Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/sound/usb/midi.c
10814 views
1
/*
2
* usbmidi.c - ALSA USB MIDI driver
3
*
4
* Copyright (c) 2002-2009 Clemens Ladisch
5
* All rights reserved.
6
*
7
* Based on the OSS usb-midi driver by NAGANO Daisuke,
8
* NetBSD's umidi driver by Takuya SHIOZAKI,
9
* the "USB Device Class Definition for MIDI Devices" by Roland
10
*
11
* Redistribution and use in source and binary forms, with or without
12
* modification, are permitted provided that the following conditions
13
* are met:
14
* 1. Redistributions of source code must retain the above copyright
15
* notice, this list of conditions, and the following disclaimer,
16
* without modification.
17
* 2. The name of the author may not be used to endorse or promote products
18
* derived from this software without specific prior written permission.
19
*
20
* Alternatively, this software may be distributed and/or modified under the
21
* terms of the GNU General Public License as published by the Free Software
22
* Foundation; either version 2 of the License, or (at your option) any later
23
* version.
24
*
25
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
29
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35
* SUCH DAMAGE.
36
*/
37
38
#include <linux/kernel.h>
39
#include <linux/types.h>
40
#include <linux/bitops.h>
41
#include <linux/interrupt.h>
42
#include <linux/spinlock.h>
43
#include <linux/string.h>
44
#include <linux/init.h>
45
#include <linux/slab.h>
46
#include <linux/timer.h>
47
#include <linux/usb.h>
48
#include <linux/wait.h>
49
#include <linux/usb/audio.h>
50
51
#include <sound/core.h>
52
#include <sound/control.h>
53
#include <sound/rawmidi.h>
54
#include <sound/asequencer.h>
55
#include "usbaudio.h"
56
#include "midi.h"
57
#include "power.h"
58
#include "helper.h"
59
60
/*
61
* define this to log all USB packets
62
*/
63
/* #define DUMP_PACKETS */
64
65
/*
66
* how long to wait after some USB errors, so that khubd can disconnect() us
67
* without too many spurious errors
68
*/
69
#define ERROR_DELAY_JIFFIES (HZ / 10)
70
71
#define OUTPUT_URBS 7
72
#define INPUT_URBS 7
73
74
75
MODULE_AUTHOR("Clemens Ladisch <[email protected]>");
76
MODULE_DESCRIPTION("USB Audio/MIDI helper module");
77
MODULE_LICENSE("Dual BSD/GPL");
78
79
80
struct usb_ms_header_descriptor {
81
__u8 bLength;
82
__u8 bDescriptorType;
83
__u8 bDescriptorSubtype;
84
__u8 bcdMSC[2];
85
__le16 wTotalLength;
86
} __attribute__ ((packed));
87
88
struct usb_ms_endpoint_descriptor {
89
__u8 bLength;
90
__u8 bDescriptorType;
91
__u8 bDescriptorSubtype;
92
__u8 bNumEmbMIDIJack;
93
__u8 baAssocJackID[0];
94
} __attribute__ ((packed));
95
96
struct snd_usb_midi_in_endpoint;
97
struct snd_usb_midi_out_endpoint;
98
struct snd_usb_midi_endpoint;
99
100
struct usb_protocol_ops {
101
void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
102
void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
103
void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
104
void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*);
105
void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*);
106
};
107
108
struct snd_usb_midi {
109
struct usb_device *dev;
110
struct snd_card *card;
111
struct usb_interface *iface;
112
const struct snd_usb_audio_quirk *quirk;
113
struct snd_rawmidi *rmidi;
114
struct usb_protocol_ops* usb_protocol_ops;
115
struct list_head list;
116
struct timer_list error_timer;
117
spinlock_t disc_lock;
118
struct mutex mutex;
119
u32 usb_id;
120
int next_midi_device;
121
122
struct snd_usb_midi_endpoint {
123
struct snd_usb_midi_out_endpoint *out;
124
struct snd_usb_midi_in_endpoint *in;
125
} endpoints[MIDI_MAX_ENDPOINTS];
126
unsigned long input_triggered;
127
unsigned int opened;
128
unsigned char disconnected;
129
130
struct snd_kcontrol *roland_load_ctl;
131
};
132
133
struct snd_usb_midi_out_endpoint {
134
struct snd_usb_midi* umidi;
135
struct out_urb_context {
136
struct urb *urb;
137
struct snd_usb_midi_out_endpoint *ep;
138
} urbs[OUTPUT_URBS];
139
unsigned int active_urbs;
140
unsigned int drain_urbs;
141
int max_transfer; /* size of urb buffer */
142
struct tasklet_struct tasklet;
143
unsigned int next_urb;
144
spinlock_t buffer_lock;
145
146
struct usbmidi_out_port {
147
struct snd_usb_midi_out_endpoint* ep;
148
struct snd_rawmidi_substream *substream;
149
int active;
150
uint8_t cable; /* cable number << 4 */
151
uint8_t state;
152
#define STATE_UNKNOWN 0
153
#define STATE_1PARAM 1
154
#define STATE_2PARAM_1 2
155
#define STATE_2PARAM_2 3
156
#define STATE_SYSEX_0 4
157
#define STATE_SYSEX_1 5
158
#define STATE_SYSEX_2 6
159
uint8_t data[2];
160
} ports[0x10];
161
int current_port;
162
163
wait_queue_head_t drain_wait;
164
};
165
166
struct snd_usb_midi_in_endpoint {
167
struct snd_usb_midi* umidi;
168
struct urb* urbs[INPUT_URBS];
169
struct usbmidi_in_port {
170
struct snd_rawmidi_substream *substream;
171
u8 running_status_length;
172
} ports[0x10];
173
u8 seen_f5;
174
u8 error_resubmit;
175
int current_port;
176
};
177
178
static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep);
179
180
static const uint8_t snd_usbmidi_cin_length[] = {
181
0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
182
};
183
184
/*
185
* Submits the URB, with error handling.
186
*/
187
static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags)
188
{
189
int err = usb_submit_urb(urb, flags);
190
if (err < 0 && err != -ENODEV)
191
snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
192
return err;
193
}
194
195
/*
196
* Error handling for URB completion functions.
197
*/
198
static int snd_usbmidi_urb_error(int status)
199
{
200
switch (status) {
201
/* manually unlinked, or device gone */
202
case -ENOENT:
203
case -ECONNRESET:
204
case -ESHUTDOWN:
205
case -ENODEV:
206
return -ENODEV;
207
/* errors that might occur during unplugging */
208
case -EPROTO:
209
case -ETIME:
210
case -EILSEQ:
211
return -EIO;
212
default:
213
snd_printk(KERN_ERR "urb status %d\n", status);
214
return 0; /* continue */
215
}
216
}
217
218
/*
219
* Receives a chunk of MIDI data.
220
*/
221
static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx,
222
uint8_t* data, int length)
223
{
224
struct usbmidi_in_port* port = &ep->ports[portidx];
225
226
if (!port->substream) {
227
snd_printd("unexpected port %d!\n", portidx);
228
return;
229
}
230
if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
231
return;
232
snd_rawmidi_receive(port->substream, data, length);
233
}
234
235
#ifdef DUMP_PACKETS
236
static void dump_urb(const char *type, const u8 *data, int length)
237
{
238
snd_printk(KERN_DEBUG "%s packet: [", type);
239
for (; length > 0; ++data, --length)
240
printk(" %02x", *data);
241
printk(" ]\n");
242
}
243
#else
244
#define dump_urb(type, data, length) /* nothing */
245
#endif
246
247
/*
248
* Processes the data read from the device.
249
*/
250
static void snd_usbmidi_in_urb_complete(struct urb* urb)
251
{
252
struct snd_usb_midi_in_endpoint* ep = urb->context;
253
254
if (urb->status == 0) {
255
dump_urb("received", urb->transfer_buffer, urb->actual_length);
256
ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
257
urb->actual_length);
258
} else {
259
int err = snd_usbmidi_urb_error(urb->status);
260
if (err < 0) {
261
if (err != -ENODEV) {
262
ep->error_resubmit = 1;
263
mod_timer(&ep->umidi->error_timer,
264
jiffies + ERROR_DELAY_JIFFIES);
265
}
266
return;
267
}
268
}
269
270
urb->dev = ep->umidi->dev;
271
snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
272
}
273
274
static void snd_usbmidi_out_urb_complete(struct urb* urb)
275
{
276
struct out_urb_context *context = urb->context;
277
struct snd_usb_midi_out_endpoint* ep = context->ep;
278
unsigned int urb_index;
279
280
spin_lock(&ep->buffer_lock);
281
urb_index = context - ep->urbs;
282
ep->active_urbs &= ~(1 << urb_index);
283
if (unlikely(ep->drain_urbs)) {
284
ep->drain_urbs &= ~(1 << urb_index);
285
wake_up(&ep->drain_wait);
286
}
287
spin_unlock(&ep->buffer_lock);
288
if (urb->status < 0) {
289
int err = snd_usbmidi_urb_error(urb->status);
290
if (err < 0) {
291
if (err != -ENODEV)
292
mod_timer(&ep->umidi->error_timer,
293
jiffies + ERROR_DELAY_JIFFIES);
294
return;
295
}
296
}
297
snd_usbmidi_do_output(ep);
298
}
299
300
/*
301
* This is called when some data should be transferred to the device
302
* (from one or more substreams).
303
*/
304
static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep)
305
{
306
unsigned int urb_index;
307
struct urb* urb;
308
unsigned long flags;
309
310
spin_lock_irqsave(&ep->buffer_lock, flags);
311
if (ep->umidi->disconnected) {
312
spin_unlock_irqrestore(&ep->buffer_lock, flags);
313
return;
314
}
315
316
urb_index = ep->next_urb;
317
for (;;) {
318
if (!(ep->active_urbs & (1 << urb_index))) {
319
urb = ep->urbs[urb_index].urb;
320
urb->transfer_buffer_length = 0;
321
ep->umidi->usb_protocol_ops->output(ep, urb);
322
if (urb->transfer_buffer_length == 0)
323
break;
324
325
dump_urb("sending", urb->transfer_buffer,
326
urb->transfer_buffer_length);
327
urb->dev = ep->umidi->dev;
328
if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
329
break;
330
ep->active_urbs |= 1 << urb_index;
331
}
332
if (++urb_index >= OUTPUT_URBS)
333
urb_index = 0;
334
if (urb_index == ep->next_urb)
335
break;
336
}
337
ep->next_urb = urb_index;
338
spin_unlock_irqrestore(&ep->buffer_lock, flags);
339
}
340
341
static void snd_usbmidi_out_tasklet(unsigned long data)
342
{
343
struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data;
344
345
snd_usbmidi_do_output(ep);
346
}
347
348
/* called after transfers had been interrupted due to some USB error */
349
static void snd_usbmidi_error_timer(unsigned long data)
350
{
351
struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
352
unsigned int i, j;
353
354
spin_lock(&umidi->disc_lock);
355
if (umidi->disconnected) {
356
spin_unlock(&umidi->disc_lock);
357
return;
358
}
359
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
360
struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
361
if (in && in->error_resubmit) {
362
in->error_resubmit = 0;
363
for (j = 0; j < INPUT_URBS; ++j) {
364
in->urbs[j]->dev = umidi->dev;
365
snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
366
}
367
}
368
if (umidi->endpoints[i].out)
369
snd_usbmidi_do_output(umidi->endpoints[i].out);
370
}
371
spin_unlock(&umidi->disc_lock);
372
}
373
374
/* helper function to send static data that may not DMA-able */
375
static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep,
376
const void *data, int len)
377
{
378
int err = 0;
379
void *buf = kmemdup(data, len, GFP_KERNEL);
380
if (!buf)
381
return -ENOMEM;
382
dump_urb("sending", buf, len);
383
if (ep->urbs[0].urb)
384
err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
385
buf, len, NULL, 250);
386
kfree(buf);
387
return err;
388
}
389
390
/*
391
* Standard USB MIDI protocol: see the spec.
392
* Midiman protocol: like the standard protocol, but the control byte is the
393
* fourth byte in each packet, and uses length instead of CIN.
394
*/
395
396
static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep,
397
uint8_t* buffer, int buffer_length)
398
{
399
int i;
400
401
for (i = 0; i + 3 < buffer_length; i += 4)
402
if (buffer[i] != 0) {
403
int cable = buffer[i] >> 4;
404
int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
405
snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
406
}
407
}
408
409
static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep,
410
uint8_t* buffer, int buffer_length)
411
{
412
int i;
413
414
for (i = 0; i + 3 < buffer_length; i += 4)
415
if (buffer[i + 3] != 0) {
416
int port = buffer[i + 3] >> 4;
417
int length = buffer[i + 3] & 3;
418
snd_usbmidi_input_data(ep, port, &buffer[i], length);
419
}
420
}
421
422
/*
423
* Buggy M-Audio device: running status on input results in a packet that has
424
* the data bytes but not the status byte and that is marked with CIN 4.
425
*/
426
static void snd_usbmidi_maudio_broken_running_status_input(
427
struct snd_usb_midi_in_endpoint* ep,
428
uint8_t* buffer, int buffer_length)
429
{
430
int i;
431
432
for (i = 0; i + 3 < buffer_length; i += 4)
433
if (buffer[i] != 0) {
434
int cable = buffer[i] >> 4;
435
u8 cin = buffer[i] & 0x0f;
436
struct usbmidi_in_port *port = &ep->ports[cable];
437
int length;
438
439
length = snd_usbmidi_cin_length[cin];
440
if (cin == 0xf && buffer[i + 1] >= 0xf8)
441
; /* realtime msg: no running status change */
442
else if (cin >= 0x8 && cin <= 0xe)
443
/* channel msg */
444
port->running_status_length = length - 1;
445
else if (cin == 0x4 &&
446
port->running_status_length != 0 &&
447
buffer[i + 1] < 0x80)
448
/* CIN 4 that is not a SysEx */
449
length = port->running_status_length;
450
else
451
/*
452
* All other msgs cannot begin running status.
453
* (A channel msg sent as two or three CIN 0xF
454
* packets could in theory, but this device
455
* doesn't use this format.)
456
*/
457
port->running_status_length = 0;
458
snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
459
}
460
}
461
462
/*
463
* CME protocol: like the standard protocol, but SysEx commands are sent as a
464
* single USB packet preceded by a 0x0F byte.
465
*/
466
static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
467
uint8_t *buffer, int buffer_length)
468
{
469
if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
470
snd_usbmidi_standard_input(ep, buffer, buffer_length);
471
else
472
snd_usbmidi_input_data(ep, buffer[0] >> 4,
473
&buffer[1], buffer_length - 1);
474
}
475
476
/*
477
* Adds one USB MIDI packet to the output buffer.
478
*/
479
static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
480
uint8_t p1, uint8_t p2, uint8_t p3)
481
{
482
483
uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
484
buf[0] = p0;
485
buf[1] = p1;
486
buf[2] = p2;
487
buf[3] = p3;
488
urb->transfer_buffer_length += 4;
489
}
490
491
/*
492
* Adds one Midiman packet to the output buffer.
493
*/
494
static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
495
uint8_t p1, uint8_t p2, uint8_t p3)
496
{
497
498
uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
499
buf[0] = p1;
500
buf[1] = p2;
501
buf[2] = p3;
502
buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
503
urb->transfer_buffer_length += 4;
504
}
505
506
/*
507
* Converts MIDI commands to USB MIDI packets.
508
*/
509
static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port,
510
uint8_t b, struct urb* urb)
511
{
512
uint8_t p0 = port->cable;
513
void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
514
port->ep->umidi->usb_protocol_ops->output_packet;
515
516
if (b >= 0xf8) {
517
output_packet(urb, p0 | 0x0f, b, 0, 0);
518
} else if (b >= 0xf0) {
519
switch (b) {
520
case 0xf0:
521
port->data[0] = b;
522
port->state = STATE_SYSEX_1;
523
break;
524
case 0xf1:
525
case 0xf3:
526
port->data[0] = b;
527
port->state = STATE_1PARAM;
528
break;
529
case 0xf2:
530
port->data[0] = b;
531
port->state = STATE_2PARAM_1;
532
break;
533
case 0xf4:
534
case 0xf5:
535
port->state = STATE_UNKNOWN;
536
break;
537
case 0xf6:
538
output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
539
port->state = STATE_UNKNOWN;
540
break;
541
case 0xf7:
542
switch (port->state) {
543
case STATE_SYSEX_0:
544
output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
545
break;
546
case STATE_SYSEX_1:
547
output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
548
break;
549
case STATE_SYSEX_2:
550
output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
551
break;
552
}
553
port->state = STATE_UNKNOWN;
554
break;
555
}
556
} else if (b >= 0x80) {
557
port->data[0] = b;
558
if (b >= 0xc0 && b <= 0xdf)
559
port->state = STATE_1PARAM;
560
else
561
port->state = STATE_2PARAM_1;
562
} else { /* b < 0x80 */
563
switch (port->state) {
564
case STATE_1PARAM:
565
if (port->data[0] < 0xf0) {
566
p0 |= port->data[0] >> 4;
567
} else {
568
p0 |= 0x02;
569
port->state = STATE_UNKNOWN;
570
}
571
output_packet(urb, p0, port->data[0], b, 0);
572
break;
573
case STATE_2PARAM_1:
574
port->data[1] = b;
575
port->state = STATE_2PARAM_2;
576
break;
577
case STATE_2PARAM_2:
578
if (port->data[0] < 0xf0) {
579
p0 |= port->data[0] >> 4;
580
port->state = STATE_2PARAM_1;
581
} else {
582
p0 |= 0x03;
583
port->state = STATE_UNKNOWN;
584
}
585
output_packet(urb, p0, port->data[0], port->data[1], b);
586
break;
587
case STATE_SYSEX_0:
588
port->data[0] = b;
589
port->state = STATE_SYSEX_1;
590
break;
591
case STATE_SYSEX_1:
592
port->data[1] = b;
593
port->state = STATE_SYSEX_2;
594
break;
595
case STATE_SYSEX_2:
596
output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
597
port->state = STATE_SYSEX_0;
598
break;
599
}
600
}
601
}
602
603
static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep,
604
struct urb *urb)
605
{
606
int p;
607
608
/* FIXME: lower-numbered ports can starve higher-numbered ports */
609
for (p = 0; p < 0x10; ++p) {
610
struct usbmidi_out_port* port = &ep->ports[p];
611
if (!port->active)
612
continue;
613
while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
614
uint8_t b;
615
if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
616
port->active = 0;
617
break;
618
}
619
snd_usbmidi_transmit_byte(port, b, urb);
620
}
621
}
622
}
623
624
static struct usb_protocol_ops snd_usbmidi_standard_ops = {
625
.input = snd_usbmidi_standard_input,
626
.output = snd_usbmidi_standard_output,
627
.output_packet = snd_usbmidi_output_standard_packet,
628
};
629
630
static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
631
.input = snd_usbmidi_midiman_input,
632
.output = snd_usbmidi_standard_output,
633
.output_packet = snd_usbmidi_output_midiman_packet,
634
};
635
636
static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
637
.input = snd_usbmidi_maudio_broken_running_status_input,
638
.output = snd_usbmidi_standard_output,
639
.output_packet = snd_usbmidi_output_standard_packet,
640
};
641
642
static struct usb_protocol_ops snd_usbmidi_cme_ops = {
643
.input = snd_usbmidi_cme_input,
644
.output = snd_usbmidi_standard_output,
645
.output_packet = snd_usbmidi_output_standard_packet,
646
};
647
648
/*
649
* AKAI MPD16 protocol:
650
*
651
* For control port (endpoint 1):
652
* ==============================
653
* One or more chunks consisting of first byte of (0x10 | msg_len) and then a
654
* SysEx message (msg_len=9 bytes long).
655
*
656
* For data port (endpoint 2):
657
* ===========================
658
* One or more chunks consisting of first byte of (0x20 | msg_len) and then a
659
* MIDI message (msg_len bytes long)
660
*
661
* Messages sent: Active Sense, Note On, Poly Pressure, Control Change.
662
*/
663
static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep,
664
uint8_t *buffer, int buffer_length)
665
{
666
unsigned int pos = 0;
667
unsigned int len = (unsigned int)buffer_length;
668
while (pos < len) {
669
unsigned int port = (buffer[pos] >> 4) - 1;
670
unsigned int msg_len = buffer[pos] & 0x0f;
671
pos++;
672
if (pos + msg_len <= len && port < 2)
673
snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len);
674
pos += msg_len;
675
}
676
}
677
678
#define MAX_AKAI_SYSEX_LEN 9
679
680
static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep,
681
struct urb *urb)
682
{
683
uint8_t *msg;
684
int pos, end, count, buf_end;
685
uint8_t tmp[MAX_AKAI_SYSEX_LEN];
686
struct snd_rawmidi_substream *substream = ep->ports[0].substream;
687
688
if (!ep->ports[0].active)
689
return;
690
691
msg = urb->transfer_buffer + urb->transfer_buffer_length;
692
buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1;
693
694
/* only try adding more data when there's space for at least 1 SysEx */
695
while (urb->transfer_buffer_length < buf_end) {
696
count = snd_rawmidi_transmit_peek(substream,
697
tmp, MAX_AKAI_SYSEX_LEN);
698
if (!count) {
699
ep->ports[0].active = 0;
700
return;
701
}
702
/* try to skip non-SysEx data */
703
for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++)
704
;
705
706
if (pos > 0) {
707
snd_rawmidi_transmit_ack(substream, pos);
708
continue;
709
}
710
711
/* look for the start or end marker */
712
for (end = 1; end < count && tmp[end] < 0xF0; end++)
713
;
714
715
/* next SysEx started before the end of current one */
716
if (end < count && tmp[end] == 0xF0) {
717
/* it's incomplete - drop it */
718
snd_rawmidi_transmit_ack(substream, end);
719
continue;
720
}
721
/* SysEx complete */
722
if (end < count && tmp[end] == 0xF7) {
723
/* queue it, ack it, and get the next one */
724
count = end + 1;
725
msg[0] = 0x10 | count;
726
memcpy(&msg[1], tmp, count);
727
snd_rawmidi_transmit_ack(substream, count);
728
urb->transfer_buffer_length += count + 1;
729
msg += count + 1;
730
continue;
731
}
732
/* less than 9 bytes and no end byte - wait for more */
733
if (count < MAX_AKAI_SYSEX_LEN) {
734
ep->ports[0].active = 0;
735
return;
736
}
737
/* 9 bytes and no end marker in sight - malformed, skip it */
738
snd_rawmidi_transmit_ack(substream, count);
739
}
740
}
741
742
static struct usb_protocol_ops snd_usbmidi_akai_ops = {
743
.input = snd_usbmidi_akai_input,
744
.output = snd_usbmidi_akai_output,
745
};
746
747
/*
748
* Novation USB MIDI protocol: number of data bytes is in the first byte
749
* (when receiving) (+1!) or in the second byte (when sending); data begins
750
* at the third byte.
751
*/
752
753
static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep,
754
uint8_t* buffer, int buffer_length)
755
{
756
if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
757
return;
758
snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
759
}
760
761
static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep,
762
struct urb *urb)
763
{
764
uint8_t* transfer_buffer;
765
int count;
766
767
if (!ep->ports[0].active)
768
return;
769
transfer_buffer = urb->transfer_buffer;
770
count = snd_rawmidi_transmit(ep->ports[0].substream,
771
&transfer_buffer[2],
772
ep->max_transfer - 2);
773
if (count < 1) {
774
ep->ports[0].active = 0;
775
return;
776
}
777
transfer_buffer[0] = 0;
778
transfer_buffer[1] = count;
779
urb->transfer_buffer_length = 2 + count;
780
}
781
782
static struct usb_protocol_ops snd_usbmidi_novation_ops = {
783
.input = snd_usbmidi_novation_input,
784
.output = snd_usbmidi_novation_output,
785
};
786
787
/*
788
* "raw" protocol: just move raw MIDI bytes from/to the endpoint
789
*/
790
791
static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep,
792
uint8_t* buffer, int buffer_length)
793
{
794
snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
795
}
796
797
static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep,
798
struct urb *urb)
799
{
800
int count;
801
802
if (!ep->ports[0].active)
803
return;
804
count = snd_rawmidi_transmit(ep->ports[0].substream,
805
urb->transfer_buffer,
806
ep->max_transfer);
807
if (count < 1) {
808
ep->ports[0].active = 0;
809
return;
810
}
811
urb->transfer_buffer_length = count;
812
}
813
814
static struct usb_protocol_ops snd_usbmidi_raw_ops = {
815
.input = snd_usbmidi_raw_input,
816
.output = snd_usbmidi_raw_output,
817
};
818
819
static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
820
uint8_t *buffer, int buffer_length)
821
{
822
if (buffer_length != 9)
823
return;
824
buffer_length = 8;
825
while (buffer_length && buffer[buffer_length - 1] == 0xFD)
826
buffer_length--;
827
if (buffer_length)
828
snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
829
}
830
831
static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
832
struct urb *urb)
833
{
834
int count;
835
836
if (!ep->ports[0].active)
837
return;
838
switch (snd_usb_get_speed(ep->umidi->dev)) {
839
case USB_SPEED_HIGH:
840
case USB_SPEED_SUPER:
841
count = 1;
842
break;
843
default:
844
count = 2;
845
}
846
count = snd_rawmidi_transmit(ep->ports[0].substream,
847
urb->transfer_buffer,
848
count);
849
if (count < 1) {
850
ep->ports[0].active = 0;
851
return;
852
}
853
854
memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count);
855
urb->transfer_buffer_length = ep->max_transfer;
856
}
857
858
static struct usb_protocol_ops snd_usbmidi_122l_ops = {
859
.input = snd_usbmidi_us122l_input,
860
.output = snd_usbmidi_us122l_output,
861
};
862
863
/*
864
* Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
865
*/
866
867
static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep)
868
{
869
static const u8 init_data[] = {
870
/* initialization magic: "get version" */
871
0xf0,
872
0x00, 0x20, 0x31, /* Emagic */
873
0x64, /* Unitor8 */
874
0x0b, /* version number request */
875
0x00, /* command version */
876
0x00, /* EEPROM, box 0 */
877
0xf7
878
};
879
send_bulk_static_data(ep, init_data, sizeof(init_data));
880
/* while we're at it, pour on more magic */
881
send_bulk_static_data(ep, init_data, sizeof(init_data));
882
}
883
884
static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep)
885
{
886
static const u8 finish_data[] = {
887
/* switch to patch mode with last preset */
888
0xf0,
889
0x00, 0x20, 0x31, /* Emagic */
890
0x64, /* Unitor8 */
891
0x10, /* patch switch command */
892
0x00, /* command version */
893
0x7f, /* to all boxes */
894
0x40, /* last preset in EEPROM */
895
0xf7
896
};
897
send_bulk_static_data(ep, finish_data, sizeof(finish_data));
898
}
899
900
static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep,
901
uint8_t* buffer, int buffer_length)
902
{
903
int i;
904
905
/* FF indicates end of valid data */
906
for (i = 0; i < buffer_length; ++i)
907
if (buffer[i] == 0xff) {
908
buffer_length = i;
909
break;
910
}
911
912
/* handle F5 at end of last buffer */
913
if (ep->seen_f5)
914
goto switch_port;
915
916
while (buffer_length > 0) {
917
/* determine size of data until next F5 */
918
for (i = 0; i < buffer_length; ++i)
919
if (buffer[i] == 0xf5)
920
break;
921
snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
922
buffer += i;
923
buffer_length -= i;
924
925
if (buffer_length <= 0)
926
break;
927
/* assert(buffer[0] == 0xf5); */
928
ep->seen_f5 = 1;
929
++buffer;
930
--buffer_length;
931
932
switch_port:
933
if (buffer_length <= 0)
934
break;
935
if (buffer[0] < 0x80) {
936
ep->current_port = (buffer[0] - 1) & 15;
937
++buffer;
938
--buffer_length;
939
}
940
ep->seen_f5 = 0;
941
}
942
}
943
944
static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep,
945
struct urb *urb)
946
{
947
int port0 = ep->current_port;
948
uint8_t* buf = urb->transfer_buffer;
949
int buf_free = ep->max_transfer;
950
int length, i;
951
952
for (i = 0; i < 0x10; ++i) {
953
/* round-robin, starting at the last current port */
954
int portnum = (port0 + i) & 15;
955
struct usbmidi_out_port* port = &ep->ports[portnum];
956
957
if (!port->active)
958
continue;
959
if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
960
port->active = 0;
961
continue;
962
}
963
964
if (portnum != ep->current_port) {
965
if (buf_free < 2)
966
break;
967
ep->current_port = portnum;
968
buf[0] = 0xf5;
969
buf[1] = (portnum + 1) & 15;
970
buf += 2;
971
buf_free -= 2;
972
}
973
974
if (buf_free < 1)
975
break;
976
length = snd_rawmidi_transmit(port->substream, buf, buf_free);
977
if (length > 0) {
978
buf += length;
979
buf_free -= length;
980
if (buf_free < 1)
981
break;
982
}
983
}
984
if (buf_free < ep->max_transfer && buf_free > 0) {
985
*buf = 0xff;
986
--buf_free;
987
}
988
urb->transfer_buffer_length = ep->max_transfer - buf_free;
989
}
990
991
static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
992
.input = snd_usbmidi_emagic_input,
993
.output = snd_usbmidi_emagic_output,
994
.init_out_endpoint = snd_usbmidi_emagic_init_out,
995
.finish_out_endpoint = snd_usbmidi_emagic_finish_out,
996
};
997
998
999
static void update_roland_altsetting(struct snd_usb_midi* umidi)
1000
{
1001
struct usb_interface *intf;
1002
struct usb_host_interface *hostif;
1003
struct usb_interface_descriptor *intfd;
1004
int is_light_load;
1005
1006
intf = umidi->iface;
1007
is_light_load = intf->cur_altsetting != intf->altsetting;
1008
if (umidi->roland_load_ctl->private_value == is_light_load)
1009
return;
1010
hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
1011
intfd = get_iface_desc(hostif);
1012
snd_usbmidi_input_stop(&umidi->list);
1013
usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1014
intfd->bAlternateSetting);
1015
snd_usbmidi_input_start(&umidi->list);
1016
}
1017
1018
static void substream_open(struct snd_rawmidi_substream *substream, int open)
1019
{
1020
struct snd_usb_midi* umidi = substream->rmidi->private_data;
1021
struct snd_kcontrol *ctl;
1022
1023
mutex_lock(&umidi->mutex);
1024
if (open) {
1025
if (umidi->opened++ == 0 && umidi->roland_load_ctl) {
1026
ctl = umidi->roland_load_ctl;
1027
ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1028
snd_ctl_notify(umidi->card,
1029
SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1030
update_roland_altsetting(umidi);
1031
}
1032
} else {
1033
if (--umidi->opened == 0 && umidi->roland_load_ctl) {
1034
ctl = umidi->roland_load_ctl;
1035
ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1036
snd_ctl_notify(umidi->card,
1037
SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1038
}
1039
}
1040
mutex_unlock(&umidi->mutex);
1041
}
1042
1043
static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
1044
{
1045
struct snd_usb_midi* umidi = substream->rmidi->private_data;
1046
struct usbmidi_out_port* port = NULL;
1047
int i, j;
1048
int err;
1049
1050
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1051
if (umidi->endpoints[i].out)
1052
for (j = 0; j < 0x10; ++j)
1053
if (umidi->endpoints[i].out->ports[j].substream == substream) {
1054
port = &umidi->endpoints[i].out->ports[j];
1055
break;
1056
}
1057
if (!port) {
1058
snd_BUG();
1059
return -ENXIO;
1060
}
1061
err = usb_autopm_get_interface(umidi->iface);
1062
if (err < 0)
1063
return -EIO;
1064
substream->runtime->private_data = port;
1065
port->state = STATE_UNKNOWN;
1066
substream_open(substream, 1);
1067
return 0;
1068
}
1069
1070
static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
1071
{
1072
struct snd_usb_midi* umidi = substream->rmidi->private_data;
1073
1074
substream_open(substream, 0);
1075
usb_autopm_put_interface(umidi->iface);
1076
return 0;
1077
}
1078
1079
static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1080
{
1081
struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data;
1082
1083
port->active = up;
1084
if (up) {
1085
if (port->ep->umidi->disconnected) {
1086
/* gobble up remaining bytes to prevent wait in
1087
* snd_rawmidi_drain_output */
1088
while (!snd_rawmidi_transmit_empty(substream))
1089
snd_rawmidi_transmit_ack(substream, 1);
1090
return;
1091
}
1092
tasklet_schedule(&port->ep->tasklet);
1093
}
1094
}
1095
1096
static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
1097
{
1098
struct usbmidi_out_port* port = substream->runtime->private_data;
1099
struct snd_usb_midi_out_endpoint *ep = port->ep;
1100
unsigned int drain_urbs;
1101
DEFINE_WAIT(wait);
1102
long timeout = msecs_to_jiffies(50);
1103
1104
if (ep->umidi->disconnected)
1105
return;
1106
/*
1107
* The substream buffer is empty, but some data might still be in the
1108
* currently active URBs, so we have to wait for those to complete.
1109
*/
1110
spin_lock_irq(&ep->buffer_lock);
1111
drain_urbs = ep->active_urbs;
1112
if (drain_urbs) {
1113
ep->drain_urbs |= drain_urbs;
1114
do {
1115
prepare_to_wait(&ep->drain_wait, &wait,
1116
TASK_UNINTERRUPTIBLE);
1117
spin_unlock_irq(&ep->buffer_lock);
1118
timeout = schedule_timeout(timeout);
1119
spin_lock_irq(&ep->buffer_lock);
1120
drain_urbs &= ep->drain_urbs;
1121
} while (drain_urbs && timeout);
1122
finish_wait(&ep->drain_wait, &wait);
1123
}
1124
spin_unlock_irq(&ep->buffer_lock);
1125
}
1126
1127
static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1128
{
1129
substream_open(substream, 1);
1130
return 0;
1131
}
1132
1133
static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1134
{
1135
substream_open(substream, 0);
1136
return 0;
1137
}
1138
1139
static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1140
{
1141
struct snd_usb_midi* umidi = substream->rmidi->private_data;
1142
1143
if (up)
1144
set_bit(substream->number, &umidi->input_triggered);
1145
else
1146
clear_bit(substream->number, &umidi->input_triggered);
1147
}
1148
1149
static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1150
.open = snd_usbmidi_output_open,
1151
.close = snd_usbmidi_output_close,
1152
.trigger = snd_usbmidi_output_trigger,
1153
.drain = snd_usbmidi_output_drain,
1154
};
1155
1156
static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1157
.open = snd_usbmidi_input_open,
1158
.close = snd_usbmidi_input_close,
1159
.trigger = snd_usbmidi_input_trigger
1160
};
1161
1162
static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1163
unsigned int buffer_length)
1164
{
1165
usb_free_coherent(umidi->dev, buffer_length,
1166
urb->transfer_buffer, urb->transfer_dma);
1167
usb_free_urb(urb);
1168
}
1169
1170
/*
1171
* Frees an input endpoint.
1172
* May be called when ep hasn't been initialized completely.
1173
*/
1174
static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep)
1175
{
1176
unsigned int i;
1177
1178
for (i = 0; i < INPUT_URBS; ++i)
1179
if (ep->urbs[i])
1180
free_urb_and_buffer(ep->umidi, ep->urbs[i],
1181
ep->urbs[i]->transfer_buffer_length);
1182
kfree(ep);
1183
}
1184
1185
/*
1186
* Creates an input endpoint.
1187
*/
1188
static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi,
1189
struct snd_usb_midi_endpoint_info* ep_info,
1190
struct snd_usb_midi_endpoint* rep)
1191
{
1192
struct snd_usb_midi_in_endpoint* ep;
1193
void* buffer;
1194
unsigned int pipe;
1195
int length;
1196
unsigned int i;
1197
1198
rep->in = NULL;
1199
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1200
if (!ep)
1201
return -ENOMEM;
1202
ep->umidi = umidi;
1203
1204
for (i = 0; i < INPUT_URBS; ++i) {
1205
ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1206
if (!ep->urbs[i]) {
1207
snd_usbmidi_in_endpoint_delete(ep);
1208
return -ENOMEM;
1209
}
1210
}
1211
if (ep_info->in_interval)
1212
pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1213
else
1214
pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1215
length = usb_maxpacket(umidi->dev, pipe, 0);
1216
for (i = 0; i < INPUT_URBS; ++i) {
1217
buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL,
1218
&ep->urbs[i]->transfer_dma);
1219
if (!buffer) {
1220
snd_usbmidi_in_endpoint_delete(ep);
1221
return -ENOMEM;
1222
}
1223
if (ep_info->in_interval)
1224
usb_fill_int_urb(ep->urbs[i], umidi->dev,
1225
pipe, buffer, length,
1226
snd_usbmidi_in_urb_complete,
1227
ep, ep_info->in_interval);
1228
else
1229
usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1230
pipe, buffer, length,
1231
snd_usbmidi_in_urb_complete, ep);
1232
ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1233
}
1234
1235
rep->in = ep;
1236
return 0;
1237
}
1238
1239
/*
1240
* Frees an output endpoint.
1241
* May be called when ep hasn't been initialized completely.
1242
*/
1243
static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep)
1244
{
1245
unsigned int i;
1246
1247
for (i = 0; i < OUTPUT_URBS; ++i)
1248
if (ep->urbs[i].urb) {
1249
free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1250
ep->max_transfer);
1251
ep->urbs[i].urb = NULL;
1252
}
1253
}
1254
1255
static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep)
1256
{
1257
snd_usbmidi_out_endpoint_clear(ep);
1258
kfree(ep);
1259
}
1260
1261
/*
1262
* Creates an output endpoint, and initializes output ports.
1263
*/
1264
static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi,
1265
struct snd_usb_midi_endpoint_info* ep_info,
1266
struct snd_usb_midi_endpoint* rep)
1267
{
1268
struct snd_usb_midi_out_endpoint* ep;
1269
unsigned int i;
1270
unsigned int pipe;
1271
void* buffer;
1272
1273
rep->out = NULL;
1274
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1275
if (!ep)
1276
return -ENOMEM;
1277
ep->umidi = umidi;
1278
1279
for (i = 0; i < OUTPUT_URBS; ++i) {
1280
ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1281
if (!ep->urbs[i].urb) {
1282
snd_usbmidi_out_endpoint_delete(ep);
1283
return -ENOMEM;
1284
}
1285
ep->urbs[i].ep = ep;
1286
}
1287
if (ep_info->out_interval)
1288
pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1289
else
1290
pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1291
switch (umidi->usb_id) {
1292
default:
1293
ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1294
break;
1295
/*
1296
* Various chips declare a packet size larger than 4 bytes, but
1297
* do not actually work with larger packets:
1298
*/
1299
case USB_ID(0x0a92, 0x1020): /* ESI M4U */
1300
case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
1301
case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
1302
case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
1303
case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
1304
case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */
1305
ep->max_transfer = 4;
1306
break;
1307
/*
1308
* Some devices only work with 9 bytes packet size:
1309
*/
1310
case USB_ID(0x0644, 0x800E): /* Tascam US-122L */
1311
case USB_ID(0x0644, 0x800F): /* Tascam US-144 */
1312
ep->max_transfer = 9;
1313
break;
1314
}
1315
for (i = 0; i < OUTPUT_URBS; ++i) {
1316
buffer = usb_alloc_coherent(umidi->dev,
1317
ep->max_transfer, GFP_KERNEL,
1318
&ep->urbs[i].urb->transfer_dma);
1319
if (!buffer) {
1320
snd_usbmidi_out_endpoint_delete(ep);
1321
return -ENOMEM;
1322
}
1323
if (ep_info->out_interval)
1324
usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1325
pipe, buffer, ep->max_transfer,
1326
snd_usbmidi_out_urb_complete,
1327
&ep->urbs[i], ep_info->out_interval);
1328
else
1329
usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1330
pipe, buffer, ep->max_transfer,
1331
snd_usbmidi_out_urb_complete,
1332
&ep->urbs[i]);
1333
ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1334
}
1335
1336
spin_lock_init(&ep->buffer_lock);
1337
tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
1338
init_waitqueue_head(&ep->drain_wait);
1339
1340
for (i = 0; i < 0x10; ++i)
1341
if (ep_info->out_cables & (1 << i)) {
1342
ep->ports[i].ep = ep;
1343
ep->ports[i].cable = i << 4;
1344
}
1345
1346
if (umidi->usb_protocol_ops->init_out_endpoint)
1347
umidi->usb_protocol_ops->init_out_endpoint(ep);
1348
1349
rep->out = ep;
1350
return 0;
1351
}
1352
1353
/*
1354
* Frees everything.
1355
*/
1356
static void snd_usbmidi_free(struct snd_usb_midi* umidi)
1357
{
1358
int i;
1359
1360
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1361
struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1362
if (ep->out)
1363
snd_usbmidi_out_endpoint_delete(ep->out);
1364
if (ep->in)
1365
snd_usbmidi_in_endpoint_delete(ep->in);
1366
}
1367
mutex_destroy(&umidi->mutex);
1368
kfree(umidi);
1369
}
1370
1371
/*
1372
* Unlinks all URBs (must be done before the usb_device is deleted).
1373
*/
1374
void snd_usbmidi_disconnect(struct list_head* p)
1375
{
1376
struct snd_usb_midi* umidi;
1377
unsigned int i, j;
1378
1379
umidi = list_entry(p, struct snd_usb_midi, list);
1380
/*
1381
* an URB's completion handler may start the timer and
1382
* a timer may submit an URB. To reliably break the cycle
1383
* a flag under lock must be used
1384
*/
1385
spin_lock_irq(&umidi->disc_lock);
1386
umidi->disconnected = 1;
1387
spin_unlock_irq(&umidi->disc_lock);
1388
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1389
struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1390
if (ep->out)
1391
tasklet_kill(&ep->out->tasklet);
1392
if (ep->out) {
1393
for (j = 0; j < OUTPUT_URBS; ++j)
1394
usb_kill_urb(ep->out->urbs[j].urb);
1395
if (umidi->usb_protocol_ops->finish_out_endpoint)
1396
umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1397
ep->out->active_urbs = 0;
1398
if (ep->out->drain_urbs) {
1399
ep->out->drain_urbs = 0;
1400
wake_up(&ep->out->drain_wait);
1401
}
1402
}
1403
if (ep->in)
1404
for (j = 0; j < INPUT_URBS; ++j)
1405
usb_kill_urb(ep->in->urbs[j]);
1406
/* free endpoints here; later call can result in Oops */
1407
if (ep->out)
1408
snd_usbmidi_out_endpoint_clear(ep->out);
1409
if (ep->in) {
1410
snd_usbmidi_in_endpoint_delete(ep->in);
1411
ep->in = NULL;
1412
}
1413
}
1414
del_timer_sync(&umidi->error_timer);
1415
}
1416
1417
static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1418
{
1419
struct snd_usb_midi* umidi = rmidi->private_data;
1420
snd_usbmidi_free(umidi);
1421
}
1422
1423
static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi,
1424
int stream, int number)
1425
{
1426
struct list_head* list;
1427
1428
list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
1429
struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list);
1430
if (substream->number == number)
1431
return substream;
1432
}
1433
return NULL;
1434
}
1435
1436
/*
1437
* This list specifies names for ports that do not fit into the standard
1438
* "(product) MIDI (n)" schema because they aren't external MIDI ports,
1439
* such as internal control or synthesizer ports.
1440
*/
1441
static struct port_info {
1442
u32 id;
1443
short int port;
1444
short int voices;
1445
const char *name;
1446
unsigned int seq_flags;
1447
} snd_usbmidi_port_info[] = {
1448
#define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1449
{ .id = USB_ID(vendor, product), \
1450
.port = num, .voices = voices_, \
1451
.name = name_, .seq_flags = flags }
1452
#define EXTERNAL_PORT(vendor, product, num, name) \
1453
PORT_INFO(vendor, product, num, name, 0, \
1454
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1455
SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1456
SNDRV_SEQ_PORT_TYPE_PORT)
1457
#define CONTROL_PORT(vendor, product, num, name) \
1458
PORT_INFO(vendor, product, num, name, 0, \
1459
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1460
SNDRV_SEQ_PORT_TYPE_HARDWARE)
1461
#define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1462
PORT_INFO(vendor, product, num, name, voices, \
1463
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1464
SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1465
SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1466
SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1467
SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1468
SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1469
SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1470
#define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1471
PORT_INFO(vendor, product, num, name, voices, \
1472
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1473
SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1474
SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1475
SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1476
SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1477
SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1478
SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1479
SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1480
/* Roland UA-100 */
1481
CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1482
/* Roland SC-8850 */
1483
SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1484
SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1485
SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1486
SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1487
EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1488
EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1489
/* Roland U-8 */
1490
EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1491
CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1492
/* Roland SC-8820 */
1493
SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1494
SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1495
EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1496
/* Roland SK-500 */
1497
SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1498
SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1499
EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1500
/* Roland SC-D70 */
1501
SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1502
SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1503
EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1504
/* Edirol UM-880 */
1505
CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1506
/* Edirol SD-90 */
1507
ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1508
ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1509
EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1510
EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1511
/* Edirol UM-550 */
1512
CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1513
/* Edirol SD-20 */
1514
ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1515
ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1516
EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1517
/* Edirol SD-80 */
1518
ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1519
ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1520
EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1521
EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1522
/* Edirol UA-700 */
1523
EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1524
CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1525
/* Roland VariOS */
1526
EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1527
EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1528
EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1529
/* Edirol PCR */
1530
EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1531
EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1532
EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1533
/* BOSS GS-10 */
1534
EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1535
CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1536
/* Edirol UA-1000 */
1537
EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1538
CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1539
/* Edirol UR-80 */
1540
EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1541
EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1542
EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1543
/* Edirol PCR-A */
1544
EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1545
EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1546
EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1547
/* Edirol UM-3EX */
1548
CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1549
/* M-Audio MidiSport 8x8 */
1550
CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1551
CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1552
/* MOTU Fastlane */
1553
EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1554
EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1555
/* Emagic Unitor8/AMT8/MT4 */
1556
EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1557
EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1558
EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1559
/* Akai MPD16 */
1560
CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"),
1561
PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0,
1562
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1563
SNDRV_SEQ_PORT_TYPE_HARDWARE),
1564
/* Access Music Virus TI */
1565
EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
1566
PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
1567
SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1568
SNDRV_SEQ_PORT_TYPE_HARDWARE |
1569
SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
1570
};
1571
1572
static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number)
1573
{
1574
int i;
1575
1576
for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1577
if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1578
snd_usbmidi_port_info[i].port == number)
1579
return &snd_usbmidi_port_info[i];
1580
}
1581
return NULL;
1582
}
1583
1584
static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1585
struct snd_seq_port_info *seq_port_info)
1586
{
1587
struct snd_usb_midi *umidi = rmidi->private_data;
1588
struct port_info *port_info;
1589
1590
/* TODO: read port flags from descriptors */
1591
port_info = find_port_info(umidi, number);
1592
if (port_info) {
1593
seq_port_info->type = port_info->seq_flags;
1594
seq_port_info->midi_voices = port_info->voices;
1595
}
1596
}
1597
1598
static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi,
1599
int stream, int number,
1600
struct snd_rawmidi_substream ** rsubstream)
1601
{
1602
struct port_info *port_info;
1603
const char *name_format;
1604
1605
struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number);
1606
if (!substream) {
1607
snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
1608
return;
1609
}
1610
1611
/* TODO: read port name from jack descriptor */
1612
port_info = find_port_info(umidi, number);
1613
name_format = port_info ? port_info->name : "%s MIDI %d";
1614
snprintf(substream->name, sizeof(substream->name),
1615
name_format, umidi->card->shortname, number + 1);
1616
1617
*rsubstream = substream;
1618
}
1619
1620
/*
1621
* Creates the endpoints and their ports.
1622
*/
1623
static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi,
1624
struct snd_usb_midi_endpoint_info* endpoints)
1625
{
1626
int i, j, err;
1627
int out_ports = 0, in_ports = 0;
1628
1629
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1630
if (endpoints[i].out_cables) {
1631
err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
1632
&umidi->endpoints[i]);
1633
if (err < 0)
1634
return err;
1635
}
1636
if (endpoints[i].in_cables) {
1637
err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
1638
&umidi->endpoints[i]);
1639
if (err < 0)
1640
return err;
1641
}
1642
1643
for (j = 0; j < 0x10; ++j) {
1644
if (endpoints[i].out_cables & (1 << j)) {
1645
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
1646
&umidi->endpoints[i].out->ports[j].substream);
1647
++out_ports;
1648
}
1649
if (endpoints[i].in_cables & (1 << j)) {
1650
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
1651
&umidi->endpoints[i].in->ports[j].substream);
1652
++in_ports;
1653
}
1654
}
1655
}
1656
snd_printdd(KERN_INFO "created %d output and %d input ports\n",
1657
out_ports, in_ports);
1658
return 0;
1659
}
1660
1661
/*
1662
* Returns MIDIStreaming device capabilities.
1663
*/
1664
static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi,
1665
struct snd_usb_midi_endpoint_info* endpoints)
1666
{
1667
struct usb_interface* intf;
1668
struct usb_host_interface *hostif;
1669
struct usb_interface_descriptor* intfd;
1670
struct usb_ms_header_descriptor* ms_header;
1671
struct usb_host_endpoint *hostep;
1672
struct usb_endpoint_descriptor* ep;
1673
struct usb_ms_endpoint_descriptor* ms_ep;
1674
int i, epidx;
1675
1676
intf = umidi->iface;
1677
if (!intf)
1678
return -ENXIO;
1679
hostif = &intf->altsetting[0];
1680
intfd = get_iface_desc(hostif);
1681
ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
1682
if (hostif->extralen >= 7 &&
1683
ms_header->bLength >= 7 &&
1684
ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1685
ms_header->bDescriptorSubtype == UAC_HEADER)
1686
snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
1687
ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
1688
else
1689
snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
1690
1691
epidx = 0;
1692
for (i = 0; i < intfd->bNumEndpoints; ++i) {
1693
hostep = &hostif->endpoint[i];
1694
ep = get_ep_desc(hostep);
1695
if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1696
continue;
1697
ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
1698
if (hostep->extralen < 4 ||
1699
ms_ep->bLength < 4 ||
1700
ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
1701
ms_ep->bDescriptorSubtype != UAC_MS_GENERAL)
1702
continue;
1703
if (usb_endpoint_dir_out(ep)) {
1704
if (endpoints[epidx].out_ep) {
1705
if (++epidx >= MIDI_MAX_ENDPOINTS) {
1706
snd_printk(KERN_WARNING "too many endpoints\n");
1707
break;
1708
}
1709
}
1710
endpoints[epidx].out_ep = usb_endpoint_num(ep);
1711
if (usb_endpoint_xfer_int(ep))
1712
endpoints[epidx].out_interval = ep->bInterval;
1713
else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1714
/*
1715
* Low speed bulk transfers don't exist, so
1716
* force interrupt transfers for devices like
1717
* ESI MIDI Mate that try to use them anyway.
1718
*/
1719
endpoints[epidx].out_interval = 1;
1720
endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1721
snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1722
ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1723
} else {
1724
if (endpoints[epidx].in_ep) {
1725
if (++epidx >= MIDI_MAX_ENDPOINTS) {
1726
snd_printk(KERN_WARNING "too many endpoints\n");
1727
break;
1728
}
1729
}
1730
endpoints[epidx].in_ep = usb_endpoint_num(ep);
1731
if (usb_endpoint_xfer_int(ep))
1732
endpoints[epidx].in_interval = ep->bInterval;
1733
else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1734
endpoints[epidx].in_interval = 1;
1735
endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1736
snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1737
ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1738
}
1739
}
1740
return 0;
1741
}
1742
1743
static int roland_load_info(struct snd_kcontrol *kcontrol,
1744
struct snd_ctl_elem_info *info)
1745
{
1746
static const char *const names[] = { "High Load", "Light Load" };
1747
1748
return snd_ctl_enum_info(info, 1, 2, names);
1749
}
1750
1751
static int roland_load_get(struct snd_kcontrol *kcontrol,
1752
struct snd_ctl_elem_value *value)
1753
{
1754
value->value.enumerated.item[0] = kcontrol->private_value;
1755
return 0;
1756
}
1757
1758
static int roland_load_put(struct snd_kcontrol *kcontrol,
1759
struct snd_ctl_elem_value *value)
1760
{
1761
struct snd_usb_midi* umidi = kcontrol->private_data;
1762
int changed;
1763
1764
if (value->value.enumerated.item[0] > 1)
1765
return -EINVAL;
1766
mutex_lock(&umidi->mutex);
1767
changed = value->value.enumerated.item[0] != kcontrol->private_value;
1768
if (changed)
1769
kcontrol->private_value = value->value.enumerated.item[0];
1770
mutex_unlock(&umidi->mutex);
1771
return changed;
1772
}
1773
1774
static struct snd_kcontrol_new roland_load_ctl = {
1775
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1776
.name = "MIDI Input Mode",
1777
.info = roland_load_info,
1778
.get = roland_load_get,
1779
.put = roland_load_put,
1780
.private_value = 1,
1781
};
1782
1783
/*
1784
* On Roland devices, use the second alternate setting to be able to use
1785
* the interrupt input endpoint.
1786
*/
1787
static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi)
1788
{
1789
struct usb_interface* intf;
1790
struct usb_host_interface *hostif;
1791
struct usb_interface_descriptor* intfd;
1792
1793
intf = umidi->iface;
1794
if (!intf || intf->num_altsetting != 2)
1795
return;
1796
1797
hostif = &intf->altsetting[1];
1798
intfd = get_iface_desc(hostif);
1799
if (intfd->bNumEndpoints != 2 ||
1800
(get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
1801
(get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
1802
return;
1803
1804
snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
1805
intfd->bAlternateSetting);
1806
usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1807
intfd->bAlternateSetting);
1808
1809
umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
1810
if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
1811
umidi->roland_load_ctl = NULL;
1812
}
1813
1814
/*
1815
* Try to find any usable endpoints in the interface.
1816
*/
1817
static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi,
1818
struct snd_usb_midi_endpoint_info* endpoint,
1819
int max_endpoints)
1820
{
1821
struct usb_interface* intf;
1822
struct usb_host_interface *hostif;
1823
struct usb_interface_descriptor* intfd;
1824
struct usb_endpoint_descriptor* epd;
1825
int i, out_eps = 0, in_eps = 0;
1826
1827
if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
1828
snd_usbmidi_switch_roland_altsetting(umidi);
1829
1830
if (endpoint[0].out_ep || endpoint[0].in_ep)
1831
return 0;
1832
1833
intf = umidi->iface;
1834
if (!intf || intf->num_altsetting < 1)
1835
return -ENOENT;
1836
hostif = intf->cur_altsetting;
1837
intfd = get_iface_desc(hostif);
1838
1839
for (i = 0; i < intfd->bNumEndpoints; ++i) {
1840
epd = get_endpoint(hostif, i);
1841
if (!usb_endpoint_xfer_bulk(epd) &&
1842
!usb_endpoint_xfer_int(epd))
1843
continue;
1844
if (out_eps < max_endpoints &&
1845
usb_endpoint_dir_out(epd)) {
1846
endpoint[out_eps].out_ep = usb_endpoint_num(epd);
1847
if (usb_endpoint_xfer_int(epd))
1848
endpoint[out_eps].out_interval = epd->bInterval;
1849
++out_eps;
1850
}
1851
if (in_eps < max_endpoints &&
1852
usb_endpoint_dir_in(epd)) {
1853
endpoint[in_eps].in_ep = usb_endpoint_num(epd);
1854
if (usb_endpoint_xfer_int(epd))
1855
endpoint[in_eps].in_interval = epd->bInterval;
1856
++in_eps;
1857
}
1858
}
1859
return (out_eps || in_eps) ? 0 : -ENOENT;
1860
}
1861
1862
/*
1863
* Detects the endpoints for one-port-per-endpoint protocols.
1864
*/
1865
static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi,
1866
struct snd_usb_midi_endpoint_info* endpoints)
1867
{
1868
int err, i;
1869
1870
err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
1871
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1872
if (endpoints[i].out_ep)
1873
endpoints[i].out_cables = 0x0001;
1874
if (endpoints[i].in_ep)
1875
endpoints[i].in_cables = 0x0001;
1876
}
1877
return err;
1878
}
1879
1880
/*
1881
* Detects the endpoints and ports of Yamaha devices.
1882
*/
1883
static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi,
1884
struct snd_usb_midi_endpoint_info* endpoint)
1885
{
1886
struct usb_interface* intf;
1887
struct usb_host_interface *hostif;
1888
struct usb_interface_descriptor* intfd;
1889
uint8_t* cs_desc;
1890
1891
intf = umidi->iface;
1892
if (!intf)
1893
return -ENOENT;
1894
hostif = intf->altsetting;
1895
intfd = get_iface_desc(hostif);
1896
if (intfd->bNumEndpoints < 1)
1897
return -ENOENT;
1898
1899
/*
1900
* For each port there is one MIDI_IN/OUT_JACK descriptor, not
1901
* necessarily with any useful contents. So simply count 'em.
1902
*/
1903
for (cs_desc = hostif->extra;
1904
cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
1905
cs_desc += cs_desc[0]) {
1906
if (cs_desc[1] == USB_DT_CS_INTERFACE) {
1907
if (cs_desc[2] == UAC_MIDI_IN_JACK)
1908
endpoint->in_cables = (endpoint->in_cables << 1) | 1;
1909
else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
1910
endpoint->out_cables = (endpoint->out_cables << 1) | 1;
1911
}
1912
}
1913
if (!endpoint->in_cables && !endpoint->out_cables)
1914
return -ENOENT;
1915
1916
return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
1917
}
1918
1919
/*
1920
* Creates the endpoints and their ports for Midiman devices.
1921
*/
1922
static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi,
1923
struct snd_usb_midi_endpoint_info* endpoint)
1924
{
1925
struct snd_usb_midi_endpoint_info ep_info;
1926
struct usb_interface* intf;
1927
struct usb_host_interface *hostif;
1928
struct usb_interface_descriptor* intfd;
1929
struct usb_endpoint_descriptor* epd;
1930
int cable, err;
1931
1932
intf = umidi->iface;
1933
if (!intf)
1934
return -ENOENT;
1935
hostif = intf->altsetting;
1936
intfd = get_iface_desc(hostif);
1937
/*
1938
* The various MidiSport devices have more or less random endpoint
1939
* numbers, so we have to identify the endpoints by their index in
1940
* the descriptor array, like the driver for that other OS does.
1941
*
1942
* There is one interrupt input endpoint for all input ports, one
1943
* bulk output endpoint for even-numbered ports, and one for odd-
1944
* numbered ports. Both bulk output endpoints have corresponding
1945
* input bulk endpoints (at indices 1 and 3) which aren't used.
1946
*/
1947
if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
1948
snd_printdd(KERN_ERR "not enough endpoints\n");
1949
return -ENOENT;
1950
}
1951
1952
epd = get_endpoint(hostif, 0);
1953
if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
1954
snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
1955
return -ENXIO;
1956
}
1957
epd = get_endpoint(hostif, 2);
1958
if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
1959
snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
1960
return -ENXIO;
1961
}
1962
if (endpoint->out_cables > 0x0001) {
1963
epd = get_endpoint(hostif, 4);
1964
if (!usb_endpoint_dir_out(epd) ||
1965
!usb_endpoint_xfer_bulk(epd)) {
1966
snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
1967
return -ENXIO;
1968
}
1969
}
1970
1971
ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1972
ep_info.out_interval = 0;
1973
ep_info.out_cables = endpoint->out_cables & 0x5555;
1974
err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1975
if (err < 0)
1976
return err;
1977
1978
ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1979
ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
1980
ep_info.in_cables = endpoint->in_cables;
1981
err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1982
if (err < 0)
1983
return err;
1984
1985
if (endpoint->out_cables > 0x0001) {
1986
ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1987
ep_info.out_cables = endpoint->out_cables & 0xaaaa;
1988
err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
1989
if (err < 0)
1990
return err;
1991
}
1992
1993
for (cable = 0; cable < 0x10; ++cable) {
1994
if (endpoint->out_cables & (1 << cable))
1995
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
1996
&umidi->endpoints[cable & 1].out->ports[cable].substream);
1997
if (endpoint->in_cables & (1 << cable))
1998
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
1999
&umidi->endpoints[0].in->ports[cable].substream);
2000
}
2001
return 0;
2002
}
2003
2004
static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
2005
.get_port_info = snd_usbmidi_get_port_info,
2006
};
2007
2008
static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi,
2009
int out_ports, int in_ports)
2010
{
2011
struct snd_rawmidi *rmidi;
2012
int err;
2013
2014
err = snd_rawmidi_new(umidi->card, "USB MIDI",
2015
umidi->next_midi_device++,
2016
out_ports, in_ports, &rmidi);
2017
if (err < 0)
2018
return err;
2019
strcpy(rmidi->name, umidi->card->shortname);
2020
rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
2021
SNDRV_RAWMIDI_INFO_INPUT |
2022
SNDRV_RAWMIDI_INFO_DUPLEX;
2023
rmidi->ops = &snd_usbmidi_ops;
2024
rmidi->private_data = umidi;
2025
rmidi->private_free = snd_usbmidi_rawmidi_free;
2026
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
2027
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
2028
2029
umidi->rmidi = rmidi;
2030
return 0;
2031
}
2032
2033
/*
2034
* Temporarily stop input.
2035
*/
2036
void snd_usbmidi_input_stop(struct list_head* p)
2037
{
2038
struct snd_usb_midi* umidi;
2039
unsigned int i, j;
2040
2041
umidi = list_entry(p, struct snd_usb_midi, list);
2042
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2043
struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
2044
if (ep->in)
2045
for (j = 0; j < INPUT_URBS; ++j)
2046
usb_kill_urb(ep->in->urbs[j]);
2047
}
2048
}
2049
2050
static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep)
2051
{
2052
unsigned int i;
2053
2054
if (!ep)
2055
return;
2056
for (i = 0; i < INPUT_URBS; ++i) {
2057
struct urb* urb = ep->urbs[i];
2058
urb->dev = ep->umidi->dev;
2059
snd_usbmidi_submit_urb(urb, GFP_KERNEL);
2060
}
2061
}
2062
2063
/*
2064
* Resume input after a call to snd_usbmidi_input_stop().
2065
*/
2066
void snd_usbmidi_input_start(struct list_head* p)
2067
{
2068
struct snd_usb_midi* umidi;
2069
int i;
2070
2071
umidi = list_entry(p, struct snd_usb_midi, list);
2072
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2073
snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2074
}
2075
2076
/*
2077
* Creates and registers everything needed for a MIDI streaming interface.
2078
*/
2079
int snd_usbmidi_create(struct snd_card *card,
2080
struct usb_interface* iface,
2081
struct list_head *midi_list,
2082
const struct snd_usb_audio_quirk* quirk)
2083
{
2084
struct snd_usb_midi* umidi;
2085
struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
2086
int out_ports, in_ports;
2087
int i, err;
2088
2089
umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
2090
if (!umidi)
2091
return -ENOMEM;
2092
umidi->dev = interface_to_usbdev(iface);
2093
umidi->card = card;
2094
umidi->iface = iface;
2095
umidi->quirk = quirk;
2096
umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
2097
init_timer(&umidi->error_timer);
2098
spin_lock_init(&umidi->disc_lock);
2099
mutex_init(&umidi->mutex);
2100
umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
2101
le16_to_cpu(umidi->dev->descriptor.idProduct));
2102
umidi->error_timer.function = snd_usbmidi_error_timer;
2103
umidi->error_timer.data = (unsigned long)umidi;
2104
2105
/* detect the endpoint(s) to use */
2106
memset(endpoints, 0, sizeof(endpoints));
2107
switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
2108
case QUIRK_MIDI_STANDARD_INTERFACE:
2109
err = snd_usbmidi_get_ms_info(umidi, endpoints);
2110
if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
2111
umidi->usb_protocol_ops =
2112
&snd_usbmidi_maudio_broken_running_status_ops;
2113
break;
2114
case QUIRK_MIDI_US122L:
2115
umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
2116
/* fall through */
2117
case QUIRK_MIDI_FIXED_ENDPOINT:
2118
memcpy(&endpoints[0], quirk->data,
2119
sizeof(struct snd_usb_midi_endpoint_info));
2120
err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2121
break;
2122
case QUIRK_MIDI_YAMAHA:
2123
err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
2124
break;
2125
case QUIRK_MIDI_MIDIMAN:
2126
umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
2127
memcpy(&endpoints[0], quirk->data,
2128
sizeof(struct snd_usb_midi_endpoint_info));
2129
err = 0;
2130
break;
2131
case QUIRK_MIDI_NOVATION:
2132
umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
2133
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2134
break;
2135
case QUIRK_MIDI_RAW_BYTES:
2136
umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
2137
/*
2138
* Interface 1 contains isochronous endpoints, but with the same
2139
* numbers as in interface 0. Since it is interface 1 that the
2140
* USB core has most recently seen, these descriptors are now
2141
* associated with the endpoint numbers. This will foul up our
2142
* attempts to submit bulk/interrupt URBs to the endpoints in
2143
* interface 0, so we have to make sure that the USB core looks
2144
* again at interface 0 by calling usb_set_interface() on it.
2145
*/
2146
if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */
2147
usb_set_interface(umidi->dev, 0, 0);
2148
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2149
break;
2150
case QUIRK_MIDI_EMAGIC:
2151
umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
2152
memcpy(&endpoints[0], quirk->data,
2153
sizeof(struct snd_usb_midi_endpoint_info));
2154
err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2155
break;
2156
case QUIRK_MIDI_CME:
2157
umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2158
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2159
break;
2160
case QUIRK_MIDI_AKAI:
2161
umidi->usb_protocol_ops = &snd_usbmidi_akai_ops;
2162
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2163
/* endpoint 1 is input-only */
2164
endpoints[1].out_cables = 0;
2165
break;
2166
default:
2167
snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
2168
err = -ENXIO;
2169
break;
2170
}
2171
if (err < 0) {
2172
kfree(umidi);
2173
return err;
2174
}
2175
2176
/* create rawmidi device */
2177
out_ports = 0;
2178
in_ports = 0;
2179
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2180
out_ports += hweight16(endpoints[i].out_cables);
2181
in_ports += hweight16(endpoints[i].in_cables);
2182
}
2183
err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2184
if (err < 0) {
2185
kfree(umidi);
2186
return err;
2187
}
2188
2189
/* create endpoint/port structures */
2190
if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2191
err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2192
else
2193
err = snd_usbmidi_create_endpoints(umidi, endpoints);
2194
if (err < 0) {
2195
snd_usbmidi_free(umidi);
2196
return err;
2197
}
2198
2199
list_add_tail(&umidi->list, midi_list);
2200
2201
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2202
snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2203
return 0;
2204
}
2205
2206
EXPORT_SYMBOL(snd_usbmidi_create);
2207
EXPORT_SYMBOL(snd_usbmidi_input_stop);
2208
EXPORT_SYMBOL(snd_usbmidi_input_start);
2209
EXPORT_SYMBOL(snd_usbmidi_disconnect);
2210
2211