Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bevyengine
GitHub Repository: bevyengine/bevy
Path: blob/main/crates/bevy_math/src/bounding/bounded2d/primitive_impls.rs
6598 views
1
//! Contains [`Bounded2d`] implementations for [geometric primitives](crate::primitives).
2
3
use crate::{
4
bounding::BoundingVolume,
5
ops,
6
primitives::{
7
Annulus, Arc2d, Capsule2d, Circle, CircularSector, CircularSegment, Ellipse, Line2d,
8
Plane2d, Rectangle, RegularPolygon, Rhombus, Segment2d, Triangle2d,
9
},
10
Dir2, Isometry2d, Mat2, Rot2, Vec2,
11
};
12
use core::f32::consts::{FRAC_PI_2, PI, TAU};
13
14
#[cfg(feature = "alloc")]
15
use crate::primitives::{ConvexPolygon, Polygon, Polyline2d};
16
17
use smallvec::SmallVec;
18
19
use super::{Aabb2d, Bounded2d, BoundingCircle};
20
21
impl Bounded2d for Circle {
22
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
23
let isometry = isometry.into();
24
Aabb2d::new(isometry.translation, Vec2::splat(self.radius))
25
}
26
27
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
28
let isometry = isometry.into();
29
BoundingCircle::new(isometry.translation, self.radius)
30
}
31
}
32
33
// Compute the axis-aligned bounding points of a rotated arc, used for computing the AABB of arcs and derived shapes.
34
// The return type has room for 7 points so that the CircularSector code can add an additional point.
35
#[inline]
36
fn arc_bounding_points(arc: Arc2d, rotation: impl Into<Rot2>) -> SmallVec<[Vec2; 7]> {
37
// Otherwise, the extreme points will always be either the endpoints or the axis-aligned extrema of the arc's circle.
38
// We need to compute which axis-aligned extrema are actually contained within the rotated arc.
39
let mut bounds = SmallVec::<[Vec2; 7]>::new();
40
let rotation = rotation.into();
41
bounds.push(rotation * arc.left_endpoint());
42
bounds.push(rotation * arc.right_endpoint());
43
44
// The half-angles are measured from a starting point of π/2, being the angle of Vec2::Y.
45
// Compute the normalized angles of the endpoints with the rotation taken into account, and then
46
// check if we are looking for an angle that is between or outside them.
47
let left_angle = ops::rem_euclid(FRAC_PI_2 + arc.half_angle + rotation.as_radians(), TAU);
48
let right_angle = ops::rem_euclid(FRAC_PI_2 - arc.half_angle + rotation.as_radians(), TAU);
49
let inverted = left_angle < right_angle;
50
for extremum in [Vec2::X, Vec2::Y, Vec2::NEG_X, Vec2::NEG_Y] {
51
let angle = ops::rem_euclid(extremum.to_angle(), TAU);
52
// If inverted = true, then right_angle > left_angle, so we are looking for an angle that is not between them.
53
// There's a chance that this condition fails due to rounding error, if the endpoint angle is juuuust shy of the axis.
54
// But in that case, the endpoint itself is within rounding error of the axis and will define the bounds just fine.
55
let angle_within_parameters = if inverted {
56
angle >= right_angle || angle <= left_angle
57
} else {
58
angle >= right_angle && angle <= left_angle
59
};
60
if angle_within_parameters {
61
bounds.push(extremum * arc.radius);
62
}
63
}
64
bounds
65
}
66
67
impl Bounded2d for Arc2d {
68
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
69
// If our arc covers more than a circle, just return the bounding box of the circle.
70
if self.half_angle >= PI {
71
return Circle::new(self.radius).aabb_2d(isometry);
72
}
73
74
let isometry = isometry.into();
75
76
Aabb2d::from_point_cloud(
77
Isometry2d::from_translation(isometry.translation),
78
&arc_bounding_points(*self, isometry.rotation),
79
)
80
}
81
82
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
83
let isometry = isometry.into();
84
85
// There are two possibilities for the bounding circle.
86
if self.is_major() {
87
// If the arc is major, then the widest distance between two points is a diameter of the arc's circle;
88
// therefore, that circle is the bounding radius.
89
BoundingCircle::new(isometry.translation, self.radius)
90
} else {
91
// Otherwise, the widest distance between two points is the chord,
92
// so a circle of that diameter around the midpoint will contain the entire arc.
93
let center = isometry.rotation * self.chord_midpoint();
94
BoundingCircle::new(center + isometry.translation, self.half_chord_length())
95
}
96
}
97
}
98
99
impl Bounded2d for CircularSector {
100
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
101
let isometry = isometry.into();
102
103
// If our sector covers more than a circle, just return the bounding box of the circle.
104
if self.half_angle() >= PI {
105
return Circle::new(self.radius()).aabb_2d(isometry);
106
}
107
108
// Otherwise, we use the same logic as for Arc2d, above, just with the circle's center as an additional possibility.
109
let mut bounds = arc_bounding_points(self.arc, isometry.rotation);
110
bounds.push(Vec2::ZERO);
111
112
Aabb2d::from_point_cloud(Isometry2d::from_translation(isometry.translation), &bounds)
113
}
114
115
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
116
if self.arc.is_major() {
117
let isometry = isometry.into();
118
119
// If the arc is major, that is, greater than a semicircle,
120
// then bounding circle is just the circle defining the sector.
121
BoundingCircle::new(isometry.translation, self.arc.radius)
122
} else {
123
// However, when the arc is minor,
124
// we need our bounding circle to include both endpoints of the arc as well as the circle center.
125
// This means we need the circumcircle of those three points.
126
// The circumcircle will always have a greater curvature than the circle itself, so it will contain
127
// the entire circular sector.
128
Triangle2d::new(
129
Vec2::ZERO,
130
self.arc.left_endpoint(),
131
self.arc.right_endpoint(),
132
)
133
.bounding_circle(isometry)
134
}
135
}
136
}
137
138
impl Bounded2d for CircularSegment {
139
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
140
self.arc.aabb_2d(isometry)
141
}
142
143
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
144
self.arc.bounding_circle(isometry)
145
}
146
}
147
148
impl Bounded2d for Ellipse {
149
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
150
let isometry = isometry.into();
151
152
// V = (hh * cos(beta), hh * sin(beta))
153
// #####*#####
154
// ### | ###
155
// # hh | #
156
// # *---------* U = (hw * cos(alpha), hw * sin(alpha))
157
// # hw #
158
// ### ###
159
// ###########
160
161
let (hw, hh) = (self.half_size.x, self.half_size.y);
162
163
// Sine and cosine of rotation angle alpha.
164
let (alpha_sin, alpha_cos) = isometry.rotation.sin_cos();
165
166
// Sine and cosine of alpha + pi/2. We can avoid the trigonometric functions:
167
// sin(beta) = sin(alpha + pi/2) = cos(alpha)
168
// cos(beta) = cos(alpha + pi/2) = -sin(alpha)
169
let (beta_sin, beta_cos) = (alpha_cos, -alpha_sin);
170
171
// Compute points U and V, the extremes of the ellipse
172
let (ux, uy) = (hw * alpha_cos, hw * alpha_sin);
173
let (vx, vy) = (hh * beta_cos, hh * beta_sin);
174
175
let half_size = Vec2::new(ops::hypot(ux, vx), ops::hypot(uy, vy));
176
177
Aabb2d::new(isometry.translation, half_size)
178
}
179
180
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
181
let isometry = isometry.into();
182
BoundingCircle::new(isometry.translation, self.semi_major())
183
}
184
}
185
186
impl Bounded2d for Annulus {
187
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
188
let isometry = isometry.into();
189
Aabb2d::new(isometry.translation, Vec2::splat(self.outer_circle.radius))
190
}
191
192
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
193
let isometry = isometry.into();
194
BoundingCircle::new(isometry.translation, self.outer_circle.radius)
195
}
196
}
197
198
impl Bounded2d for Rhombus {
199
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
200
let isometry = isometry.into();
201
202
let [rotated_x_half_diagonal, rotated_y_half_diagonal] = [
203
isometry.rotation * Vec2::new(self.half_diagonals.x, 0.0),
204
isometry.rotation * Vec2::new(0.0, self.half_diagonals.y),
205
];
206
let aabb_half_extent = rotated_x_half_diagonal
207
.abs()
208
.max(rotated_y_half_diagonal.abs());
209
210
Aabb2d {
211
min: -aabb_half_extent + isometry.translation,
212
max: aabb_half_extent + isometry.translation,
213
}
214
}
215
216
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
217
let isometry = isometry.into();
218
BoundingCircle::new(isometry.translation, self.circumradius())
219
}
220
}
221
222
impl Bounded2d for Plane2d {
223
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
224
let isometry = isometry.into();
225
226
let normal = isometry.rotation * *self.normal;
227
let facing_x = normal == Vec2::X || normal == Vec2::NEG_X;
228
let facing_y = normal == Vec2::Y || normal == Vec2::NEG_Y;
229
230
// Dividing `f32::MAX` by 2.0 is helpful so that we can do operations
231
// like growing or shrinking the AABB without breaking things.
232
let half_width = if facing_x { 0.0 } else { f32::MAX / 2.0 };
233
let half_height = if facing_y { 0.0 } else { f32::MAX / 2.0 };
234
let half_size = Vec2::new(half_width, half_height);
235
236
Aabb2d::new(isometry.translation, half_size)
237
}
238
239
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
240
let isometry = isometry.into();
241
BoundingCircle::new(isometry.translation, f32::MAX / 2.0)
242
}
243
}
244
245
impl Bounded2d for Line2d {
246
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
247
let isometry = isometry.into();
248
249
let direction = isometry.rotation * *self.direction;
250
251
// Dividing `f32::MAX` by 2.0 is helpful so that we can do operations
252
// like growing or shrinking the AABB without breaking things.
253
let max = f32::MAX / 2.0;
254
let half_width = if direction.x == 0.0 { 0.0 } else { max };
255
let half_height = if direction.y == 0.0 { 0.0 } else { max };
256
let half_size = Vec2::new(half_width, half_height);
257
258
Aabb2d::new(isometry.translation, half_size)
259
}
260
261
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
262
let isometry = isometry.into();
263
BoundingCircle::new(isometry.translation, f32::MAX / 2.0)
264
}
265
}
266
267
impl Bounded2d for Segment2d {
268
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
269
Aabb2d::from_point_cloud(isometry, &[self.point1(), self.point2()])
270
}
271
272
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
273
let isometry: Isometry2d = isometry.into();
274
let local_center = self.center();
275
let radius = local_center.distance(self.point1());
276
let local_circle = BoundingCircle::new(local_center, radius);
277
local_circle.transformed_by(isometry.translation, isometry.rotation)
278
}
279
}
280
281
#[cfg(feature = "alloc")]
282
impl Bounded2d for Polyline2d {
283
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
284
Aabb2d::from_point_cloud(isometry, &self.vertices)
285
}
286
287
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
288
BoundingCircle::from_point_cloud(isometry, &self.vertices)
289
}
290
}
291
292
impl Bounded2d for Triangle2d {
293
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
294
let isometry = isometry.into();
295
let [a, b, c] = self.vertices.map(|vtx| isometry.rotation * vtx);
296
297
let min = Vec2::new(a.x.min(b.x).min(c.x), a.y.min(b.y).min(c.y));
298
let max = Vec2::new(a.x.max(b.x).max(c.x), a.y.max(b.y).max(c.y));
299
300
Aabb2d {
301
min: min + isometry.translation,
302
max: max + isometry.translation,
303
}
304
}
305
306
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
307
let isometry = isometry.into();
308
let [a, b, c] = self.vertices;
309
310
// The points of the segment opposite to the obtuse or right angle if one exists
311
let side_opposite_to_non_acute = if (b - a).dot(c - a) <= 0.0 {
312
Some((b, c))
313
} else if (c - b).dot(a - b) <= 0.0 {
314
Some((c, a))
315
} else if (a - c).dot(b - c) <= 0.0 {
316
Some((a, b))
317
} else {
318
// The triangle is acute.
319
None
320
};
321
322
// Find the minimum bounding circle. If the triangle is obtuse, the circle passes through two vertices.
323
// Otherwise, it's the circumcircle and passes through all three.
324
if let Some((point1, point2)) = side_opposite_to_non_acute {
325
// The triangle is obtuse or right, so the minimum bounding circle's diameter is equal to the longest side.
326
// We can compute the minimum bounding circle from the line segment of the longest side.
327
let segment = Segment2d::new(point1, point2);
328
segment.bounding_circle(isometry)
329
} else {
330
// The triangle is acute, so the smallest bounding circle is the circumcircle.
331
let (Circle { radius }, circumcenter) = self.circumcircle();
332
BoundingCircle::new(isometry * circumcenter, radius)
333
}
334
}
335
}
336
337
impl Bounded2d for Rectangle {
338
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
339
let isometry = isometry.into();
340
341
// Compute the AABB of the rotated rectangle by transforming the half-extents
342
// by an absolute rotation matrix.
343
let (sin, cos) = isometry.rotation.sin_cos();
344
let abs_rot_mat =
345
Mat2::from_cols_array(&[ops::abs(cos), ops::abs(sin), ops::abs(sin), ops::abs(cos)]);
346
let half_size = abs_rot_mat * self.half_size;
347
348
Aabb2d::new(isometry.translation, half_size)
349
}
350
351
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
352
let isometry = isometry.into();
353
let radius = self.half_size.length();
354
BoundingCircle::new(isometry.translation, radius)
355
}
356
}
357
358
#[cfg(feature = "alloc")]
359
impl Bounded2d for Polygon {
360
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
361
Aabb2d::from_point_cloud(isometry, &self.vertices)
362
}
363
364
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
365
BoundingCircle::from_point_cloud(isometry, &self.vertices)
366
}
367
}
368
369
#[cfg(feature = "alloc")]
370
impl Bounded2d for ConvexPolygon {
371
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
372
Aabb2d::from_point_cloud(isometry, self.vertices())
373
}
374
375
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
376
BoundingCircle::from_point_cloud(isometry, self.vertices())
377
}
378
}
379
380
impl Bounded2d for RegularPolygon {
381
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
382
let isometry = isometry.into();
383
384
let mut min = Vec2::ZERO;
385
let mut max = Vec2::ZERO;
386
387
for vertex in self.vertices(isometry.rotation.as_radians()) {
388
min = min.min(vertex);
389
max = max.max(vertex);
390
}
391
392
Aabb2d {
393
min: min + isometry.translation,
394
max: max + isometry.translation,
395
}
396
}
397
398
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
399
let isometry = isometry.into();
400
BoundingCircle::new(isometry.translation, self.circumcircle.radius)
401
}
402
}
403
404
impl Bounded2d for Capsule2d {
405
fn aabb_2d(&self, isometry: impl Into<Isometry2d>) -> Aabb2d {
406
let isometry = isometry.into();
407
408
// Get the line segment between the semicircles of the rotated capsule
409
let segment = Segment2d::from_direction_and_length(
410
isometry.rotation * Dir2::Y,
411
self.half_length * 2.,
412
);
413
let (a, b) = (segment.point1(), segment.point2());
414
415
// Expand the line segment by the capsule radius to get the capsule half-extents
416
let min = a.min(b) - Vec2::splat(self.radius);
417
let max = a.max(b) + Vec2::splat(self.radius);
418
419
Aabb2d {
420
min: min + isometry.translation,
421
max: max + isometry.translation,
422
}
423
}
424
425
fn bounding_circle(&self, isometry: impl Into<Isometry2d>) -> BoundingCircle {
426
let isometry = isometry.into();
427
BoundingCircle::new(isometry.translation, self.radius + self.half_length)
428
}
429
}
430
431
#[cfg(test)]
432
#[expect(clippy::print_stdout, reason = "Allowed in tests.")]
433
mod tests {
434
use core::f32::consts::{FRAC_PI_2, FRAC_PI_3, FRAC_PI_4, FRAC_PI_6, TAU};
435
use std::println;
436
437
use approx::assert_abs_diff_eq;
438
use glam::Vec2;
439
440
use crate::{
441
bounding::Bounded2d,
442
ops::{self, FloatPow},
443
primitives::{
444
Annulus, Arc2d, Capsule2d, Circle, CircularSector, CircularSegment, Ellipse, Line2d,
445
Plane2d, Polygon, Polyline2d, Rectangle, RegularPolygon, Rhombus, Segment2d,
446
Triangle2d,
447
},
448
Dir2, Isometry2d, Rot2,
449
};
450
451
#[test]
452
fn circle() {
453
let circle = Circle { radius: 1.0 };
454
let translation = Vec2::new(2.0, 1.0);
455
let isometry = Isometry2d::from_translation(translation);
456
457
let aabb = circle.aabb_2d(isometry);
458
assert_eq!(aabb.min, Vec2::new(1.0, 0.0));
459
assert_eq!(aabb.max, Vec2::new(3.0, 2.0));
460
461
let bounding_circle = circle.bounding_circle(isometry);
462
assert_eq!(bounding_circle.center, translation);
463
assert_eq!(bounding_circle.radius(), 1.0);
464
}
465
466
#[test]
467
// Arcs and circular segments have the same bounding shapes so they share test cases.
468
fn arc_and_segment() {
469
struct TestCase {
470
name: &'static str,
471
arc: Arc2d,
472
translation: Vec2,
473
rotation: f32,
474
aabb_min: Vec2,
475
aabb_max: Vec2,
476
bounding_circle_center: Vec2,
477
bounding_circle_radius: f32,
478
}
479
480
impl TestCase {
481
fn isometry(&self) -> Isometry2d {
482
Isometry2d::new(self.translation, self.rotation.into())
483
}
484
}
485
486
// The apothem of an arc covering 1/6th of a circle.
487
let apothem = ops::sqrt(3.0) / 2.0;
488
let tests = [
489
// Test case: a basic minor arc
490
TestCase {
491
name: "1/6th circle untransformed",
492
arc: Arc2d::from_radians(1.0, FRAC_PI_3),
493
translation: Vec2::ZERO,
494
rotation: 0.0,
495
aabb_min: Vec2::new(-0.5, apothem),
496
aabb_max: Vec2::new(0.5, 1.0),
497
bounding_circle_center: Vec2::new(0.0, apothem),
498
bounding_circle_radius: 0.5,
499
},
500
// Test case: a smaller arc, verifying that radius scaling works
501
TestCase {
502
name: "1/6th circle with radius 0.5",
503
arc: Arc2d::from_radians(0.5, FRAC_PI_3),
504
translation: Vec2::ZERO,
505
rotation: 0.0,
506
aabb_min: Vec2::new(-0.25, apothem / 2.0),
507
aabb_max: Vec2::new(0.25, 0.5),
508
bounding_circle_center: Vec2::new(0.0, apothem / 2.0),
509
bounding_circle_radius: 0.25,
510
},
511
// Test case: a larger arc, verifying that radius scaling works
512
TestCase {
513
name: "1/6th circle with radius 2.0",
514
arc: Arc2d::from_radians(2.0, FRAC_PI_3),
515
translation: Vec2::ZERO,
516
rotation: 0.0,
517
aabb_min: Vec2::new(-1.0, 2.0 * apothem),
518
aabb_max: Vec2::new(1.0, 2.0),
519
bounding_circle_center: Vec2::new(0.0, 2.0 * apothem),
520
bounding_circle_radius: 1.0,
521
},
522
// Test case: translation of a minor arc
523
TestCase {
524
name: "1/6th circle translated",
525
arc: Arc2d::from_radians(1.0, FRAC_PI_3),
526
translation: Vec2::new(2.0, 3.0),
527
rotation: 0.0,
528
aabb_min: Vec2::new(1.5, 3.0 + apothem),
529
aabb_max: Vec2::new(2.5, 4.0),
530
bounding_circle_center: Vec2::new(2.0, 3.0 + apothem),
531
bounding_circle_radius: 0.5,
532
},
533
// Test case: rotation of a minor arc
534
TestCase {
535
name: "1/6th circle rotated",
536
arc: Arc2d::from_radians(1.0, FRAC_PI_3),
537
translation: Vec2::ZERO,
538
// Rotate left by 1/12 of a circle, so the right endpoint is on the y-axis.
539
rotation: FRAC_PI_6,
540
aabb_min: Vec2::new(-apothem, 0.5),
541
aabb_max: Vec2::new(0.0, 1.0),
542
// The exact coordinates here are not obvious, but can be computed by constructing
543
// an altitude from the midpoint of the chord to the y-axis and using the right triangle
544
// similarity theorem.
545
bounding_circle_center: Vec2::new(-apothem / 2.0, apothem.squared()),
546
bounding_circle_radius: 0.5,
547
},
548
// Test case: handling of axis-aligned extrema
549
TestCase {
550
name: "1/4er circle rotated to be axis-aligned",
551
arc: Arc2d::from_radians(1.0, FRAC_PI_2),
552
translation: Vec2::ZERO,
553
// Rotate right by 1/8 of a circle, so the right endpoint is on the x-axis and the left endpoint is on the y-axis.
554
rotation: -FRAC_PI_4,
555
aabb_min: Vec2::ZERO,
556
aabb_max: Vec2::splat(1.0),
557
bounding_circle_center: Vec2::splat(0.5),
558
bounding_circle_radius: ops::sqrt(2.0) / 2.0,
559
},
560
// Test case: a basic major arc
561
TestCase {
562
name: "5/6th circle untransformed",
563
arc: Arc2d::from_radians(1.0, 5.0 * FRAC_PI_3),
564
translation: Vec2::ZERO,
565
rotation: 0.0,
566
aabb_min: Vec2::new(-1.0, -apothem),
567
aabb_max: Vec2::new(1.0, 1.0),
568
bounding_circle_center: Vec2::ZERO,
569
bounding_circle_radius: 1.0,
570
},
571
// Test case: a translated major arc
572
TestCase {
573
name: "5/6th circle translated",
574
arc: Arc2d::from_radians(1.0, 5.0 * FRAC_PI_3),
575
translation: Vec2::new(2.0, 3.0),
576
rotation: 0.0,
577
aabb_min: Vec2::new(1.0, 3.0 - apothem),
578
aabb_max: Vec2::new(3.0, 4.0),
579
bounding_circle_center: Vec2::new(2.0, 3.0),
580
bounding_circle_radius: 1.0,
581
},
582
// Test case: a rotated major arc, with inverted left/right angles
583
TestCase {
584
name: "5/6th circle rotated",
585
arc: Arc2d::from_radians(1.0, 5.0 * FRAC_PI_3),
586
translation: Vec2::ZERO,
587
// Rotate left by 1/12 of a circle, so the left endpoint is on the y-axis.
588
rotation: FRAC_PI_6,
589
aabb_min: Vec2::new(-1.0, -1.0),
590
aabb_max: Vec2::new(1.0, 1.0),
591
bounding_circle_center: Vec2::ZERO,
592
bounding_circle_radius: 1.0,
593
},
594
];
595
596
for test in tests {
597
#[cfg(feature = "std")]
598
println!("subtest case: {}", test.name);
599
let segment: CircularSegment = test.arc.into();
600
601
let arc_aabb = test.arc.aabb_2d(test.isometry());
602
assert_abs_diff_eq!(test.aabb_min, arc_aabb.min);
603
assert_abs_diff_eq!(test.aabb_max, arc_aabb.max);
604
let segment_aabb = segment.aabb_2d(test.isometry());
605
assert_abs_diff_eq!(test.aabb_min, segment_aabb.min);
606
assert_abs_diff_eq!(test.aabb_max, segment_aabb.max);
607
608
let arc_bounding_circle = test.arc.bounding_circle(test.isometry());
609
assert_abs_diff_eq!(test.bounding_circle_center, arc_bounding_circle.center);
610
assert_abs_diff_eq!(test.bounding_circle_radius, arc_bounding_circle.radius());
611
let segment_bounding_circle = segment.bounding_circle(test.isometry());
612
assert_abs_diff_eq!(test.bounding_circle_center, segment_bounding_circle.center);
613
assert_abs_diff_eq!(
614
test.bounding_circle_radius,
615
segment_bounding_circle.radius()
616
);
617
}
618
}
619
620
#[test]
621
fn circular_sector() {
622
struct TestCase {
623
name: &'static str,
624
arc: Arc2d,
625
translation: Vec2,
626
rotation: f32,
627
aabb_min: Vec2,
628
aabb_max: Vec2,
629
bounding_circle_center: Vec2,
630
bounding_circle_radius: f32,
631
}
632
633
impl TestCase {
634
fn isometry(&self) -> Isometry2d {
635
Isometry2d::new(self.translation, self.rotation.into())
636
}
637
}
638
639
// The apothem of an arc covering 1/6th of a circle.
640
let apothem = ops::sqrt(3.0) / 2.0;
641
let inv_sqrt_3 = ops::sqrt(3.0).recip();
642
let tests = [
643
// Test case: A sector whose arc is minor, but whose bounding circle is not the circumcircle of the endpoints and center
644
TestCase {
645
name: "1/3rd circle",
646
arc: Arc2d::from_radians(1.0, TAU / 3.0),
647
translation: Vec2::ZERO,
648
rotation: 0.0,
649
aabb_min: Vec2::new(-apothem, 0.0),
650
aabb_max: Vec2::new(apothem, 1.0),
651
bounding_circle_center: Vec2::new(0.0, 0.5),
652
bounding_circle_radius: apothem,
653
},
654
// The remaining test cases are selected as for arc_and_segment.
655
TestCase {
656
name: "1/6th circle untransformed",
657
arc: Arc2d::from_radians(1.0, FRAC_PI_3),
658
translation: Vec2::ZERO,
659
rotation: 0.0,
660
aabb_min: Vec2::new(-0.5, 0.0),
661
aabb_max: Vec2::new(0.5, 1.0),
662
// The bounding circle is a circumcircle of an equilateral triangle with side length 1.
663
// The distance from the corner to the center of such a triangle is 1/sqrt(3).
664
bounding_circle_center: Vec2::new(0.0, inv_sqrt_3),
665
bounding_circle_radius: inv_sqrt_3,
666
},
667
TestCase {
668
name: "1/6th circle with radius 0.5",
669
arc: Arc2d::from_radians(0.5, FRAC_PI_3),
670
translation: Vec2::ZERO,
671
rotation: 0.0,
672
aabb_min: Vec2::new(-0.25, 0.0),
673
aabb_max: Vec2::new(0.25, 0.5),
674
bounding_circle_center: Vec2::new(0.0, inv_sqrt_3 / 2.0),
675
bounding_circle_radius: inv_sqrt_3 / 2.0,
676
},
677
TestCase {
678
name: "1/6th circle with radius 2.0",
679
arc: Arc2d::from_radians(2.0, FRAC_PI_3),
680
translation: Vec2::ZERO,
681
rotation: 0.0,
682
aabb_min: Vec2::new(-1.0, 0.0),
683
aabb_max: Vec2::new(1.0, 2.0),
684
bounding_circle_center: Vec2::new(0.0, 2.0 * inv_sqrt_3),
685
bounding_circle_radius: 2.0 * inv_sqrt_3,
686
},
687
TestCase {
688
name: "1/6th circle translated",
689
arc: Arc2d::from_radians(1.0, FRAC_PI_3),
690
translation: Vec2::new(2.0, 3.0),
691
rotation: 0.0,
692
aabb_min: Vec2::new(1.5, 3.0),
693
aabb_max: Vec2::new(2.5, 4.0),
694
bounding_circle_center: Vec2::new(2.0, 3.0 + inv_sqrt_3),
695
bounding_circle_radius: inv_sqrt_3,
696
},
697
TestCase {
698
name: "1/6th circle rotated",
699
arc: Arc2d::from_radians(1.0, FRAC_PI_3),
700
translation: Vec2::ZERO,
701
// Rotate left by 1/12 of a circle, so the right endpoint is on the y-axis.
702
rotation: FRAC_PI_6,
703
aabb_min: Vec2::new(-apothem, 0.0),
704
aabb_max: Vec2::new(0.0, 1.0),
705
// The x-coordinate is now the inradius of the equilateral triangle, which is sqrt(3)/2.
706
bounding_circle_center: Vec2::new(-inv_sqrt_3 / 2.0, 0.5),
707
bounding_circle_radius: inv_sqrt_3,
708
},
709
TestCase {
710
name: "1/4er circle rotated to be axis-aligned",
711
arc: Arc2d::from_radians(1.0, FRAC_PI_2),
712
translation: Vec2::ZERO,
713
// Rotate right by 1/8 of a circle, so the right endpoint is on the x-axis and the left endpoint is on the y-axis.
714
rotation: -FRAC_PI_4,
715
aabb_min: Vec2::ZERO,
716
aabb_max: Vec2::splat(1.0),
717
bounding_circle_center: Vec2::splat(0.5),
718
bounding_circle_radius: ops::sqrt(2.0) / 2.0,
719
},
720
TestCase {
721
name: "5/6th circle untransformed",
722
arc: Arc2d::from_radians(1.0, 5.0 * FRAC_PI_3),
723
translation: Vec2::ZERO,
724
rotation: 0.0,
725
aabb_min: Vec2::new(-1.0, -apothem),
726
aabb_max: Vec2::new(1.0, 1.0),
727
bounding_circle_center: Vec2::ZERO,
728
bounding_circle_radius: 1.0,
729
},
730
TestCase {
731
name: "5/6th circle translated",
732
arc: Arc2d::from_radians(1.0, 5.0 * FRAC_PI_3),
733
translation: Vec2::new(2.0, 3.0),
734
rotation: 0.0,
735
aabb_min: Vec2::new(1.0, 3.0 - apothem),
736
aabb_max: Vec2::new(3.0, 4.0),
737
bounding_circle_center: Vec2::new(2.0, 3.0),
738
bounding_circle_radius: 1.0,
739
},
740
TestCase {
741
name: "5/6th circle rotated",
742
arc: Arc2d::from_radians(1.0, 5.0 * FRAC_PI_3),
743
translation: Vec2::ZERO,
744
// Rotate left by 1/12 of a circle, so the left endpoint is on the y-axis.
745
rotation: FRAC_PI_6,
746
aabb_min: Vec2::new(-1.0, -1.0),
747
aabb_max: Vec2::new(1.0, 1.0),
748
bounding_circle_center: Vec2::ZERO,
749
bounding_circle_radius: 1.0,
750
},
751
];
752
753
for test in tests {
754
#[cfg(feature = "std")]
755
println!("subtest case: {}", test.name);
756
let sector: CircularSector = test.arc.into();
757
758
let aabb = sector.aabb_2d(test.isometry());
759
assert_abs_diff_eq!(test.aabb_min, aabb.min);
760
assert_abs_diff_eq!(test.aabb_max, aabb.max);
761
762
let bounding_circle = sector.bounding_circle(test.isometry());
763
assert_abs_diff_eq!(test.bounding_circle_center, bounding_circle.center);
764
assert_abs_diff_eq!(test.bounding_circle_radius, bounding_circle.radius());
765
}
766
}
767
768
#[test]
769
fn ellipse() {
770
let ellipse = Ellipse::new(1.0, 0.5);
771
let translation = Vec2::new(2.0, 1.0);
772
let isometry = Isometry2d::from_translation(translation);
773
774
let aabb = ellipse.aabb_2d(isometry);
775
assert_eq!(aabb.min, Vec2::new(1.0, 0.5));
776
assert_eq!(aabb.max, Vec2::new(3.0, 1.5));
777
778
let bounding_circle = ellipse.bounding_circle(isometry);
779
assert_eq!(bounding_circle.center, translation);
780
assert_eq!(bounding_circle.radius(), 1.0);
781
}
782
783
#[test]
784
fn annulus() {
785
let annulus = Annulus::new(1.0, 2.0);
786
let translation = Vec2::new(2.0, 1.0);
787
let rotation = Rot2::radians(1.0);
788
let isometry = Isometry2d::new(translation, rotation);
789
790
let aabb = annulus.aabb_2d(isometry);
791
assert_eq!(aabb.min, Vec2::new(0.0, -1.0));
792
assert_eq!(aabb.max, Vec2::new(4.0, 3.0));
793
794
let bounding_circle = annulus.bounding_circle(isometry);
795
assert_eq!(bounding_circle.center, translation);
796
assert_eq!(bounding_circle.radius(), 2.0);
797
}
798
799
#[test]
800
fn rhombus() {
801
let rhombus = Rhombus::new(2.0, 1.0);
802
let translation = Vec2::new(2.0, 1.0);
803
let rotation = Rot2::radians(FRAC_PI_4);
804
let isometry = Isometry2d::new(translation, rotation);
805
806
let aabb = rhombus.aabb_2d(isometry);
807
assert_eq!(aabb.min, Vec2::new(1.2928932, 0.29289323));
808
assert_eq!(aabb.max, Vec2::new(2.7071068, 1.7071068));
809
810
let bounding_circle = rhombus.bounding_circle(isometry);
811
assert_eq!(bounding_circle.center, translation);
812
assert_eq!(bounding_circle.radius(), 1.0);
813
814
let rhombus = Rhombus::new(0.0, 0.0);
815
let translation = Vec2::new(0.0, 0.0);
816
let isometry = Isometry2d::new(translation, rotation);
817
818
let aabb = rhombus.aabb_2d(isometry);
819
assert_eq!(aabb.min, Vec2::new(0.0, 0.0));
820
assert_eq!(aabb.max, Vec2::new(0.0, 0.0));
821
822
let bounding_circle = rhombus.bounding_circle(isometry);
823
assert_eq!(bounding_circle.center, translation);
824
assert_eq!(bounding_circle.radius(), 0.0);
825
}
826
827
#[test]
828
fn plane() {
829
let translation = Vec2::new(2.0, 1.0);
830
let isometry = Isometry2d::from_translation(translation);
831
832
let aabb1 = Plane2d::new(Vec2::X).aabb_2d(isometry);
833
assert_eq!(aabb1.min, Vec2::new(2.0, -f32::MAX / 2.0));
834
assert_eq!(aabb1.max, Vec2::new(2.0, f32::MAX / 2.0));
835
836
let aabb2 = Plane2d::new(Vec2::Y).aabb_2d(isometry);
837
assert_eq!(aabb2.min, Vec2::new(-f32::MAX / 2.0, 1.0));
838
assert_eq!(aabb2.max, Vec2::new(f32::MAX / 2.0, 1.0));
839
840
let aabb3 = Plane2d::new(Vec2::ONE).aabb_2d(isometry);
841
assert_eq!(aabb3.min, Vec2::new(-f32::MAX / 2.0, -f32::MAX / 2.0));
842
assert_eq!(aabb3.max, Vec2::new(f32::MAX / 2.0, f32::MAX / 2.0));
843
844
let bounding_circle = Plane2d::new(Vec2::Y).bounding_circle(isometry);
845
assert_eq!(bounding_circle.center, translation);
846
assert_eq!(bounding_circle.radius(), f32::MAX / 2.0);
847
}
848
849
#[test]
850
fn line() {
851
let translation = Vec2::new(2.0, 1.0);
852
let isometry = Isometry2d::from_translation(translation);
853
854
let aabb1 = Line2d { direction: Dir2::Y }.aabb_2d(isometry);
855
assert_eq!(aabb1.min, Vec2::new(2.0, -f32::MAX / 2.0));
856
assert_eq!(aabb1.max, Vec2::new(2.0, f32::MAX / 2.0));
857
858
let aabb2 = Line2d { direction: Dir2::X }.aabb_2d(isometry);
859
assert_eq!(aabb2.min, Vec2::new(-f32::MAX / 2.0, 1.0));
860
assert_eq!(aabb2.max, Vec2::new(f32::MAX / 2.0, 1.0));
861
862
let aabb3 = Line2d {
863
direction: Dir2::from_xy(1.0, 1.0).unwrap(),
864
}
865
.aabb_2d(isometry);
866
assert_eq!(aabb3.min, Vec2::new(-f32::MAX / 2.0, -f32::MAX / 2.0));
867
assert_eq!(aabb3.max, Vec2::new(f32::MAX / 2.0, f32::MAX / 2.0));
868
869
let bounding_circle = Line2d { direction: Dir2::Y }.bounding_circle(isometry);
870
assert_eq!(bounding_circle.center, translation);
871
assert_eq!(bounding_circle.radius(), f32::MAX / 2.0);
872
}
873
874
#[test]
875
fn segment() {
876
let segment = Segment2d::new(Vec2::new(-1.0, -0.5), Vec2::new(1.0, 0.5));
877
let translation = Vec2::new(2.0, 1.0);
878
let isometry = Isometry2d::from_translation(translation);
879
880
let aabb = segment.aabb_2d(isometry);
881
assert_eq!(aabb.min, Vec2::new(1.0, 0.5));
882
assert_eq!(aabb.max, Vec2::new(3.0, 1.5));
883
884
let bounding_circle = segment.bounding_circle(isometry);
885
assert_eq!(bounding_circle.center, translation);
886
assert_eq!(bounding_circle.radius(), ops::hypot(1.0, 0.5));
887
}
888
889
#[test]
890
fn polyline() {
891
let polyline = Polyline2d::new([
892
Vec2::ONE,
893
Vec2::new(-1.0, 1.0),
894
Vec2::NEG_ONE,
895
Vec2::new(1.0, -1.0),
896
]);
897
let translation = Vec2::new(2.0, 1.0);
898
let isometry = Isometry2d::from_translation(translation);
899
900
let aabb = polyline.aabb_2d(isometry);
901
assert_eq!(aabb.min, Vec2::new(1.0, 0.0));
902
assert_eq!(aabb.max, Vec2::new(3.0, 2.0));
903
904
let bounding_circle = polyline.bounding_circle(isometry);
905
assert_eq!(bounding_circle.center, translation);
906
assert_eq!(bounding_circle.radius(), core::f32::consts::SQRT_2);
907
}
908
909
#[test]
910
fn acute_triangle() {
911
let acute_triangle =
912
Triangle2d::new(Vec2::new(0.0, 1.0), Vec2::NEG_ONE, Vec2::new(1.0, -1.0));
913
let translation = Vec2::new(2.0, 1.0);
914
let isometry = Isometry2d::from_translation(translation);
915
916
let aabb = acute_triangle.aabb_2d(isometry);
917
assert_eq!(aabb.min, Vec2::new(1.0, 0.0));
918
assert_eq!(aabb.max, Vec2::new(3.0, 2.0));
919
920
// For acute triangles, the center is the circumcenter
921
let (Circle { radius }, circumcenter) = acute_triangle.circumcircle();
922
let bounding_circle = acute_triangle.bounding_circle(isometry);
923
assert_eq!(bounding_circle.center, circumcenter + translation);
924
assert_eq!(bounding_circle.radius(), radius);
925
}
926
927
#[test]
928
fn obtuse_triangle() {
929
let obtuse_triangle = Triangle2d::new(
930
Vec2::new(0.0, 1.0),
931
Vec2::new(-10.0, -1.0),
932
Vec2::new(10.0, -1.0),
933
);
934
let translation = Vec2::new(2.0, 1.0);
935
let isometry = Isometry2d::from_translation(translation);
936
937
let aabb = obtuse_triangle.aabb_2d(isometry);
938
assert_eq!(aabb.min, Vec2::new(-8.0, 0.0));
939
assert_eq!(aabb.max, Vec2::new(12.0, 2.0));
940
941
// For obtuse and right triangles, the center is the midpoint of the longest side (diameter of bounding circle)
942
let bounding_circle = obtuse_triangle.bounding_circle(isometry);
943
assert_eq!(bounding_circle.center, translation - Vec2::Y);
944
assert_eq!(bounding_circle.radius(), 10.0);
945
}
946
947
#[test]
948
fn rectangle() {
949
let rectangle = Rectangle::new(2.0, 1.0);
950
let translation = Vec2::new(2.0, 1.0);
951
952
let aabb = rectangle.aabb_2d(Isometry2d::new(translation, Rot2::radians(FRAC_PI_4)));
953
let expected_half_size = Vec2::splat(1.0606601);
954
assert_eq!(aabb.min, translation - expected_half_size);
955
assert_eq!(aabb.max, translation + expected_half_size);
956
957
let bounding_circle = rectangle.bounding_circle(Isometry2d::from_translation(translation));
958
assert_eq!(bounding_circle.center, translation);
959
assert_eq!(bounding_circle.radius(), ops::hypot(1.0, 0.5));
960
}
961
962
#[test]
963
fn polygon() {
964
let polygon = Polygon::new([
965
Vec2::ONE,
966
Vec2::new(-1.0, 1.0),
967
Vec2::NEG_ONE,
968
Vec2::new(1.0, -1.0),
969
]);
970
let translation = Vec2::new(2.0, 1.0);
971
let isometry = Isometry2d::from_translation(translation);
972
973
let aabb = polygon.aabb_2d(isometry);
974
assert_eq!(aabb.min, Vec2::new(1.0, 0.0));
975
assert_eq!(aabb.max, Vec2::new(3.0, 2.0));
976
977
let bounding_circle = polygon.bounding_circle(isometry);
978
assert_eq!(bounding_circle.center, translation);
979
assert_eq!(bounding_circle.radius(), core::f32::consts::SQRT_2);
980
}
981
982
#[test]
983
fn regular_polygon() {
984
let regular_polygon = RegularPolygon::new(1.0, 5);
985
let translation = Vec2::new(2.0, 1.0);
986
let isometry = Isometry2d::from_translation(translation);
987
988
let aabb = regular_polygon.aabb_2d(isometry);
989
assert!((aabb.min - (translation - Vec2::new(0.9510565, 0.8090169))).length() < 1e-6);
990
assert!((aabb.max - (translation + Vec2::new(0.9510565, 1.0))).length() < 1e-6);
991
992
let bounding_circle = regular_polygon.bounding_circle(isometry);
993
assert_eq!(bounding_circle.center, translation);
994
assert_eq!(bounding_circle.radius(), 1.0);
995
}
996
997
#[test]
998
fn capsule() {
999
let capsule = Capsule2d::new(0.5, 2.0);
1000
let translation = Vec2::new(2.0, 1.0);
1001
let isometry = Isometry2d::from_translation(translation);
1002
1003
let aabb = capsule.aabb_2d(isometry);
1004
assert_eq!(aabb.min, translation - Vec2::new(0.5, 1.5));
1005
assert_eq!(aabb.max, translation + Vec2::new(0.5, 1.5));
1006
1007
let bounding_circle = capsule.bounding_circle(isometry);
1008
assert_eq!(bounding_circle.center, translation);
1009
assert_eq!(bounding_circle.radius(), 1.5);
1010
}
1011
}
1012
1013