Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bevyengine
GitHub Repository: bevyengine/bevy
Path: blob/main/crates/bevy_ecs/src/storage/blob_array.rs
6604 views
1
use super::blob_vec::array_layout;
2
use crate::storage::blob_vec::array_layout_unchecked;
3
use alloc::alloc::handle_alloc_error;
4
use bevy_ptr::{OwningPtr, Ptr, PtrMut};
5
use bevy_utils::OnDrop;
6
use core::{alloc::Layout, cell::UnsafeCell, num::NonZeroUsize, ptr::NonNull};
7
8
/// A flat, type-erased data storage type similar to a [`BlobVec`](super::blob_vec::BlobVec), but with the length and capacity cut out
9
/// for performance reasons. This type is reliant on its owning type to store the capacity and length information.
10
///
11
/// Used to densely store homogeneous ECS data. A blob is usually just an arbitrary block of contiguous memory without any identity, and
12
/// could be used to represent any arbitrary data (i.e. string, arrays, etc). This type only stores meta-data about the Blob that it stores,
13
/// and a pointer to the location of the start of the array, similar to a C array.
14
pub(super) struct BlobArray {
15
item_layout: Layout,
16
// the `data` ptr's layout is always `array_layout(item_layout, capacity)`
17
data: NonNull<u8>,
18
// None if the underlying type doesn't need to be dropped
19
pub drop: Option<unsafe fn(OwningPtr<'_>)>,
20
#[cfg(debug_assertions)]
21
capacity: usize,
22
}
23
24
impl BlobArray {
25
/// Create a new [`BlobArray`] with a specified `capacity`.
26
/// If `capacity` is 0, no allocations will be made.
27
///
28
/// `drop` is an optional function pointer that is meant to be invoked when any element in the [`BlobArray`]
29
/// should be dropped. For all Rust-based types, this should match 1:1 with the implementation of [`Drop`]
30
/// if present, and should be `None` if `T: !Drop`. For non-Rust based types, this should match any cleanup
31
/// processes typically associated with the stored element.
32
///
33
/// # Safety
34
/// `drop` should be safe to call with an [`OwningPtr`] pointing to any item that's been placed into this [`BlobArray`].
35
/// If `drop` is `None`, the items will be leaked. This should generally be set as None based on [`needs_drop`].
36
///
37
/// [`needs_drop`]: std::mem::needs_drop
38
pub unsafe fn with_capacity(
39
item_layout: Layout,
40
drop_fn: Option<unsafe fn(OwningPtr<'_>)>,
41
capacity: usize,
42
) -> Self {
43
if capacity == 0 {
44
let align = NonZeroUsize::new(item_layout.align()).expect("alignment must be > 0");
45
let data = bevy_ptr::dangling_with_align(align);
46
Self {
47
item_layout,
48
drop: drop_fn,
49
data,
50
#[cfg(debug_assertions)]
51
capacity,
52
}
53
} else {
54
let mut arr = Self::with_capacity(item_layout, drop_fn, 0);
55
// SAFETY: `capacity` > 0
56
unsafe { arr.alloc(NonZeroUsize::new_unchecked(capacity)) }
57
arr
58
}
59
}
60
61
/// Returns the [`Layout`] of the element type stored in the vector.
62
#[inline]
63
pub fn layout(&self) -> Layout {
64
self.item_layout
65
}
66
67
/// Return `true` if this [`BlobArray`] stores `ZSTs`.
68
pub fn is_zst(&self) -> bool {
69
self.item_layout.size() == 0
70
}
71
72
/// Returns a reference to the element at `index`, without doing bounds checking.
73
///
74
/// *`len` refers to the length of the array, the number of elements that have been initialized, and are safe to read.
75
/// Just like [`Vec::len`], or [`BlobVec::len`](super::blob_vec::BlobVec::len).*
76
///
77
/// # Safety
78
/// - The element at index `index` is safe to access.
79
/// (If the safety requirements of every method that has been used on `Self` have been fulfilled, the caller just needs to ensure that `index` < `len`)
80
///
81
/// [`Vec::len`]: alloc::vec::Vec::len
82
#[inline]
83
pub unsafe fn get_unchecked(&self, index: usize) -> Ptr<'_> {
84
#[cfg(debug_assertions)]
85
debug_assert!(index < self.capacity);
86
let size = self.item_layout.size();
87
// SAFETY:
88
// - The caller ensures that `index` fits in this array,
89
// so this operation will not overflow the original allocation.
90
// - `size` is a multiple of the erased type's alignment,
91
// so adding a multiple of `size` will preserve alignment.
92
unsafe { self.get_ptr().byte_add(index * size) }
93
}
94
95
/// Returns a mutable reference to the element at `index`, without doing bounds checking.
96
///
97
/// *`len` refers to the length of the array, the number of elements that have been initialized, and are safe to read.
98
/// Just like [`Vec::len`], or [`BlobVec::len`](super::blob_vec::BlobVec::len).*
99
///
100
/// # Safety
101
/// - The element with at index `index` is safe to access.
102
/// (If the safety requirements of every method that has been used on `Self` have been fulfilled, the caller just needs to ensure that `index` < `len`)
103
///
104
/// [`Vec::len`]: alloc::vec::Vec::len
105
#[inline]
106
pub unsafe fn get_unchecked_mut(&mut self, index: usize) -> PtrMut<'_> {
107
#[cfg(debug_assertions)]
108
debug_assert!(index < self.capacity);
109
let size = self.item_layout.size();
110
// SAFETY:
111
// - The caller ensures that `index` fits in this vector,
112
// so this operation will not overflow the original allocation.
113
// - `size` is a multiple of the erased type's alignment,
114
// so adding a multiple of `size` will preserve alignment.
115
unsafe { self.get_ptr_mut().byte_add(index * size) }
116
}
117
118
/// Gets a [`Ptr`] to the start of the array
119
#[inline]
120
pub fn get_ptr(&self) -> Ptr<'_> {
121
// SAFETY: the inner data will remain valid for as long as 'self.
122
unsafe { Ptr::new(self.data) }
123
}
124
125
/// Gets a [`PtrMut`] to the start of the array
126
#[inline]
127
pub fn get_ptr_mut(&mut self) -> PtrMut<'_> {
128
// SAFETY: the inner data will remain valid for as long as 'self.
129
unsafe { PtrMut::new(self.data) }
130
}
131
132
/// Get a slice of the first `slice_len` elements in [`BlobArray`] as if it were an array with elements of type `T`
133
/// To get a slice to the entire array, the caller must plug `len` in `slice_len`.
134
///
135
/// *`len` refers to the length of the array, the number of elements that have been initialized, and are safe to read.
136
/// Just like [`Vec::len`], or [`BlobVec::len`](super::blob_vec::BlobVec::len).*
137
///
138
/// # Safety
139
/// - The type `T` must be the type of the items in this [`BlobArray`].
140
/// - `slice_len` <= `len`
141
///
142
/// [`Vec::len`]: alloc::vec::Vec::len
143
pub unsafe fn get_sub_slice<T>(&self, slice_len: usize) -> &[UnsafeCell<T>] {
144
#[cfg(debug_assertions)]
145
debug_assert!(slice_len <= self.capacity);
146
// SAFETY: the inner data will remain valid for as long as 'self.
147
unsafe {
148
core::slice::from_raw_parts(self.data.as_ptr() as *const UnsafeCell<T>, slice_len)
149
}
150
}
151
152
/// Clears the array, i.e. removing (and dropping) all of the elements.
153
/// Note that this method has no effect on the allocated capacity of the vector.
154
///
155
/// Note that this method will behave exactly the same as [`Vec::clear`].
156
///
157
/// # Safety
158
/// - For every element with index `i`, if `i` < `len`: It must be safe to call [`Self::get_unchecked_mut`] with `i`.
159
/// (If the safety requirements of every method that has been used on `Self` have been fulfilled, the caller just needs to ensure that `len` is correct.)
160
///
161
/// [`Vec::clear`]: alloc::vec::Vec::clear
162
pub unsafe fn clear(&mut self, len: usize) {
163
#[cfg(debug_assertions)]
164
debug_assert!(self.capacity >= len);
165
if let Some(drop) = self.drop {
166
// We set `self.drop` to `None` before dropping elements for unwind safety. This ensures we don't
167
// accidentally drop elements twice in the event of a drop impl panicking.
168
self.drop = None;
169
let size = self.item_layout.size();
170
for i in 0..len {
171
// SAFETY:
172
// * 0 <= `i` < `len`, so `i * size` must be in bounds for the allocation.
173
// * `size` is a multiple of the erased type's alignment,
174
// so adding a multiple of `size` will preserve alignment.
175
// * The item is left unreachable so it can be safely promoted to an `OwningPtr`.
176
let item = unsafe { self.get_ptr_mut().byte_add(i * size).promote() };
177
// SAFETY: `item` was obtained from this `BlobArray`, so its underlying type must match `drop`.
178
unsafe { drop(item) };
179
}
180
self.drop = Some(drop);
181
}
182
}
183
184
/// Because this method needs parameters, it can't be the implementation of the `Drop` trait.
185
/// The owner of this [`BlobArray`] must call this method with the correct information.
186
///
187
/// # Safety
188
/// - `cap` and `len` are indeed the capacity and length of this [`BlobArray`]
189
/// - This [`BlobArray`] mustn't be used after calling this method.
190
pub unsafe fn drop(&mut self, cap: usize, len: usize) {
191
#[cfg(debug_assertions)]
192
debug_assert_eq!(self.capacity, cap);
193
if cap != 0 {
194
self.clear(len);
195
if !self.is_zst() {
196
let layout =
197
array_layout(&self.item_layout, cap).expect("array layout should be valid");
198
alloc::alloc::dealloc(self.data.as_ptr().cast(), layout);
199
}
200
#[cfg(debug_assertions)]
201
{
202
self.capacity = 0;
203
}
204
}
205
}
206
207
/// Drops the last element in this [`BlobArray`].
208
///
209
/// # Safety
210
// - `last_element_index` must correspond to the last element in the array.
211
// - After this method is called, the last element must not be used
212
// unless [`Self::initialize_unchecked`] is called to set the value of the last element.
213
pub unsafe fn drop_last_element(&mut self, last_element_index: usize) {
214
#[cfg(debug_assertions)]
215
debug_assert!(self.capacity > last_element_index);
216
if let Some(drop) = self.drop {
217
// We set `self.drop` to `None` before dropping elements for unwind safety. This ensures we don't
218
// accidentally drop elements twice in the event of a drop impl panicking.
219
self.drop = None;
220
// SAFETY:
221
let item = self.get_unchecked_mut(last_element_index).promote();
222
// SAFETY:
223
unsafe { drop(item) };
224
self.drop = Some(drop);
225
}
226
}
227
228
/// Allocate a block of memory for the array. This should be used to initialize the array, do not use this
229
/// method if there are already elements stored in the array - use [`Self::realloc`] instead.
230
pub(super) fn alloc(&mut self, capacity: NonZeroUsize) {
231
#[cfg(debug_assertions)]
232
debug_assert_eq!(self.capacity, 0);
233
if !self.is_zst() {
234
let new_layout = array_layout(&self.item_layout, capacity.get())
235
.expect("array layout should be valid");
236
// SAFETY: layout has non-zero size because capacity > 0, and the blob isn't ZST (`self.is_zst` == false)
237
let new_data = unsafe { alloc::alloc::alloc(new_layout) };
238
self.data = NonNull::new(new_data).unwrap_or_else(|| handle_alloc_error(new_layout));
239
}
240
#[cfg(debug_assertions)]
241
{
242
self.capacity = capacity.into();
243
}
244
}
245
246
/// Reallocate memory for this array.
247
/// For example, if the length (number of stored elements) reached the capacity (number of elements the current allocation can store),
248
/// you might want to use this method to increase the allocation, so more data can be stored in the array.
249
///
250
/// # Safety
251
/// - `current_capacity` is indeed the current capacity of this array.
252
/// - After calling this method, the caller must update their saved capacity to reflect the change.
253
pub(super) unsafe fn realloc(
254
&mut self,
255
current_capacity: NonZeroUsize,
256
new_capacity: NonZeroUsize,
257
) {
258
#[cfg(debug_assertions)]
259
debug_assert_eq!(self.capacity, current_capacity.get());
260
if !self.is_zst() {
261
let new_layout = array_layout(&self.item_layout, new_capacity.get())
262
.expect("array layout should be valid");
263
// SAFETY:
264
// - ptr was be allocated via this allocator
265
// - the layout used to previously allocate this array is equivalent to `array_layout(&self.item_layout, current_capacity.get())`
266
// - `item_layout.size() > 0` (`self.is_zst`==false) and `new_capacity > 0`, so the layout size is non-zero
267
// - "new_size, when rounded up to the nearest multiple of layout.align(), must not overflow (i.e., the rounded value must be less than usize::MAX)",
268
// since the item size is always a multiple of its align, the rounding cannot happen
269
// here and the overflow is handled in `array_layout`
270
let new_data = unsafe {
271
alloc::alloc::realloc(
272
self.get_ptr_mut().as_ptr(),
273
// SAFETY: This is the Layout of the current array, it must be valid, if it hadn't have been, there would have been a panic on a previous allocation
274
array_layout_unchecked(&self.item_layout, current_capacity.get()),
275
new_layout.size(),
276
)
277
};
278
self.data = NonNull::new(new_data).unwrap_or_else(|| handle_alloc_error(new_layout));
279
}
280
#[cfg(debug_assertions)]
281
{
282
self.capacity = new_capacity.into();
283
}
284
}
285
286
/// Initializes the value at `index` to `value`. This function does not do any bounds checking.
287
///
288
/// # Safety
289
/// - `index` must be in bounds (`index` < capacity)
290
/// - The [`Layout`] of the value must match the layout of the blobs stored in this array,
291
/// and it must be safe to use the `drop` function of this [`BlobArray`] to drop `value`.
292
/// - `value` must not point to the same value that is being initialized.
293
#[inline]
294
pub unsafe fn initialize_unchecked(&mut self, index: usize, value: OwningPtr<'_>) {
295
#[cfg(debug_assertions)]
296
debug_assert!(self.capacity > index);
297
let size = self.item_layout.size();
298
let dst = self.get_unchecked_mut(index);
299
core::ptr::copy::<u8>(value.as_ptr(), dst.as_ptr(), size);
300
}
301
302
/// Replaces the value at `index` with `value`. This function does not do any bounds checking.
303
///
304
/// # Safety
305
/// - Index must be in-bounds (`index` < `len`)
306
/// - `value`'s [`Layout`] must match this [`BlobArray`]'s `item_layout`,
307
/// and it must be safe to use the `drop` function of this [`BlobArray`] to drop `value`.
308
/// - `value` must not point to the same value that is being replaced.
309
pub unsafe fn replace_unchecked(&mut self, index: usize, value: OwningPtr<'_>) {
310
#[cfg(debug_assertions)]
311
debug_assert!(self.capacity > index);
312
// Pointer to the value in the vector that will get replaced.
313
// SAFETY: The caller ensures that `index` fits in this vector.
314
let destination = NonNull::from(unsafe { self.get_unchecked_mut(index) });
315
let source = value.as_ptr();
316
317
if let Some(drop) = self.drop {
318
// We set `self.drop` to `None` before dropping elements for unwind safety. This ensures we don't
319
// accidentally drop elements twice in the event of a drop impl panicking.
320
self.drop = None;
321
322
// Transfer ownership of the old value out of the vector, so it can be dropped.
323
// SAFETY:
324
// - `destination` was obtained from a `PtrMut` in this vector, which ensures it is non-null,
325
// well-aligned for the underlying type, and has proper provenance.
326
// - The storage location will get overwritten with `value` later, which ensures
327
// that the element will not get observed or double dropped later.
328
// - If a panic occurs, `self.len` will remain `0`, which ensures a double-drop
329
// does not occur. Instead, all elements will be forgotten.
330
let old_value = unsafe { OwningPtr::new(destination) };
331
332
// This closure will run in case `drop()` panics,
333
// which ensures that `value` does not get forgotten.
334
let on_unwind = OnDrop::new(|| drop(value));
335
336
drop(old_value);
337
338
// If the above code does not panic, make sure that `value` doesn't get dropped.
339
core::mem::forget(on_unwind);
340
341
self.drop = Some(drop);
342
}
343
344
// Copy the new value into the vector, overwriting the previous value.
345
// SAFETY:
346
// - `source` and `destination` were obtained from `OwningPtr`s, which ensures they are
347
// valid for both reads and writes.
348
// - The value behind `source` will only be dropped if the above branch panics,
349
// so it must still be initialized and it is safe to transfer ownership into the vector.
350
// - `source` and `destination` were obtained from different memory locations,
351
// both of which we have exclusive access to, so they are guaranteed not to overlap.
352
unsafe {
353
core::ptr::copy_nonoverlapping::<u8>(
354
source,
355
destination.as_ptr(),
356
self.item_layout.size(),
357
);
358
}
359
}
360
361
/// This method will swap two elements in the array, and return the one at `index_to_remove`.
362
/// It is the caller's responsibility to drop the returned pointer, if that is desirable.
363
///
364
/// # Safety
365
/// - `index_to_keep` must be safe to access (within the bounds of the length of the array).
366
/// - `index_to_remove` must be safe to access (within the bounds of the length of the array).
367
/// - `index_to_remove` != `index_to_keep`
368
/// - The caller should address the inconsistent state of the array that has occurred after the swap, either:
369
/// 1) initialize a different value in `index_to_keep`
370
/// 2) update the saved length of the array if `index_to_keep` was the last element.
371
#[inline]
372
#[must_use = "The returned pointer should be used to drop the removed element"]
373
pub unsafe fn swap_remove_unchecked(
374
&mut self,
375
index_to_remove: usize,
376
index_to_keep: usize,
377
) -> OwningPtr<'_> {
378
#[cfg(debug_assertions)]
379
{
380
debug_assert!(self.capacity > index_to_keep);
381
debug_assert!(self.capacity > index_to_remove);
382
}
383
if index_to_remove != index_to_keep {
384
return self.swap_remove_unchecked_nonoverlapping(index_to_remove, index_to_keep);
385
}
386
// Now the element that used to be in index `index_to_remove` is now in index `index_to_keep` (after swap)
387
// If we are storing ZSTs than the index doesn't actually matter because the size is 0.
388
self.get_unchecked_mut(index_to_keep).promote()
389
}
390
391
/// The same as [`Self::swap_remove_unchecked`] but the two elements must non-overlapping.
392
///
393
/// # Safety
394
/// - `index_to_keep` must be safe to access (within the bounds of the length of the array).
395
/// - `index_to_remove` must be safe to access (within the bounds of the length of the array).
396
/// - `index_to_remove` != `index_to_keep`
397
/// - The caller should address the inconsistent state of the array that has occurred after the swap, either:
398
/// 1) initialize a different value in `index_to_keep`
399
/// 2) update the saved length of the array if `index_to_keep` was the last element.
400
#[inline]
401
pub unsafe fn swap_remove_unchecked_nonoverlapping(
402
&mut self,
403
index_to_remove: usize,
404
index_to_keep: usize,
405
) -> OwningPtr<'_> {
406
#[cfg(debug_assertions)]
407
{
408
debug_assert!(self.capacity > index_to_keep);
409
debug_assert!(self.capacity > index_to_remove);
410
debug_assert_ne!(index_to_keep, index_to_remove);
411
}
412
debug_assert_ne!(index_to_keep, index_to_remove);
413
core::ptr::swap_nonoverlapping::<u8>(
414
self.get_unchecked_mut(index_to_keep).as_ptr(),
415
self.get_unchecked_mut(index_to_remove).as_ptr(),
416
self.item_layout.size(),
417
);
418
// Now the element that used to be in index `index_to_remove` is now in index `index_to_keep` (after swap)
419
// If we are storing ZSTs than the index doesn't actually matter because the size is 0.
420
self.get_unchecked_mut(index_to_keep).promote()
421
}
422
423
/// This method will call [`Self::swap_remove_unchecked`] and drop the result.
424
///
425
/// # Safety
426
/// - `index_to_keep` must be safe to access (within the bounds of the length of the array).
427
/// - `index_to_remove` must be safe to access (within the bounds of the length of the array).
428
/// - `index_to_remove` != `index_to_keep`
429
/// - The caller should address the inconsistent state of the array that has occurred after the swap, either:
430
/// 1) initialize a different value in `index_to_keep`
431
/// 2) update the saved length of the array if `index_to_keep` was the last element.
432
#[inline]
433
pub unsafe fn swap_remove_and_drop_unchecked(
434
&mut self,
435
index_to_remove: usize,
436
index_to_keep: usize,
437
) {
438
#[cfg(debug_assertions)]
439
{
440
debug_assert!(self.capacity > index_to_keep);
441
debug_assert!(self.capacity > index_to_remove);
442
}
443
let drop = self.drop;
444
let value = self.swap_remove_unchecked(index_to_remove, index_to_keep);
445
if let Some(drop) = drop {
446
drop(value);
447
}
448
}
449
450
/// The same as [`Self::swap_remove_and_drop_unchecked`] but the two elements must non-overlapping.
451
///
452
/// # Safety
453
/// - `index_to_keep` must be safe to access (within the bounds of the length of the array).
454
/// - `index_to_remove` must be safe to access (within the bounds of the length of the array).
455
/// - `index_to_remove` != `index_to_keep`
456
/// - The caller should address the inconsistent state of the array that has occurred after the swap, either:
457
/// 1) initialize a different value in `index_to_keep`
458
/// 2) update the saved length of the array if `index_to_keep` was the last element.
459
#[inline]
460
pub unsafe fn swap_remove_and_drop_unchecked_nonoverlapping(
461
&mut self,
462
index_to_remove: usize,
463
index_to_keep: usize,
464
) {
465
#[cfg(debug_assertions)]
466
{
467
debug_assert!(self.capacity > index_to_keep);
468
debug_assert!(self.capacity > index_to_remove);
469
debug_assert_ne!(index_to_keep, index_to_remove);
470
}
471
let drop = self.drop;
472
let value = self.swap_remove_unchecked_nonoverlapping(index_to_remove, index_to_keep);
473
if let Some(drop) = drop {
474
drop(value);
475
}
476
}
477
}
478
479
#[cfg(test)]
480
mod tests {
481
use bevy_ecs::prelude::*;
482
483
#[derive(Component)]
484
struct PanicOnDrop;
485
486
impl Drop for PanicOnDrop {
487
fn drop(&mut self) {
488
panic!("PanicOnDrop is being Dropped");
489
}
490
}
491
492
#[test]
493
#[should_panic(expected = "PanicOnDrop is being Dropped")]
494
fn make_sure_zst_components_get_dropped() {
495
let mut world = World::new();
496
497
world.spawn(PanicOnDrop);
498
}
499
}
500
501