
{ 9600, (1 << 4), (7 << 3) },
166
{ 5512, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
167
{ 11025, (2 << 4), (1 << 3) },
168
{ 18900, (2 << 4), (2 << 3) },
169
{ 22050, (2 << 4), (3 << 3) },
170
{ 37800, (2 << 4), (4 << 3) },
171
{ 44100, (2 << 4), (5 << 3) },
172
{ 33075, (2 << 4), (6 << 3) },
173
{ 6615, (2 << 4), (7 << 3) },
174
{ 0, 0, 0}
175
};
176
177
#define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
178
179
#define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
180
181
/* Time Slot 3, Serial Port Control register */
182
#define CS4215_XEN (1<<0) /* 0: Enable serial output */
183
#define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
184
#define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
185
#define CS4215_BSEL_128 (1<<2)
186
#define CS4215_BSEL_256 (2<<2)
187
#define CS4215_MCK_MAST (0<<4) /* Master clock */
188
#define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
189
#define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
190
#define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
191
#define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
192
193
/* Time Slot 4, Test Register */
194
#define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
195
#define CS4215_ENL (1<<1) /* Enable Loopback Testing */
196
197
/* Time Slot 5, Parallel Port Register */
198
/* Read only here and the same as the in data mode */
199
200
/* Time Slot 6, Reserved */
201
202
/* Time Slot 7, Version Register */
203
#define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
204
205
/* Time Slot 8, Reserved */
206
207
/*
208
* Data mode
209
*/
210
/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
211
212
/* Time Slot 5, Output Setting */
213
#define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
214
#define CS4215_LE (1<<6) /* Line Out Enable */
215
#define CS4215_HE (1<<7) /* Headphone Enable */
216
217
/* Time Slot 6, Output Setting */
218
#define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
219
#define CS4215_SE (1<<6) /* Speaker Enable */
220
#define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
221
222
/* Time Slot 7, Input Setting */
223
#define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
224
#define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
225
#define CS4215_OVR (1<<5) /* 1: Over range condition occurred */
226
#define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
227
#define CS4215_PIO1 (1<<7)
228
229
/* Time Slot 8, Input Setting */
230
#define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
231
#define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
232
233
/***************************************************************************
234
DBRI specific definitions and structures
235
****************************************************************************/
236
237
/* DBRI main registers */
238
#define REG0 0x00 /* Status and Control */
239
#define REG1 0x04 /* Mode and Interrupt */
240
#define REG2 0x08 /* Parallel IO */
241
#define REG3 0x0c /* Test */
242
#define REG8 0x20 /* Command Queue Pointer */
243
#define REG9 0x24 /* Interrupt Queue Pointer */
244
245
#define DBRI_NO_CMDS 64
246
#define DBRI_INT_BLK 64
247
#define DBRI_NO_DESCS 64
248
#define DBRI_NO_PIPES 32
249
#define DBRI_MAX_PIPE (DBRI_NO_PIPES - 1)
250
251
#define DBRI_REC 0
252
#define DBRI_PLAY 1
253
#define DBRI_NO_STREAMS 2
254
255
/* One transmit/receive descriptor */
256
/* When ba != 0 descriptor is used */
257
struct dbri_mem {
258
volatile __u32 word1;
259
__u32 ba; /* Transmit/Receive Buffer Address */
260
__u32 nda; /* Next Descriptor Address */
261
volatile __u32 word4;
262
};
263
264
/* This structure is in a DMA region where it can accessed by both
265
* the CPU and the DBRI
266
*/
267
struct dbri_dma {
268
s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
269
volatile s32 intr[DBRI_INT_BLK]; /* Interrupt field */
270
struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
271
};
272
273
#define dbri_dma_off(member, elem) \
274
((u32)(unsigned long) \
275
(&(((struct dbri_dma *)0)->member[elem])))
276
277
enum in_or_out { PIPEinput, PIPEoutput };
278
279
struct dbri_pipe {
280
u32 sdp; /* SDP command word */
281
int nextpipe; /* Next pipe in linked list */
282
int length; /* Length of timeslot (bits) */
283
int first_desc; /* Index of first descriptor */
284
int desc; /* Index of active descriptor */
285
volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
286
};
287
288
/* Per stream (playback or record) information */
289
struct dbri_streaminfo {
290
struct snd_pcm_substream *substream;
291
u32 dvma_buffer; /* Device view of ALSA DMA buffer */
292
int size; /* Size of DMA buffer */
293
size_t offset; /* offset in user buffer */
294
int pipe; /* Data pipe used */
295
int left_gain; /* mixer elements */
296
int right_gain;
297
};
298
299
/* This structure holds the information for both chips (DBRI & CS4215) */
300
struct snd_dbri {
301
int regs_size, irq; /* Needed for unload */
302
struct platform_device *op; /* OF device info */
303
spinlock_t lock;
304
305
struct dbri_dma *dma; /* Pointer to our DMA block */
306
u32 dma_dvma; /* DBRI visible DMA address */
307
308
void __iomem *regs; /* dbri HW regs */
309
int dbri_irqp; /* intr queue pointer */
310
311
struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
312
int next_desc[DBRI_NO_DESCS]; /* Index of next desc, or -1 */
313
spinlock_t cmdlock; /* Protects cmd queue accesses */
314
s32 *cmdptr; /* Pointer to the last queued cmd */
315
316
int chi_bpf;
317
318
struct cs4215 mm; /* mmcodec special info */
319
/* per stream (playback/record) info */
320
struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
321
};
322
323
#define DBRI_MAX_VOLUME 63 /* Output volume */
324
#define DBRI_MAX_GAIN 15 /* Input gain */
325
326
/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
327
#define D_P (1<<15) /* Program command & queue pointer valid */
328
#define D_G (1<<14) /* Allow 4-Word SBus Burst */
329
#define D_S (1<<13) /* Allow 16-Word SBus Burst */
330
#define D_E (1<<12) /* Allow 8-Word SBus Burst */
331
#define D_X (1<<7) /* Sanity Timer Disable */
332
#define D_T (1<<6) /* Permit activation of the TE interface */
333
#define D_N (1<<5) /* Permit activation of the NT interface */
334
#define D_C (1<<4) /* Permit activation of the CHI interface */
335
#define D_F (1<<3) /* Force Sanity Timer Time-Out */
336
#define D_D (1<<2) /* Disable Master Mode */
337
#define D_H (1<<1) /* Halt for Analysis */
338
#define D_R (1<<0) /* Soft Reset */
339
340
/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
341
#define D_LITTLE_END (1<<8) /* Byte Order */
342
#define D_BIG_END (0<<8) /* Byte Order */
343
#define D_MRR (1<<4) /* Multiple Error Ack on SBus (read only) */
344
#define D_MLE (1<<3) /* Multiple Late Error on SBus (read only) */
345
#define D_LBG (1<<2) /* Lost Bus Grant on SBus (read only) */
346
#define D_MBE (1<<1) /* Burst Error on SBus (read only) */
347
#define D_IR (1<<0) /* Interrupt Indicator (read only) */
348
349
/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
350
#define D_ENPIO3 (1<<7) /* Enable Pin 3 */
351
#define D_ENPIO2 (1<<6) /* Enable Pin 2 */
352
#define D_ENPIO1 (1<<5) /* Enable Pin 1 */
353
#define D_ENPIO0 (1<<4) /* Enable Pin 0 */
354
#define D_ENPIO (0xf0) /* Enable all the pins */
355
#define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
356
#define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
357
#define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
358
#define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
359
360
/* DBRI Commands (Page 20) */
361
#define D_WAIT 0x0 /* Stop execution */
362
#define D_PAUSE 0x1 /* Flush long pipes */
363
#define D_JUMP 0x2 /* New command queue */
364
#define D_IIQ 0x3 /* Initialize Interrupt Queue */
365
#define D_REX 0x4 /* Report command execution via interrupt */
366
#define D_SDP 0x5 /* Setup Data Pipe */
367
#define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
368
#define D_DTS 0x7 /* Define Time Slot */
369
#define D_SSP 0x8 /* Set short Data Pipe */
370
#define D_CHI 0x9 /* Set CHI Global Mode */
371
#define D_NT 0xa /* NT Command */
372
#define D_TE 0xb /* TE Command */
373
#define D_CDEC 0xc /* Codec setup */
374
#define D_TEST 0xd /* No comment */
375
#define D_CDM 0xe /* CHI Data mode command */
376
377
/* Special bits for some commands */
378
#define D_PIPE(v) ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
379
380
/* Setup Data Pipe */
381
/* IRM */
382
#define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value received */
383
#define D_SDP_CHANGE (2<<18) /* Report any changes */
384
#define D_SDP_EVERY (3<<18) /* Report any changes */
385
#define D_SDP_EOL (1<<17) /* EOL interrupt enable */
386
#define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
387
388
/* Pipe data MODE */
389
#define D_SDP_MEM (0<<13) /* To/from memory */
390
#define D_SDP_HDLC (2<<13)
391
#define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
392
#define D_SDP_SER (4<<13) /* Serial to serial */
393
#define D_SDP_FIXED (6<<13) /* Short only */
394
#define D_SDP_MODE(v) ((v)&(7<<13))
395
396
#define D_SDP_TO_SER (1<<12) /* Direction */
397
#define D_SDP_FROM_SER (0<<12) /* Direction */
398
#define D_SDP_MSB (1<<11) /* Bit order within Byte */
399
#define D_SDP_LSB (0<<11) /* Bit order within Byte */
400
#define D_SDP_P (1<<10) /* Pointer Valid */
401
#define D_SDP_A (1<<8) /* Abort */
402
#define D_SDP_C (1<<7) /* Clear */
403
404
/* Define Time Slot */
405
#define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
406
#define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
407
#define D_DTS_INS (1<<15) /* Insert Time Slot */
408
#define D_DTS_DEL (0<<15) /* Delete Time Slot */
409
#define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
410
#define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
411
412
/* Time Slot defines */
413
#define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
414
#define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
415
#define D_TS_DI (1<<13) /* Data Invert */
416
#define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
417
#define D_TS_MONITOR (2<<10) /* Monitor pipe */
418
#define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
419
#define D_TS_ANCHOR (7<<10) /* Starting short pipes */
420
#define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
421
#define D_TS_NEXT(v) ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
422
423
/* Concentration Highway Interface Modes */
424
#define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
425
#define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
426
#define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
427
#define D_CHI_OD (1<<13) /* Open Drain Enable */
428
#define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
429
#define D_CHI_FD (1<<11) /* Frame Drive */
430
#define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
431
432
/* NT: These are here for completeness */
433
#define D_NT_FBIT (1<<17) /* Frame Bit */
434
#define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
435
#define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
436
#define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
437
#define D_NT_ISNT (1<<13) /* Configure interface as NT */
438
#define D_NT_FT (1<<12) /* Fixed Timing */
439
#define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
440
#define D_NT_IFA (1<<10) /* Inhibit Final Activation */
441
#define D_NT_ACT (1<<9) /* Activate Interface */
442
#define D_NT_MFE (1<<8) /* Multiframe Enable */
443
#define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
444
#define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
445
#define D_NT_FACT (1<<1) /* Force Activation */
446
#define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
447
448
/* Codec Setup */
449
#define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
450
#define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
451
#define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
452
453
/* Test */
454
#define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
455
#define D_TEST_SIZE(v) ((v)<<11) /* */
456
#define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
457
#define D_TEST_PROC 0x6 /* Microprocessor test */
458
#define D_TEST_SER 0x7 /* Serial-Controller test */
459
#define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
460
#define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
461
#define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
462
#define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
463
#define D_TEST_DUMP 0xe /* ROM Dump */
464
465
/* CHI Data Mode */
466
#define D_CDM_THI (1 << 8) /* Transmit Data on CHIDR Pin */
467
#define D_CDM_RHI (1 << 7) /* Receive Data on CHIDX Pin */
468
#define D_CDM_RCE (1 << 6) /* Receive on Rising Edge of CHICK */
469
#define D_CDM_XCE (1 << 2) /* Transmit Data on Rising Edge of CHICK */
470
#define D_CDM_XEN (1 << 1) /* Transmit Highway Enable */
471
#define D_CDM_REN (1 << 0) /* Receive Highway Enable */
472
473
/* The Interrupts */
474
#define D_INTR_BRDY 1 /* Buffer Ready for processing */
475
#define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
476
#define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
477
#define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
478
#define D_INTR_EOL 5 /* End of List */
479
#define D_INTR_CMDI 6 /* Command has bean read */
480
#define D_INTR_XCMP 8 /* Transmission of frame complete */
481
#define D_INTR_SBRI 9 /* BRI status change info */
482
#define D_INTR_FXDT 10 /* Fixed data change */
483
#define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
484
#define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
485
#define D_INTR_DBYT 12 /* Dropped by frame slip */
486
#define D_INTR_RBYT 13 /* Repeated by frame slip */
487
#define D_INTR_LINT 14 /* Lost Interrupt */
488
#define D_INTR_UNDR 15 /* DMA underrun */
489
490
#define D_INTR_TE 32
491
#define D_INTR_NT 34
492
#define D_INTR_CHI 36
493
#define D_INTR_CMD 38
494
495
#define D_INTR_GETCHAN(v) (((v) >> 24) & 0x3f)
496
#define D_INTR_GETCODE(v) (((v) >> 20) & 0xf)
497
#define D_INTR_GETCMD(v) (((v) >> 16) & 0xf)
498
#define D_INTR_GETVAL(v) ((v) & 0xffff)
499
#define D_INTR_GETRVAL(v) ((v) & 0xfffff)
500
501
#define D_P_0 0 /* TE receive anchor */
502
#define D_P_1 1 /* TE transmit anchor */
503
#define D_P_2 2 /* NT transmit anchor */
504
#define D_P_3 3 /* NT receive anchor */
505
#define D_P_4 4 /* CHI send data */
506
#define D_P_5 5 /* CHI receive data */
507
#define D_P_6 6 /* */
508
#define D_P_7 7 /* */
509
#define D_P_8 8 /* */
510
#define D_P_9 9 /* */
511
#define D_P_10 10 /* */
512
#define D_P_11 11 /* */
513
#define D_P_12 12 /* */
514
#define D_P_13 13 /* */
515
#define D_P_14 14 /* */
516
#define D_P_15 15 /* */
517
#define D_P_16 16 /* CHI anchor pipe */
518
#define D_P_17 17 /* CHI send */
519
#define D_P_18 18 /* CHI receive */
520
#define D_P_19 19 /* CHI receive */
521
#define D_P_20 20 /* CHI receive */
522
#define D_P_21 21 /* */
523
#define D_P_22 22 /* */
524
#define D_P_23 23 /* */
525
#define D_P_24 24 /* */
526
#define D_P_25 25 /* */
527
#define D_P_26 26 /* */
528
#define D_P_27 27 /* */
529
#define D_P_28 28 /* */
530
#define D_P_29 29 /* */
531
#define D_P_30 30 /* */
532
#define D_P_31 31 /* */
533
534
/* Transmit descriptor defines */
535
#define DBRI_TD_F (1 << 31) /* End of Frame */
536
#define DBRI_TD_D (1 << 30) /* Do not append CRC */
537
#define DBRI_TD_CNT(v) ((v) << 16) /* Number of valid bytes in the buffer */
538
#define DBRI_TD_B (1 << 15) /* Final interrupt */
539
#define DBRI_TD_M (1 << 14) /* Marker interrupt */
540
#define DBRI_TD_I (1 << 13) /* Transmit Idle Characters */
541
#define DBRI_TD_FCNT(v) (v) /* Flag Count */
542
#define DBRI_TD_UNR (1 << 3) /* Underrun: transmitter is out of data */
543
#define DBRI_TD_ABT (1 << 2) /* Abort: frame aborted */
544
#define DBRI_TD_TBC (1 << 0) /* Transmit buffer Complete */
545
#define DBRI_TD_STATUS(v) ((v) & 0xff) /* Transmit status */
546
/* Maximum buffer size per TD: almost 8KB */
547
#define DBRI_TD_MAXCNT ((1 << 13) - 4)
548
549
/* Receive descriptor defines */
550
#define DBRI_RD_F (1 << 31) /* End of Frame */
551
#define DBRI_RD_C (1 << 30) /* Completed buffer */
552
#define DBRI_RD_B (1 << 15) /* Final interrupt */
553
#define DBRI_RD_M (1 << 14) /* Marker interrupt */
554
#define DBRI_RD_BCNT(v) (v) /* Buffer size */
555
#define DBRI_RD_CRC (1 << 7) /* 0: CRC is correct */
556
#define DBRI_RD_BBC (1 << 6) /* 1: Bad Byte received */
557
#define DBRI_RD_ABT (1 << 5) /* Abort: frame aborted */
558
#define DBRI_RD_OVRN (1 << 3) /* Overrun: data lost */
559
#define DBRI_RD_STATUS(v) ((v) & 0xff) /* Receive status */
560
#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff) /* Valid bytes in the buffer */
561
562
/* stream_info[] access */
563
/* Translate the ALSA direction into the array index */
564
#define DBRI_STREAMNO(substream) \
565
(substream->stream == \
566
SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
567
568
/* Return a pointer to dbri_streaminfo */
569
#define DBRI_STREAM(dbri, substream) \
570
&dbri->stream_info[DBRI_STREAMNO(substream)]
571
572
/*
573
* Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
574
* So we have to reverse the bits. Note: not all bit lengths are supported
575
*/
576
static __u32 reverse_bytes(__u32 b, int len)
577
{
578
switch (len) {
579
case 32:
580
b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
581
case 16:
582
b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
583
case 8:
584
b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
585
case 4:
586
b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
587
case 2:
588
b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
589
case 1:
590
case 0:
591
break;
592
default:
593
printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
594
};
595
596
return b;
597
}
598
599
/*
600
****************************************************************************
601
************** DBRI initialization and command synchronization *************
602
****************************************************************************
603
604
Commands are sent to the DBRI by building a list of them in memory,
605
then writing the address of the first list item to DBRI register 8.
606
The list is terminated with a WAIT command, which generates a
607
CPU interrupt to signal completion.
608
609
Since the DBRI can run in parallel with the CPU, several means of
610
synchronization present themselves. The method implemented here uses
611
the dbri_cmdwait() to wait for execution of batch of sent commands.
612
613
A circular command buffer is used here. A new command is being added
614
while another can be executed. The scheme works by adding two WAIT commands
615
after each sent batch of commands. When the next batch is prepared it is
616
added after the WAIT commands then the WAITs are replaced with single JUMP
617
command to the new batch. The the DBRI is forced to reread the last WAIT
618
command (replaced by the JUMP by then). If the DBRI is still executing
619
previous commands the request to reread the WAIT command is ignored.
620
621
Every time a routine wants to write commands to the DBRI, it must
622
first call dbri_cmdlock() and get pointer to a free space in
623
dbri->dma->cmd buffer. After this, the commands can be written to
624
the buffer, and dbri_cmdsend() is called with the final pointer value
625
to send them to the DBRI.
626
627
*/
628
629
#define MAXLOOPS 20
630
/*
631
* Wait for the current command string to execute
632
*/
633
static void dbri_cmdwait(struct snd_dbri *dbri)
634
{
635
int maxloops = MAXLOOPS;
636
unsigned long flags;
637
638
/* Delay if previous commands are still being processed */
639
spin_lock_irqsave(&dbri->lock, flags);
640
while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
641
spin_unlock_irqrestore(&dbri->lock, flags);
642
msleep_interruptible(1);
643
spin_lock_irqsave(&dbri->lock, flags);
644
}
645
spin_unlock_irqrestore(&dbri->lock, flags);
646
647
if (maxloops == 0)
648
printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
649
else
650
dprintk(D_CMD, "Chip completed command buffer (%d)\n",
651
MAXLOOPS - maxloops - 1);
652
}
653
/*
654
* Lock the command queue and return pointer to space for len cmd words
655
* It locks the cmdlock spinlock.
656
*/
657
static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
658
{
659
/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
660
len += 2;
661
spin_lock(&dbri->cmdlock);
662
if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
663
return dbri->cmdptr + 2;
664
else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
665
return dbri->dma->cmd;
666
else
667
printk(KERN_ERR "DBRI: no space for commands.");
668
669
return NULL;
670
}
671
672
/*
673
* Send prepared cmd string. It works by writing a JUMP cmd into
674
* the last WAIT cmd and force DBRI to reread the cmd.
675
* The JUMP cmd points to the new cmd string.
676
* It also releases the cmdlock spinlock.
677
*
678
* Lock must be held before calling this.
679
*/
680
static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
681
{
682
s32 tmp, addr;
683
static int wait_id = 0;
684
685
wait_id++;
686
wait_id &= 0xffff; /* restrict it to a 16 bit counter. */
687
*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
688
*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
689
690
/* Replace the last command with JUMP */
691
addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
692
*(dbri->cmdptr+1) = addr;
693
*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
694
695
#ifdef DBRI_DEBUG
696
if (cmd > dbri->cmdptr) {
697
s32 *ptr;
698
699
for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
700
dprintk(D_CMD, "cmd: %lx:%08x\n",
701
(unsigned long)ptr, *ptr);
702
} else {
703
s32 *ptr = dbri->cmdptr;
704
705
dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
706
ptr++;
707
dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
708
for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
709
dprintk(D_CMD, "cmd: %lx:%08x\n",
710
(unsigned long)ptr, *ptr);
711
}
712
#endif
713
714
/* Reread the last command */
715
tmp = sbus_readl(dbri->regs + REG0);
716
tmp |= D_P;
717
sbus_writel(tmp, dbri->regs + REG0);
718
719
dbri->cmdptr = cmd;
720
spin_unlock(&dbri->cmdlock);
721
}
722
723
/* Lock must be held when calling this */
724
static void dbri_reset(struct snd_dbri *dbri)
725
{
726
int i;
727
u32 tmp;
728
729
dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
730
sbus_readl(dbri->regs + REG0),
731
sbus_readl(dbri->regs + REG2),
732
sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
733
734
sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
735
for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
736
udelay(10);
737
738
/* A brute approach - DBRI falls back to working burst size by itself
739
* On SS20 D_S does not work, so do not try so high. */
740
tmp = sbus_readl(dbri->regs + REG0);
741
tmp |= D_G | D_E;
742
tmp &= ~D_S;
743
sbus_writel(tmp, dbri->regs + REG0);
744
}
745
746
/* Lock must not be held before calling this */
747
static void __devinit dbri_initialize(struct snd_dbri *dbri)
748
{
749
s32 *cmd;
750
u32 dma_addr;
751
unsigned long flags;
752
int n;
753
754
spin_lock_irqsave(&dbri->lock, flags);
755
756
dbri_reset(dbri);
757
758
/* Initialize pipes */
759
for (n = 0; n < DBRI_NO_PIPES; n++)
760
dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
761
762
spin_lock_init(&dbri->cmdlock);
763
/*
764
* Initialize the interrupt ring buffer.
765
*/
766
dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
767
dbri->dma->intr[0] = dma_addr;
768
dbri->dbri_irqp = 1;
769
/*
770
* Set up the interrupt queue
771
*/
772
spin_lock(&dbri->cmdlock);
773
cmd = dbri->cmdptr = dbri->dma->cmd;
774
*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
775
*(cmd++) = dma_addr;
776
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
777
dbri->cmdptr = cmd;
778
*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
779
*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
780
dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
781
sbus_writel(dma_addr, dbri->regs + REG8);
782
spin_unlock(&dbri->cmdlock);
783
784
spin_unlock_irqrestore(&dbri->lock, flags);
785
dbri_cmdwait(dbri);
786
}
787
788
/*
789
****************************************************************************
790
************************** DBRI data pipe management ***********************
791
****************************************************************************
792
793
While DBRI control functions use the command and interrupt buffers, the
794
main data path takes the form of data pipes, which can be short (command
795
and interrupt driven), or long (attached to DMA buffers). These functions
796
provide a rudimentary means of setting up and managing the DBRI's pipes,
797
but the calling functions have to make sure they respect the pipes' linked
798
list ordering, among other things. The transmit and receive functions
799
here interface closely with the transmit and receive interrupt code.
800
801
*/
802
static inline int pipe_active(struct snd_dbri *dbri, int pipe)
803
{
804
return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
805
}
806
807
/* reset_pipe(dbri, pipe)
808
*
809
* Called on an in-use pipe to clear anything being transmitted or received
810
* Lock must be held before calling this.
811
*/
812
static void reset_pipe(struct snd_dbri *dbri, int pipe)
813
{
814
int sdp;
815
int desc;
816
s32 *cmd;
817
818
if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
819
printk(KERN_ERR "DBRI: reset_pipe called with "
820
"illegal pipe number\n");
821
return;
822
}
823
824
sdp = dbri->pipes[pipe].sdp;
825
if (sdp == 0) {
826
printk(KERN_ERR "DBRI: reset_pipe called "
827
"on uninitialized pipe\n");
828
return;
829
}
830
831
cmd = dbri_cmdlock(dbri, 3);
832
*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
833
*(cmd++) = 0;
834
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
835
dbri_cmdsend(dbri, cmd, 3);
836
837
desc = dbri->pipes[pipe].first_desc;
838
if (desc >= 0)
839
do {
840
dbri->dma->desc[desc].ba = 0;
841
dbri->dma->desc[desc].nda = 0;
842
desc = dbri->next_desc[desc];
843
} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
844
845
dbri->pipes[pipe].desc = -1;
846
dbri->pipes[pipe].first_desc = -1;
847
}
848
849
/*
850
* Lock must be held before calling this.
851
*/
852
static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
853
{
854
if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
855
printk(KERN_ERR "DBRI: setup_pipe called "
856
"with illegal pipe number\n");
857
return;
858
}
859
860
if ((sdp & 0xf800) != sdp) {
861
printk(KERN_ERR "DBRI: setup_pipe called "
862
"with strange SDP value\n");
863
/* sdp &= 0xf800; */
864
}
865
866
/* If this is a fixed receive pipe, arrange for an interrupt
867
* every time its data changes
868
*/
869
if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
870
sdp |= D_SDP_CHANGE;
871
872
sdp |= D_PIPE(pipe);
873
dbri->pipes[pipe].sdp = sdp;
874
dbri->pipes[pipe].desc = -1;
875
dbri->pipes[pipe].first_desc = -1;
876
877
reset_pipe(dbri, pipe);
878
}
879
880
/*
881
* Lock must be held before calling this.
882
*/
883
static void link_time_slot(struct snd_dbri *dbri, int pipe,
884
int prevpipe, int nextpipe,
885
int length, int cycle)
886
{
887
s32 *cmd;
888
int val;
889
890
if (pipe < 0 || pipe > DBRI_MAX_PIPE
891
|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
892
|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
893
printk(KERN_ERR
894
"DBRI: link_time_slot called with illegal pipe number\n");
895
return;
896
}
897
898
if (dbri->pipes[pipe].sdp == 0
899
|| dbri->pipes[prevpipe].sdp == 0
900
|| dbri->pipes[nextpipe].sdp == 0) {
901
printk(KERN_ERR "DBRI: link_time_slot called "
902
"on uninitialized pipe\n");
903
return;
904
}
905
906
dbri->pipes[prevpipe].nextpipe = pipe;
907
dbri->pipes[pipe].nextpipe = nextpipe;
908
dbri->pipes[pipe].length = length;
909
910
cmd = dbri_cmdlock(dbri, 4);
911
912
if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
913
/* Deal with CHI special case:
914
* "If transmission on edges 0 or 1 is desired, then cycle n
915
* (where n = # of bit times per frame...) must be used."
916
* - DBRI data sheet, page 11
917
*/
918
if (prevpipe == 16 && cycle == 0)
919
cycle = dbri->chi_bpf;
920
921
val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
922
*(cmd++) = DBRI_CMD(D_DTS, 0, val);
923
*(cmd++) = 0;
924
*(cmd++) =
925
D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
926
} else {
927
val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
928
*(cmd++) = DBRI_CMD(D_DTS, 0, val);
929
*(cmd++) =
930
D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
931
*(cmd++) = 0;
932
}
933
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
934
935
dbri_cmdsend(dbri, cmd, 4);
936
}
937
938
#if 0
939
/*
940
* Lock must be held before calling this.
941
*/
942
static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
943
enum in_or_out direction, int prevpipe,
944
int nextpipe)
945
{
946
s32 *cmd;
947
int val;
948
949
if (pipe < 0 || pipe > DBRI_MAX_PIPE
950
|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
951
|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
952
printk(KERN_ERR
953
"DBRI: unlink_time_slot called with illegal pipe number\n");
954
return;
955
}
956
957
cmd = dbri_cmdlock(dbri, 4);
958
959
if (direction == PIPEinput) {
960
val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
961
*(cmd++) = DBRI_CMD(D_DTS, 0, val);
962
*(cmd++) = D_TS_NEXT(nextpipe);
963
*(cmd++) = 0;
964
} else {
965
val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
966
*(cmd++) = DBRI_CMD(D_DTS, 0, val);
967
*(cmd++) = 0;
968
*(cmd++) = D_TS_NEXT(nextpipe);
969
}
970
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
971
972
dbri_cmdsend(dbri, cmd, 4);
973
}
974
#endif
975
976
/* xmit_fixed() / recv_fixed()
977
*
978
* Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
979
* expected to change much, and which we don't need to buffer.
980
* The DBRI only interrupts us when the data changes (receive pipes),
981
* or only changes the data when this function is called (transmit pipes).
982
* Only short pipes (numbers 16-31) can be used in fixed data mode.
983
*
984
* These function operate on a 32-bit field, no matter how large
985
* the actual time slot is. The interrupt handler takes care of bit
986
* ordering and alignment. An 8-bit time slot will always end up
987
* in the low-order 8 bits, filled either MSB-first or LSB-first,
988
* depending on the settings passed to setup_pipe().
989
*
990
* Lock must not be held before calling it.
991
*/
992
static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
993
{
994
s32 *cmd;
995
unsigned long flags;
996
997
if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
998
printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
999
return;
1000
}
1001
1002
if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1003
printk(KERN_ERR "DBRI: xmit_fixed: "
1004
"Uninitialized pipe %d\n", pipe);
1005
return;
1006
}
1007
1008
if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1009
printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1010
return;
1011
}
1012
1013
if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1014
printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1015
pipe);
1016
return;
1017
}
1018
1019
/* DBRI short pipes always transmit LSB first */
1020
1021
if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1022
data = reverse_bytes(data, dbri->pipes[pipe].length);
1023
1024
cmd = dbri_cmdlock(dbri, 3);
1025
1026
*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1027
*(cmd++) = data;
1028
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1029
1030
spin_lock_irqsave(&dbri->lock, flags);
1031
dbri_cmdsend(dbri, cmd, 3);
1032
spin_unlock_irqrestore(&dbri->lock, flags);
1033
dbri_cmdwait(dbri);
1034
1035
}
1036
1037
static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1038
{
1039
if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1040
printk(KERN_ERR "DBRI: recv_fixed called with "
1041
"illegal pipe number\n");
1042
return;
1043
}
1044
1045
if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1046
printk(KERN_ERR "DBRI: recv_fixed called on "
1047
"non-fixed pipe %d\n", pipe);
1048
return;
1049
}
1050
1051
if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1052
printk(KERN_ERR "DBRI: recv_fixed called on "
1053
"transmit pipe %d\n", pipe);
1054
return;
1055
}
1056
1057
dbri->pipes[pipe].recv_fixed_ptr = ptr;
1058
}
1059
1060
/* setup_descs()
1061
*
1062
* Setup transmit/receive data on a "long" pipe - i.e, one associated
1063
* with a DMA buffer.
1064
*
1065
* Only pipe numbers 0-15 can be used in this mode.
1066
*
1067
* This function takes a stream number pointing to a data buffer,
1068
* and work by building chains of descriptors which identify the
1069
* data buffers. Buffers too large for a single descriptor will
1070
* be spread across multiple descriptors.
1071
*
1072
* All descriptors create a ring buffer.
1073
*
1074
* Lock must be held before calling this.
1075
*/
1076
static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1077
{
1078
struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1079
__u32 dvma_buffer;
1080
int desc;
1081
int len;
1082
int first_desc = -1;
1083
int last_desc = -1;
1084
1085
if (info->pipe < 0 || info->pipe > 15) {
1086
printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1087
return -2;
1088
}
1089
1090
if (dbri->pipes[info->pipe].sdp == 0) {
1091
printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1092
info->pipe);
1093
return -2;
1094
}
1095
1096
dvma_buffer = info->dvma_buffer;
1097
len = info->size;
1098
1099
if (streamno == DBRI_PLAY) {
1100
if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1101
printk(KERN_ERR "DBRI: setup_descs: "
1102
"Called on receive pipe %d\n", info->pipe);
1103
return -2;
1104
}
1105
} else {
1106
if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1107
printk(KERN_ERR
1108
"DBRI: setup_descs: Called on transmit pipe %d\n",
1109
info->pipe);
1110
return -2;
1111
}
1112
/* Should be able to queue multiple buffers
1113
* to receive on a pipe
1114
*/
1115
if (pipe_active(dbri, info->pipe)) {
1116
printk(KERN_ERR "DBRI: recv_on_pipe: "
1117
"Called on active pipe %d\n", info->pipe);
1118
return -2;
1119
}
1120
1121
/* Make sure buffer size is multiple of four */
1122
len &= ~3;
1123
}
1124
1125
/* Free descriptors if pipe has any */
1126
desc = dbri->pipes[info->pipe].first_desc;
1127
if (desc >= 0)
1128
do {
1129
dbri->dma->desc[desc].ba = 0;
1130
dbri->dma->desc[desc].nda = 0;
1131
desc = dbri->next_desc[desc];
1132
} while (desc != -1 &&
1133
desc != dbri->pipes[info->pipe].first_desc);
1134
1135
dbri->pipes[info->pipe].desc = -1;
1136
dbri->pipes[info->pipe].first_desc = -1;
1137
1138
desc = 0;
1139
while (len > 0) {
1140
int mylen;
1141
1142
for (; desc < DBRI_NO_DESCS; desc++) {
1143
if (!dbri->dma->desc[desc].ba)
1144
break;
1145
}
1146
1147
if (desc == DBRI_NO_DESCS) {
1148
printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1149
return -1;
1150
}
1151
1152
if (len > DBRI_TD_MAXCNT)
1153
mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1154
else
1155
mylen = len;
1156
1157
if (mylen > period)
1158
mylen = period;
1159
1160
dbri->next_desc[desc] = -1;
1161
dbri->dma->desc[desc].ba = dvma_buffer;
1162
dbri->dma->desc[desc].nda = 0;
1163
1164
if (streamno == DBRI_PLAY) {
1165
dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1166
dbri->dma->desc[desc].word4 = 0;
1167
dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1168
} else {
1169
dbri->dma->desc[desc].word1 = 0;
1170
dbri->dma->desc[desc].word4 =
1171
DBRI_RD_B | DBRI_RD_BCNT(mylen);
1172
}
1173
1174
if (first_desc == -1)
1175
first_desc = desc;
1176
else {
1177
dbri->next_desc[last_desc] = desc;
1178
dbri->dma->desc[last_desc].nda =
1179
dbri->dma_dvma + dbri_dma_off(desc, desc);
1180
}
1181
1182
last_desc = desc;
1183
dvma_buffer += mylen;
1184
len -= mylen;
1185
}
1186
1187
if (first_desc == -1 || last_desc == -1) {
1188
printk(KERN_ERR "DBRI: setup_descs: "
1189
" Not enough descriptors available\n");
1190
return -1;
1191
}
1192
1193
dbri->dma->desc[last_desc].nda =
1194
dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1195
dbri->next_desc[last_desc] = first_desc;
1196
dbri->pipes[info->pipe].first_desc = first_desc;
1197
dbri->pipes[info->pipe].desc = first_desc;
1198
1199
#ifdef DBRI_DEBUG
1200
for (desc = first_desc; desc != -1;) {
1201
dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1202
desc,
1203
dbri->dma->desc[desc].word1,
1204
dbri->dma->desc[desc].ba,
1205
dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1206
desc = dbri->next_desc[desc];
1207
if (desc == first_desc)
1208
break;
1209
}
1210
#endif
1211
return 0;
1212
}
1213
1214
/*
1215
****************************************************************************
1216
************************** DBRI - CHI interface ****************************
1217
****************************************************************************
1218
1219
The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1220
multiplexed serial interface which the DBRI can operate in either master
1221
(give clock/frame sync) or slave (take clock/frame sync) mode.
1222
1223
*/
1224
1225
enum master_or_slave { CHImaster, CHIslave };
1226
1227
/*
1228
* Lock must not be held before calling it.
1229
*/
1230
static void reset_chi(struct snd_dbri *dbri,
1231
enum master_or_slave master_or_slave,
1232
int bits_per_frame)
1233
{
1234
s32 *cmd;
1235
int val;
1236
1237
/* Set CHI Anchor: Pipe 16 */
1238
1239
cmd = dbri_cmdlock(dbri, 4);
1240
val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1241
| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1242
*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1243
*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1244
*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1245
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1246
dbri_cmdsend(dbri, cmd, 4);
1247
1248
dbri->pipes[16].sdp = 1;
1249
dbri->pipes[16].nextpipe = 16;
1250
1251
cmd = dbri_cmdlock(dbri, 4);
1252
1253
if (master_or_slave == CHIslave) {
1254
/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1255
*
1256
* CHICM = 0 (slave mode, 8 kHz frame rate)
1257
* IR = give immediate CHI status interrupt
1258
* EN = give CHI status interrupt upon change
1259
*/
1260
*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1261
} else {
1262
/* Setup DBRI for CHI Master - generate clock, FS
1263
*
1264
* BPF = bits per 8 kHz frame
1265
* 12.288 MHz / CHICM_divisor = clock rate
1266
* FD = 1 - drive CHIFS on rising edge of CHICK
1267
*/
1268
int clockrate = bits_per_frame * 8;
1269
int divisor = 12288 / clockrate;
1270
1271
if (divisor > 255 || divisor * clockrate != 12288)
1272
printk(KERN_ERR "DBRI: illegal bits_per_frame "
1273
"in setup_chi\n");
1274
1275
*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1276
| D_CHI_BPF(bits_per_frame));
1277
}
1278
1279
dbri->chi_bpf = bits_per_frame;
1280
1281
/* CHI Data Mode
1282
*
1283
* RCE = 0 - receive on falling edge of CHICK
1284
* XCE = 1 - transmit on rising edge of CHICK
1285
* XEN = 1 - enable transmitter
1286
* REN = 1 - enable receiver
1287
*/
1288
1289
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1290
*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1291
*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1292
1293
dbri_cmdsend(dbri, cmd, 4);
1294
}
1295
1296
/*
1297
****************************************************************************
1298
*********************** CS4215 audio codec management **********************
1299
****************************************************************************
1300
1301
In the standard SPARC audio configuration, the CS4215 codec is attached
1302
to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1303
1304
* Lock must not be held before calling it.
1305
1306
*/
1307
static __devinit void cs4215_setup_pipes(struct snd_dbri *dbri)
1308
{
1309
unsigned long flags;
1310
1311
spin_lock_irqsave(&dbri->lock, flags);
1312
/*
1313
* Data mode:
1314
* Pipe 4: Send timeslots 1-4 (audio data)
1315
* Pipe 20: Send timeslots 5-8 (part of ctrl data)
1316
* Pipe 6: Receive timeslots 1-4 (audio data)
1317
* Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1318
* interrupt, and the rest of the data (slot 5 and 8) is
1319
* not relevant for us (only for doublechecking).
1320
*
1321
* Control mode:
1322
* Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1323
* Pipe 18: Receive timeslot 1 (clb).
1324
* Pipe 19: Receive timeslot 7 (version).
1325
*/
1326
1327
setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1328
setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1329
setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1330
setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1331
1332
setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1333
setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1334
setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1335
spin_unlock_irqrestore(&dbri->lock, flags);
1336
1337
dbri_cmdwait(dbri);
1338
}
1339
1340
static __devinit int cs4215_init_data(struct cs4215 *mm)
1341
{
1342
/*
1343
* No action, memory resetting only.
1344
*
1345
* Data Time Slot 5-8
1346
* Speaker,Line and Headphone enable. Gain set to the half.
1347
* Input is mike.
1348
*/
1349
mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1350
mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1351
mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1352
mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1353
1354
/*
1355
* Control Time Slot 1-4
1356
* 0: Default I/O voltage scale
1357
* 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1358
* 2: Serial enable, CHI master, 128 bits per frame, clock 1
1359
* 3: Tests disabled
1360
*/
1361
mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1362
mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1363
mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1364
mm->ctrl[3] = 0;
1365
1366
mm->status = 0;
1367
mm->version = 0xff;
1368
mm->precision = 8; /* For ULAW */
1369
mm->channels = 1;
1370
1371
return 0;
1372
}
1373
1374
static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1375
{
1376
if (muted) {
1377
dbri->mm.data[0] |= 63;
1378
dbri->mm.data[1] |= 63;
1379
dbri->mm.data[2] &= ~15;
1380
dbri->mm.data[3] &= ~15;
1381
} else {
1382
/* Start by setting the playback attenuation. */
1383
struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1384
int left_gain = info->left_gain & 0x3f;
1385
int right_gain = info->right_gain & 0x3f;
1386
1387
dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1388
dbri->mm.data[1] &= ~0x3f;
1389
dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1390
dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1391
1392
/* Now set the recording gain. */
1393
info = &dbri->stream_info[DBRI_REC];
1394
left_gain = info->left_gain & 0xf;
1395
right_gain = info->right_gain & 0xf;
1396
dbri->mm.data[2] |= CS4215_LG(left_gain);
1397
dbri->mm.data[3] |= CS4215_RG(right_gain);
1398
}
1399
1400
xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1401
}
1402
1403
/*
1404
* Set the CS4215 to data mode.
1405
*/
1406
static void cs4215_open(struct snd_dbri *dbri)
1407
{
1408
int data_width;
1409
u32 tmp;
1410
unsigned long flags;
1411
1412
dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1413
dbri->mm.channels, dbri->mm.precision);
1414
1415
/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1416
* to make sure this takes. This avoids clicking noises.
1417
*/
1418
1419
cs4215_setdata(dbri, 1);
1420
udelay(125);
1421
1422
/*
1423
* Data mode:
1424
* Pipe 4: Send timeslots 1-4 (audio data)
1425
* Pipe 20: Send timeslots 5-8 (part of ctrl data)
1426
* Pipe 6: Receive timeslots 1-4 (audio data)
1427
* Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1428
* interrupt, and the rest of the data (slot 5 and 8) is
1429
* not relevant for us (only for doublechecking).
1430
*
1431
* Just like in control mode, the time slots are all offset by eight
1432
* bits. The CS4215, it seems, observes TSIN (the delayed signal)
1433
* even if it's the CHI master. Don't ask me...
1434
*/
1435
spin_lock_irqsave(&dbri->lock, flags);
1436
tmp = sbus_readl(dbri->regs + REG0);
1437
tmp &= ~(D_C); /* Disable CHI */
1438
sbus_writel(tmp, dbri->regs + REG0);
1439
1440
/* Switch CS4215 to data mode - set PIO3 to 1 */
1441
sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1442
(dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1443
1444
reset_chi(dbri, CHIslave, 128);
1445
1446
/* Note: this next doesn't work for 8-bit stereo, because the two
1447
* channels would be on timeslots 1 and 3, with 2 and 4 idle.
1448
* (See CS4215 datasheet Fig 15)
1449
*
1450
* DBRI non-contiguous mode would be required to make this work.
1451
*/
1452
data_width = dbri->mm.channels * dbri->mm.precision;
1453
1454
link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1455
link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1456
link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1457
link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1458
1459
/* FIXME: enable CHI after _setdata? */
1460
tmp = sbus_readl(dbri->regs + REG0);
1461
tmp |= D_C; /* Enable CHI */
1462
sbus_writel(tmp, dbri->regs + REG0);
1463
spin_unlock_irqrestore(&dbri->lock, flags);
1464
1465
cs4215_setdata(dbri, 0);
1466
}
1467
1468
/*
1469
* Send the control information (i.e. audio format)
1470
*/
1471
static int cs4215_setctrl(struct snd_dbri *dbri)
1472
{
1473
int i, val;
1474
u32 tmp;
1475
unsigned long flags;
1476
1477
/* FIXME - let the CPU do something useful during these delays */
1478
1479
/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1480
* to make sure this takes. This avoids clicking noises.
1481
*/
1482
cs4215_setdata(dbri, 1);
1483
udelay(125);
1484
1485
/*
1486
* Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1487
* 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1488
*/
1489
val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1490
sbus_writel(val, dbri->regs + REG2);
1491
dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1492
udelay(34);
1493
1494
/* In Control mode, the CS4215 is a slave device, so the DBRI must
1495
* operate as CHI master, supplying clocking and frame synchronization.
1496
*
1497
* In Data mode, however, the CS4215 must be CHI master to insure
1498
* that its data stream is synchronous with its codec.
1499
*
1500
* The upshot of all this? We start by putting the DBRI into master
1501
* mode, program the CS4215 in Control mode, then switch the CS4215
1502
* into Data mode and put the DBRI into slave mode. Various timing
1503
* requirements must be observed along the way.
1504
*
1505
* Oh, and one more thing, on a SPARCStation 20 (and maybe
1506
* others?), the addressing of the CS4215's time slots is
1507
* offset by eight bits, so we add eight to all the "cycle"
1508
* values in the Define Time Slot (DTS) commands. This is
1509
* done in hardware by a TI 248 that delays the DBRI->4215
1510
* frame sync signal by eight clock cycles. Anybody know why?
1511
*/
1512
spin_lock_irqsave(&dbri->lock, flags);
1513
tmp = sbus_readl(dbri->regs + REG0);
1514
tmp &= ~D_C; /* Disable CHI */
1515
sbus_writel(tmp, dbri->regs + REG0);
1516
1517
reset_chi(dbri, CHImaster, 128);
1518
1519
/*
1520
* Control mode:
1521
* Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1522
* Pipe 18: Receive timeslot 1 (clb).
1523
* Pipe 19: Receive timeslot 7 (version).
1524
*/
1525
1526
link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1527
link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1528
link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1529
spin_unlock_irqrestore(&dbri->lock, flags);
1530
1531
/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1532
dbri->mm.ctrl[0] &= ~CS4215_CLB;
1533
xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1534
1535
spin_lock_irqsave(&dbri->lock, flags);
1536
tmp = sbus_readl(dbri->regs + REG0);
1537
tmp |= D_C; /* Enable CHI */
1538
sbus_writel(tmp, dbri->regs + REG0);
1539
spin_unlock_irqrestore(&dbri->lock, flags);
1540
1541
for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1542
msleep_interruptible(1);
1543
1544
if (i == 0) {
1545
dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1546
dbri->mm.status);
1547
return -1;
1548
}
1549
1550
/* Disable changes to our copy of the version number, as we are about
1551
* to leave control mode.
1552
*/
1553
recv_fixed(dbri, 19, NULL);
1554
1555
/* Terminate CS4215 control mode - data sheet says
1556
* "Set CLB=1 and send two more frames of valid control info"
1557
*/
1558
dbri->mm.ctrl[0] |= CS4215_CLB;
1559
xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1560
1561
/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1562
udelay(250);
1563
1564
cs4215_setdata(dbri, 0);
1565
1566
return 0;
1567
}
1568
1569
/*
1570
* Setup the codec with the sampling rate, audio format and number of
1571
* channels.
1572
* As part of the process we resend the settings for the data
1573
* timeslots as well.
1574
*/
1575
static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1576
snd_pcm_format_t format, unsigned int channels)
1577
{
1578
int freq_idx;
1579
int ret = 0;
1580
1581
/* Lookup index for this rate */
1582
for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1583
if (CS4215_FREQ[freq_idx].freq == rate)
1584
break;
1585
}
1586
if (CS4215_FREQ[freq_idx].freq != rate) {
1587
printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1588
return -1;
1589
}
1590
1591
switch (format) {
1592
case SNDRV_PCM_FORMAT_MU_LAW:
1593
dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1594
dbri->mm.precision = 8;
1595
break;
1596
case SNDRV_PCM_FORMAT_A_LAW:
1597
dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1598
dbri->mm.precision = 8;
1599
break;
1600
case SNDRV_PCM_FORMAT_U8:
1601
dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1602
dbri->mm.precision = 8;
1603
break;
1604
case SNDRV_PCM_FORMAT_S16_BE:
1605
dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1606
dbri->mm.precision = 16;
1607
break;
1608
default:
1609
printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1610
return -1;
1611
}
1612
1613
/* Add rate parameters */
1614
dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1615
dbri->mm.ctrl[2] = CS4215_XCLK |
1616
CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1617
1618
dbri->mm.channels = channels;
1619
if (channels == 2)
1620
dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1621
1622
ret = cs4215_setctrl(dbri);
1623
if (ret == 0)
1624
cs4215_open(dbri); /* set codec to data mode */
1625
1626
return ret;
1627
}
1628
1629
/*
1630
*
1631
*/
1632
static __devinit int cs4215_init(struct snd_dbri *dbri)
1633
{
1634
u32 reg2 = sbus_readl(dbri->regs + REG2);
1635
dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1636
1637
/* Look for the cs4215 chips */
1638
if (reg2 & D_PIO2) {
1639
dprintk(D_MM, "Onboard CS4215 detected\n");
1640
dbri->mm.onboard = 1;
1641
}
1642
if (reg2 & D_PIO0) {
1643
dprintk(D_MM, "Speakerbox detected\n");
1644
dbri->mm.onboard = 0;
1645
1646
if (reg2 & D_PIO2) {
1647
printk(KERN_INFO "DBRI: Using speakerbox / "
1648
"ignoring onboard mmcodec.\n");
1649
sbus_writel(D_ENPIO2, dbri->regs + REG2);
1650
}
1651
}
1652
1653
if (!(reg2 & (D_PIO0 | D_PIO2))) {
1654
printk(KERN_ERR "DBRI: no mmcodec found.\n");
1655
return -EIO;
1656
}
1657
1658
cs4215_setup_pipes(dbri);
1659
cs4215_init_data(&dbri->mm);
1660
1661
/* Enable capture of the status & version timeslots. */
1662
recv_fixed(dbri, 18, &dbri->mm.status);
1663
recv_fixed(dbri, 19, &dbri->mm.version);
1664
1665
dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1666
if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1667
dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1668
dbri->mm.offset);
1669
return -EIO;
1670
}
1671
dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1672
1673
return 0;
1674
}
1675
1676
/*
1677
****************************************************************************
1678
*************************** DBRI interrupt handler *************************
1679
****************************************************************************
1680
1681
The DBRI communicates with the CPU mainly via a circular interrupt
1682
buffer. When an interrupt is signaled, the CPU walks through the
1683
buffer and calls dbri_process_one_interrupt() for each interrupt word.
1684
Complicated interrupts are handled by dedicated functions (which
1685
appear first in this file). Any pending interrupts can be serviced by
1686
calling dbri_process_interrupt_buffer(), which works even if the CPU's
1687
interrupts are disabled.
1688
1689
*/
1690
1691
/* xmit_descs()
1692
*
1693
* Starts transmitting the current TD's for recording/playing.
1694
* For playback, ALSA has filled the DMA memory with new data (we hope).
1695
*/
1696
static void xmit_descs(struct snd_dbri *dbri)
1697
{
1698
struct dbri_streaminfo *info;
1699
s32 *cmd;
1700
unsigned long flags;
1701
int first_td;
1702
1703
if (dbri == NULL)
1704
return; /* Disabled */
1705
1706
info = &dbri->stream_info[DBRI_REC];
1707
spin_lock_irqsave(&dbri->lock, flags);
1708
1709
if (info->pipe >= 0) {
1710
first_td = dbri->pipes[info->pipe].first_desc;
1711
1712
dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1713
1714
/* Stream could be closed by the time we run. */
1715
if (first_td >= 0) {
1716
cmd = dbri_cmdlock(dbri, 2);
1717
*(cmd++) = DBRI_CMD(D_SDP, 0,
1718
dbri->pipes[info->pipe].sdp
1719
| D_SDP_P | D_SDP_EVERY | D_SDP_C);
1720
*(cmd++) = dbri->dma_dvma +
1721
dbri_dma_off(desc, first_td);
1722
dbri_cmdsend(dbri, cmd, 2);
1723
1724
/* Reset our admin of the pipe. */
1725
dbri->pipes[info->pipe].desc = first_td;
1726
}
1727
}
1728
1729
info = &dbri->stream_info[DBRI_PLAY];
1730
1731
if (info->pipe >= 0) {
1732
first_td = dbri->pipes[info->pipe].first_desc;
1733
1734
dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1735
1736
/* Stream could be closed by the time we run. */
1737
if (first_td >= 0) {
1738
cmd = dbri_cmdlock(dbri, 2);
1739
*(cmd++) = DBRI_CMD(D_SDP, 0,
1740
dbri->pipes[info->pipe].sdp
1741
| D_SDP_P | D_SDP_EVERY | D_SDP_C);
1742
*(cmd++) = dbri->dma_dvma +
1743
dbri_dma_off(desc, first_td);
1744
dbri_cmdsend(dbri, cmd, 2);
1745
1746
/* Reset our admin of the pipe. */
1747
dbri->pipes[info->pipe].desc = first_td;
1748
}
1749
}
1750
1751
spin_unlock_irqrestore(&dbri->lock, flags);
1752
}
1753
1754
/* transmission_complete_intr()
1755
*
1756
* Called by main interrupt handler when DBRI signals transmission complete
1757
* on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1758
*
1759
* Walks through the pipe's list of transmit buffer descriptors and marks
1760
* them as available. Stops when the first descriptor is found without
1761
* TBC (Transmit Buffer Complete) set, or we've run through them all.
1762
*
1763
* The DMA buffers are not released. They form a ring buffer and
1764
* they are filled by ALSA while others are transmitted by DMA.
1765
*
1766
*/
1767
1768
static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1769
{
1770
struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1771
int td = dbri->pipes[pipe].desc;
1772
int status;
1773
1774
while (td >= 0) {
1775
if (td >= DBRI_NO_DESCS) {
1776
printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1777
return;
1778
}
1779
1780
status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1781
if (!(status & DBRI_TD_TBC))
1782
break;
1783
1784
dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1785
1786
dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
1787
info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1788
1789
td = dbri->next_desc[td];
1790
dbri->pipes[pipe].desc = td;
1791
}
1792
1793
/* Notify ALSA */
1794
spin_unlock(&dbri->lock);
1795
snd_pcm_period_elapsed(info->substream);
1796
spin_lock(&dbri->lock);
1797
}
1798
1799
static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1800
{
1801
struct dbri_streaminfo *info;
1802
int rd = dbri->pipes[pipe].desc;
1803
s32 status;
1804
1805
if (rd < 0 || rd >= DBRI_NO_DESCS) {
1806
printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1807
return;
1808
}
1809
1810
dbri->pipes[pipe].desc = dbri->next_desc[rd];
1811
status = dbri->dma->desc[rd].word1;
1812
dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1813
1814
info = &dbri->stream_info[DBRI_REC];
1815
info->offset += DBRI_RD_CNT(status);
1816
1817
/* FIXME: Check status */
1818
1819
dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1820
rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1821
1822
/* Notify ALSA */
1823
spin_unlock(&dbri->lock);
1824
snd_pcm_period_elapsed(info->substream);
1825
spin_lock(&dbri->lock);
1826
}
1827
1828
static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1829
{
1830
int val = D_INTR_GETVAL(x);
1831
int channel = D_INTR_GETCHAN(x);
1832
int command = D_INTR_GETCMD(x);
1833
int code = D_INTR_GETCODE(x);
1834
#ifdef DBRI_DEBUG
1835
int rval = D_INTR_GETRVAL(x);
1836
#endif
1837
1838
if (channel == D_INTR_CMD) {
1839
dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1840
cmds[command], val);
1841
} else {
1842
dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1843
channel, code, rval);
1844
}
1845
1846
switch (code) {
1847
case D_INTR_CMDI:
1848
if (command != D_WAIT)
1849
printk(KERN_ERR "DBRI: Command read interrupt\n");
1850
break;
1851
case D_INTR_BRDY:
1852
reception_complete_intr(dbri, channel);
1853
break;
1854
case D_INTR_XCMP:
1855
case D_INTR_MINT:
1856
transmission_complete_intr(dbri, channel);
1857
break;
1858
case D_INTR_UNDR:
1859
/* UNDR - Transmission underrun
1860
* resend SDP command with clear pipe bit (C) set
1861
*/
1862
{
1863
/* FIXME: do something useful in case of underrun */
1864
printk(KERN_ERR "DBRI: Underrun error\n");
1865
#if 0
1866
s32 *cmd;
1867
int pipe = channel;
1868
int td = dbri->pipes[pipe].desc;
1869
1870
dbri->dma->desc[td].word4 = 0;
1871
cmd = dbri_cmdlock(dbri, NoGetLock);
1872
*(cmd++) = DBRI_CMD(D_SDP, 0,
1873
dbri->pipes[pipe].sdp
1874
| D_SDP_P | D_SDP_C | D_SDP_2SAME);
1875
*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1876
dbri_cmdsend(dbri, cmd);
1877
#endif
1878
}
1879
break;
1880
case D_INTR_FXDT:
1881
/* FXDT - Fixed data change */
1882
if (dbri->pipes[channel].sdp & D_SDP_MSB)
1883
val = reverse_bytes(val, dbri->pipes[channel].length);
1884
1885
if (dbri->pipes[channel].recv_fixed_ptr)
1886
*(dbri->pipes[channel].recv_fixed_ptr) = val;
1887
break;
1888
default:
1889
if (channel != D_INTR_CMD)
1890
printk(KERN_WARNING
1891
"DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1892
}
1893
}
1894
1895
/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1896
* buffer until it finds a zero word (indicating nothing more to do
1897
* right now). Non-zero words require processing and are handed off
1898
* to dbri_process_one_interrupt AFTER advancing the pointer.
1899
*/
1900
static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1901
{
1902
s32 x;
1903
1904
while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1905
dbri->dma->intr[dbri->dbri_irqp] = 0;
1906
dbri->dbri_irqp++;
1907
if (dbri->dbri_irqp == DBRI_INT_BLK)
1908
dbri->dbri_irqp = 1;
1909
1910
dbri_process_one_interrupt(dbri, x);
1911
}
1912
}
1913
1914
static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1915
{
1916
struct snd_dbri *dbri = dev_id;
1917
static int errcnt = 0;
1918
int x;
1919
1920
if (dbri == NULL)
1921
return IRQ_NONE;
1922
spin_lock(&dbri->lock);
1923
1924
/*
1925
* Read it, so the interrupt goes away.
1926
*/
1927
x = sbus_readl(dbri->regs + REG1);
1928
1929
if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1930
u32 tmp;
1931
1932
if (x & D_MRR)
1933
printk(KERN_ERR
1934
"DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1935
x);
1936
if (x & D_MLE)
1937
printk(KERN_ERR
1938
"DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1939
x);
1940
if (x & D_LBG)
1941
printk(KERN_ERR
1942
"DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1943
if (x & D_MBE)
1944
printk(KERN_ERR
1945
"DBRI: Burst Error on SBus reg1=0x%x\n", x);
1946
1947
/* Some of these SBus errors cause the chip's SBus circuitry
1948
* to be disabled, so just re-enable and try to keep going.
1949
*
1950
* The only one I've seen is MRR, which will be triggered
1951
* if you let a transmit pipe underrun, then try to CDP it.
1952
*
1953
* If these things persist, we reset the chip.
1954
*/
1955
if ((++errcnt) % 10 == 0) {
1956
dprintk(D_INT, "Interrupt errors exceeded.\n");
1957
dbri_reset(dbri);
1958
} else {
1959
tmp = sbus_readl(dbri->regs + REG0);
1960
tmp &= ~(D_D);
1961
sbus_writel(tmp, dbri->regs + REG0);
1962
}
1963
}
1964
1965
dbri_process_interrupt_buffer(dbri);
1966
1967
spin_unlock(&dbri->lock);
1968
1969
return IRQ_HANDLED;
1970
}
1971
1972
/****************************************************************************
1973
PCM Interface
1974
****************************************************************************/
1975
static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1976
.info = SNDRV_PCM_INFO_MMAP |
1977
SNDRV_PCM_INFO_INTERLEAVED |
1978
SNDRV_PCM_INFO_BLOCK_TRANSFER |
1979
SNDRV_PCM_INFO_MMAP_VALID |
1980
SNDRV_PCM_INFO_BATCH,
1981
.formats = SNDRV_PCM_FMTBIT_MU_LAW |
1982
SNDRV_PCM_FMTBIT_A_LAW |
1983
SNDRV_PCM_FMTBIT_U8 |
1984
SNDRV_PCM_FMTBIT_S16_BE,
1985
.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1986
.rate_min = 5512,
1987
.rate_max = 48000,
1988
.channels_min = 1,
1989
.channels_max = 2,
1990
.buffer_bytes_max = 64 * 1024,
1991
.period_bytes_min = 1,
1992
.period_bytes_max = DBRI_TD_MAXCNT,
1993
.periods_min = 1,
1994
.periods_max = 1024,
1995
};
1996
1997
static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1998
struct snd_pcm_hw_rule *rule)
1999
{
2000
struct snd_interval *c = hw_param_interval(params,
2001
SNDRV_PCM_HW_PARAM_CHANNELS);
2002
struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2003
struct snd_mask fmt;
2004
2005
snd_mask_any(&fmt);
2006
if (c->min > 1) {
2007
fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2008
return snd_mask_refine(f, &fmt);
2009
}
2010
return 0;
2011
}
2012
2013
static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2014
struct snd_pcm_hw_rule *rule)
2015
{
2016
struct snd_interval *c = hw_param_interval(params,
2017
SNDRV_PCM_HW_PARAM_CHANNELS);
2018
struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2019
struct snd_interval ch;
2020
2021
snd_interval_any(&ch);
2022
if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2023
ch.min = 1;
2024
ch.max = 1;
2025
ch.integer = 1;
2026
return snd_interval_refine(c, &ch);
2027
}
2028
return 0;
2029
}
2030
2031
static int snd_dbri_open(struct snd_pcm_substream *substream)
2032
{
2033
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2034
struct snd_pcm_runtime *runtime = substream->runtime;
2035
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2036
unsigned long flags;
2037
2038
dprintk(D_USR, "open audio output.\n");
2039
runtime->hw = snd_dbri_pcm_hw;
2040
2041
spin_lock_irqsave(&dbri->lock, flags);
2042
info->substream = substream;
2043
info->offset = 0;
2044
info->dvma_buffer = 0;
2045
info->pipe = -1;
2046
spin_unlock_irqrestore(&dbri->lock, flags);
2047
2048
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2049
snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2050
-1);
2051
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2052
snd_hw_rule_channels, NULL,
2053
SNDRV_PCM_HW_PARAM_CHANNELS,
2054
-1);
2055
2056
cs4215_open(dbri);
2057
2058
return 0;
2059
}
2060
2061
static int snd_dbri_close(struct snd_pcm_substream *substream)
2062
{
2063
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2064
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2065
2066
dprintk(D_USR, "close audio output.\n");
2067
info->substream = NULL;
2068
info->offset = 0;
2069
2070
return 0;
2071
}
2072
2073
static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2074
struct snd_pcm_hw_params *hw_params)
2075
{
2076
struct snd_pcm_runtime *runtime = substream->runtime;
2077
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2078
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2079
int direction;
2080
int ret;
2081
2082
/* set sampling rate, audio format and number of channels */
2083
ret = cs4215_prepare(dbri, params_rate(hw_params),
2084
params_format(hw_params),
2085
params_channels(hw_params));
2086
if (ret != 0)
2087
return ret;
2088
2089
if ((ret = snd_pcm_lib_malloc_pages(substream,
2090
params_buffer_bytes(hw_params))) < 0) {
2091
printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2092
return ret;
2093
}
2094
2095
/* hw_params can get called multiple times. Only map the DMA once.
2096
*/
2097
if (info->dvma_buffer == 0) {
2098
if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2099
direction = DMA_TO_DEVICE;
2100
else
2101
direction = DMA_FROM_DEVICE;
2102
2103
info->dvma_buffer =
2104
dma_map_single(&dbri->op->dev,
2105
runtime->dma_area,
2106
params_buffer_bytes(hw_params),
2107
direction);
2108
}
2109
2110
direction = params_buffer_bytes(hw_params);
2111
dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2112
direction, info->dvma_buffer);
2113
return 0;
2114
}
2115
2116
static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2117
{
2118
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2119
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2120
int direction;
2121
2122
dprintk(D_USR, "hw_free.\n");
2123
2124
/* hw_free can get called multiple times. Only unmap the DMA once.
2125
*/
2126
if (info->dvma_buffer) {
2127
if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2128
direction = DMA_TO_DEVICE;
2129
else
2130
direction = DMA_FROM_DEVICE;
2131
2132
dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2133
substream->runtime->buffer_size, direction);
2134
info->dvma_buffer = 0;
2135
}
2136
if (info->pipe != -1) {
2137
reset_pipe(dbri, info->pipe);
2138
info->pipe = -1;
2139
}
2140
2141
return snd_pcm_lib_free_pages(substream);
2142
}
2143
2144
static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2145
{
2146
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2147
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2148
int ret;
2149
2150
info->size = snd_pcm_lib_buffer_bytes(substream);
2151
if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2152
info->pipe = 4; /* Send pipe */
2153
else
2154
info->pipe = 6; /* Receive pipe */
2155
2156
spin_lock_irq(&dbri->lock);
2157
info->offset = 0;
2158
2159
/* Setup the all the transmit/receive descriptors to cover the
2160
* whole DMA buffer.
2161
*/
2162
ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2163
snd_pcm_lib_period_bytes(substream));
2164
2165
spin_unlock_irq(&dbri->lock);
2166
2167
dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2168
return ret;
2169
}
2170
2171
static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2172
{
2173
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2174
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2175
int ret = 0;
2176
2177
switch (cmd) {
2178
case SNDRV_PCM_TRIGGER_START:
2179
dprintk(D_USR, "start audio, period is %d bytes\n",
2180
(int)snd_pcm_lib_period_bytes(substream));
2181
/* Re-submit the TDs. */
2182
xmit_descs(dbri);
2183
break;
2184
case SNDRV_PCM_TRIGGER_STOP:
2185
dprintk(D_USR, "stop audio.\n");
2186
reset_pipe(dbri, info->pipe);
2187
break;
2188
default:
2189
ret = -EINVAL;
2190
}
2191
2192
return ret;
2193
}
2194
2195
static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2196
{
2197
struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2198
struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2199
snd_pcm_uframes_t ret;
2200
2201
ret = bytes_to_frames(substream->runtime, info->offset)
2202
% substream->runtime->buffer_size;
2203
dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2204
ret, substream->runtime->buffer_size);
2205
return ret;
2206
}
2207
2208
static struct snd_pcm_ops snd_dbri_ops = {
2209
.open = snd_dbri_open,
2210
.close = snd_dbri_close,
2211
.ioctl = snd_pcm_lib_ioctl,
2212
.hw_params = snd_dbri_hw_params,
2213
.hw_free = snd_dbri_hw_free,
2214
.prepare = snd_dbri_prepare,
2215
.trigger = snd_dbri_trigger,
2216
.pointer = snd_dbri_pointer,
2217
};
2218
2219
static int __devinit snd_dbri_pcm(struct snd_card *card)
2220
{
2221
struct snd_pcm *pcm;
2222
int err;
2223
2224
if ((err = snd_pcm_new(card,
2225
/* ID */ "sun_dbri",
2226
/* device */ 0,
2227
/* playback count */ 1,
2228
/* capture count */ 1, &pcm)) < 0)
2229
return err;
2230
2231
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2232
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2233
2234
pcm->private_data = card->private_data;
2235
pcm->info_flags = 0;
2236
strcpy(pcm->name, card->shortname);
2237
2238
if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2239
SNDRV_DMA_TYPE_CONTINUOUS,
2240
snd_dma_continuous_data(GFP_KERNEL),
2241
64 * 1024, 64 * 1024)) < 0)
2242
return err;
2243
2244
return 0;
2245
}
2246
2247
/*****************************************************************************
2248
Mixer interface
2249
*****************************************************************************/
2250
2251
static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2252
struct snd_ctl_elem_info *uinfo)
2253
{
2254
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2255
uinfo->count = 2;
2256
uinfo->value.integer.min = 0;
2257
if (kcontrol->private_value == DBRI_PLAY)
2258
uinfo->value.integer.max = DBRI_MAX_VOLUME;
2259
else
2260
uinfo->value.integer.max = DBRI_MAX_GAIN;
2261
return 0;
2262
}
2263
2264
static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2265
struct snd_ctl_elem_value *ucontrol)
2266
{
2267
struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2268
struct dbri_streaminfo *info;
2269
2270
if (snd_BUG_ON(!dbri))
2271
return -EINVAL;
2272
info = &dbri->stream_info[kcontrol->private_value];
2273
2274
ucontrol->value.integer.value[0] = info->left_gain;
2275
ucontrol->value.integer.value[1] = info->right_gain;
2276
return 0;
2277
}
2278
2279
static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2280
struct snd_ctl_elem_value *ucontrol)
2281
{
2282
struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2283
struct dbri_streaminfo *info =
2284
&dbri->stream_info[kcontrol->private_value];
2285
unsigned int vol[2];
2286
int changed = 0;
2287
2288
vol[0] = ucontrol->value.integer.value[0];
2289
vol[1] = ucontrol->value.integer.value[1];
2290
if (kcontrol->private_value == DBRI_PLAY) {
2291
if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2292
return -EINVAL;
2293
} else {
2294
if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2295
return -EINVAL;
2296
}
2297
2298
if (info->left_gain != vol[0]) {
2299
info->left_gain = vol[0];
2300
changed = 1;
2301
}
2302
if (info->right_gain != vol[1]) {
2303
info->right_gain = vol[1];
2304
changed = 1;
2305
}
2306
if (changed) {
2307
/* First mute outputs, and wait 1/8000 sec (125 us)
2308
* to make sure this takes. This avoids clicking noises.
2309
*/
2310
cs4215_setdata(dbri, 1);
2311
udelay(125);
2312
cs4215_setdata(dbri, 0);
2313
}
2314
return changed;
2315
}
2316
2317
static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2318
struct snd_ctl_elem_info *uinfo)
2319
{
2320
int mask = (kcontrol->private_value >> 16) & 0xff;
2321
2322
uinfo->type = (mask == 1) ?
2323
SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2324
uinfo->count = 1;
2325
uinfo->value.integer.min = 0;
2326
uinfo->value.integer.max = mask;
2327
return 0;
2328
}
2329
2330
static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2331
struct snd_ctl_elem_value *ucontrol)
2332
{
2333
struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2334
int elem = kcontrol->private_value & 0xff;
2335
int shift = (kcontrol->private_value >> 8) & 0xff;
2336
int mask = (kcontrol->private_value >> 16) & 0xff;
2337
int invert = (kcontrol->private_value >> 24) & 1;
2338
2339
if (snd_BUG_ON(!dbri))
2340
return -EINVAL;
2341
2342
if (elem < 4)
2343
ucontrol->value.integer.value[0] =
2344
(dbri->mm.data[elem] >> shift) & mask;
2345
else
2346
ucontrol->value.integer.value[0] =
2347
(dbri->mm.ctrl[elem - 4] >> shift) & mask;
2348
2349
if (invert == 1)
2350
ucontrol->value.integer.value[0] =
2351
mask - ucontrol->value.integer.value[0];
2352
return 0;
2353
}
2354
2355
static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2356
struct snd_ctl_elem_value *ucontrol)
2357
{
2358
struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2359
int elem = kcontrol->private_value & 0xff;
2360
int shift = (kcontrol->private_value >> 8) & 0xff;
2361
int mask = (kcontrol->private_value >> 16) & 0xff;
2362
int invert = (kcontrol->private_value >> 24) & 1;
2363
int changed = 0;
2364
unsigned short val;
2365
2366
if (snd_BUG_ON(!dbri))
2367
return -EINVAL;
2368
2369
val = (ucontrol->value.integer.value[0] & mask);
2370
if (invert == 1)
2371
val = mask - val;
2372
val <<= shift;
2373
2374
if (elem < 4) {
2375
dbri->mm.data[elem] = (dbri->mm.data[elem] &
2376
~(mask << shift)) | val;
2377
changed = (val != dbri->mm.data[elem]);
2378
} else {
2379
dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2380
~(mask << shift)) | val;
2381
changed = (val != dbri->mm.ctrl[elem - 4]);
2382
}
2383
2384
dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2385
"mixer-value=%ld, mm-value=0x%x\n",
2386
mask, changed, ucontrol->value.integer.value[0],
2387
dbri->mm.data[elem & 3]);
2388
2389
if (changed) {
2390
/* First mute outputs, and wait 1/8000 sec (125 us)
2391
* to make sure this takes. This avoids clicking noises.
2392
*/
2393
cs4215_setdata(dbri, 1);
2394
udelay(125);
2395
cs4215_setdata(dbri, 0);
2396
}
2397
return changed;
2398
}
2399
2400
/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2401
timeslots. Shift is the bit offset in the timeslot, mask defines the
2402
number of bits. invert is a boolean for use with attenuation.
2403
*/
2404
#define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2405
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
2406
.info = snd_cs4215_info_single, \
2407
.get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2408
.private_value = (entry) | ((shift) << 8) | ((mask) << 16) | \
2409
((invert) << 24) },
2410
2411
static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2412
{
2413
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2414
.name = "Playback Volume",
2415
.info = snd_cs4215_info_volume,
2416
.get = snd_cs4215_get_volume,
2417
.put = snd_cs4215_put_volume,
2418
.private_value = DBRI_PLAY,
2419
},
2420
CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2421
CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2422
CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2423
{
2424
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2425
.name = "Capture Volume",
2426
.info = snd_cs4215_info_volume,
2427
.get = snd_cs4215_get_volume,
2428
.put = snd_cs4215_put_volume,
2429
.private_value = DBRI_REC,
2430
},
2431
/* FIXME: mic/line switch */
2432
CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2433
CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2434
CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2435
CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2436
};
2437
2438
static int __devinit snd_dbri_mixer(struct snd_card *card)
2439
{
2440
int idx, err;
2441
struct snd_dbri *dbri;
2442
2443
if (snd_BUG_ON(!card || !card->private_data))
2444
return -EINVAL;
2445
dbri = card->private_data;
2446
2447
strcpy(card->mixername, card->shortname);
2448
2449
for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2450
err = snd_ctl_add(card,
2451
snd_ctl_new1(&dbri_controls[idx], dbri));
2452
if (err < 0)
2453
return err;
2454
}
2455
2456
for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2457
dbri->stream_info[idx].left_gain = 0;
2458
dbri->stream_info[idx].right_gain = 0;
2459
}
2460
2461
return 0;
2462
}
2463
2464
/****************************************************************************
2465
/proc interface
2466
****************************************************************************/
2467
static void dbri_regs_read(struct snd_info_entry *entry,
2468
struct snd_info_buffer *buffer)
2469
{
2470
struct snd_dbri *dbri = entry->private_data;
2471
2472
snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2473
snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2474
snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2475
snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2476
}
2477
2478
#ifdef DBRI_DEBUG
2479
static void dbri_debug_read(struct snd_info_entry *entry,
2480
struct snd_info_buffer *buffer)
2481
{
2482
struct snd_dbri *dbri = entry->private_data;
2483
int pipe;
2484
snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2485
2486
for (pipe = 0; pipe < 32; pipe++) {
2487
if (pipe_active(dbri, pipe)) {
2488
struct dbri_pipe *pptr = &dbri->pipes[pipe];
2489
snd_iprintf(buffer,
2490
"Pipe %d: %s SDP=0x%x desc=%d, "
2491
"len=%d next %d\n",
2492
pipe,
2493
(pptr->sdp & D_SDP_TO_SER) ? "output" :
2494
"input",
2495
pptr->sdp, pptr->desc,
2496
pptr->length, pptr->nextpipe);
2497
}
2498
}
2499
}
2500
#endif
2501
2502
static void __devinit snd_dbri_proc(struct snd_card *card)
2503
{
2504
struct snd_dbri *dbri = card->private_data;
2505
struct snd_info_entry *entry;
2506
2507
if (!snd_card_proc_new(card, "regs", &entry))
2508
snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2509
2510
#ifdef DBRI_DEBUG
2511
if (!snd_card_proc_new(card, "debug", &entry)) {
2512
snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2513
entry->mode = S_IFREG | S_IRUGO; /* Readable only. */
2514
}
2515
#endif
2516
}
2517
2518
/*
2519
****************************************************************************
2520
**************************** Initialization ********************************
2521
****************************************************************************
2522
*/
2523
static void snd_dbri_free(struct snd_dbri *dbri);
2524
2525
static int __devinit snd_dbri_create(struct snd_card *card,
2526
struct platform_device *op,
2527
int irq, int dev)
2528
{
2529
struct snd_dbri *dbri = card->private_data;
2530
int err;
2531
2532
spin_lock_init(&dbri->lock);
2533
dbri->op = op;
2534
dbri->irq = irq;
2535
2536
dbri->dma = dma_alloc_coherent(&op->dev,
2537
sizeof(struct dbri_dma),
2538
&dbri->dma_dvma, GFP_ATOMIC);
2539
if (!dbri->dma)
2540
return -ENOMEM;
2541
memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2542
2543
dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2544
dbri->dma, dbri->dma_dvma);
2545
2546
/* Map the registers into memory. */
2547
dbri->regs_size = resource_size(&op->resource[0]);
2548
dbri->regs = of_ioremap(&op->resource[0], 0,
2549
dbri->regs_size, "DBRI Registers");
2550
if (!dbri->regs) {
2551
printk(KERN_ERR "DBRI: could not allocate registers\n");
2552
dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2553
(void *)dbri->dma, dbri->dma_dvma);
2554
return -EIO;
2555
}
2556
2557
err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2558
"DBRI audio", dbri);
2559
if (err) {
2560
printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2561
of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2562
dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2563
(void *)dbri->dma, dbri->dma_dvma);
2564
return err;
2565
}
2566
2567
/* Do low level initialization of the DBRI and CS4215 chips */
2568
dbri_initialize(dbri);
2569
err = cs4215_init(dbri);
2570
if (err) {
2571
snd_dbri_free(dbri);
2572
return err;
2573
}
2574
2575
return 0;
2576
}
2577
2578
static void snd_dbri_free(struct snd_dbri *dbri)
2579
{
2580
dprintk(D_GEN, "snd_dbri_free\n");
2581
dbri_reset(dbri);
2582
2583
if (dbri->irq)
2584
free_irq(dbri->irq, dbri);
2585
2586
if (dbri->regs)
2587
of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2588
2589
if (dbri->dma)
2590
dma_free_coherent(&dbri->op->dev,
2591
sizeof(struct dbri_dma),
2592
(void *)dbri->dma, dbri->dma_dvma);
2593
}
2594
2595
static int __devinit dbri_probe(struct platform_device *op)
2596
{
2597
struct snd_dbri *dbri;
2598
struct resource *rp;
2599
struct snd_card *card;
2600
static int dev = 0;
2601
int irq;
2602
int err;
2603
2604
if (dev >= SNDRV_CARDS)
2605
return -ENODEV;
2606
if (!enable[dev]) {
2607
dev++;
2608
return -ENOENT;
2609
}
2610
2611
irq = op->archdata.irqs[0];
2612
if (irq <= 0) {
2613
printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2614
return -ENODEV;
2615
}
2616
2617
err = snd_card_create(index[dev], id[dev], THIS_MODULE,
2618
sizeof(struct snd_dbri), &card);
2619
if (err < 0)
2620
return err;
2621
2622
strcpy(card->driver, "DBRI");
2623
strcpy(card->shortname, "Sun DBRI");
2624
rp = &op->resource[0];
2625
sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2626
card->shortname,
2627
rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2628
2629
err = snd_dbri_create(card, op, irq, dev);
2630
if (err < 0) {
2631
snd_card_free(card);
2632
return err;
2633
}
2634
2635
dbri = card->private_data;
2636
err = snd_dbri_pcm(card);
2637
if (err < 0)
2638
goto _err;
2639
2640
err = snd_dbri_mixer(card);
2641
if (err < 0)
2642
goto _err;
2643
2644
/* /proc file handling */
2645
snd_dbri_proc(card);
2646
dev_set_drvdata(&op->dev, card);
2647
2648
err = snd_card_register(card);
2649
if (err < 0)
2650
goto _err;
2651
2652
printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2653
dev, dbri->regs,
2654
dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2655
dev++;
2656
2657
return 0;
2658
2659
_err:
2660
snd_dbri_free(dbri);
2661
snd_card_free(card);
2662
return err;
2663
}
2664
2665
static int __devexit dbri_remove(struct platform_device *op)
2666
{
2667
struct snd_card *card = dev_get_drvdata(&op->dev);
2668
2669
snd_dbri_free(card->private_data);
2670
snd_card_free(card);
2671
2672
dev_set_drvdata(&op->dev, NULL);
2673
2674
return 0;
2675
}
2676
2677
static const struct of_device_id dbri_match[] = {
2678
{
2679
.name = "SUNW,DBRIe",
2680
},
2681
{
2682
.name = "SUNW,DBRIf",
2683
},
2684
{},
2685
};
2686
2687
MODULE_DEVICE_TABLE(of, dbri_match);
2688
2689
static struct platform_driver dbri_sbus_driver = {
2690
.driver = {
2691
.name = "dbri",
2692
.owner = THIS_MODULE,
2693
.of_match_table = dbri_match,
2694
},
2695
.probe = dbri_probe,
2696
.remove = __devexit_p(dbri_remove),
2697
};
2698
2699
/* Probe for the dbri chip and then attach the driver. */
2700
static int __init dbri_init(void)
2701
{
2702
return platform_driver_register(&dbri_sbus_driver);
2703
}
2704
2705
static void __exit dbri_exit(void)
2706
{
2707
platform_driver_unregister(&dbri_sbus_driver);
2708
}
2709
2710
module_init(dbri_init);
2711
module_exit(dbri_exit);
2712
2713