Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bevyengine
GitHub Repository: bevyengine/bevy
Path: blob/main/crates/bevy_math/src/common_traits.rs
6595 views
1
//! This module contains abstract mathematical traits shared by types used in `bevy_math`.
2
3
use crate::{ops, DVec2, DVec3, DVec4, Dir2, Dir3, Dir3A, Quat, Rot2, Vec2, Vec3, Vec3A, Vec4};
4
use core::{
5
fmt::Debug,
6
ops::{Add, Div, Mul, Neg, Sub},
7
};
8
use variadics_please::all_tuples_enumerated;
9
10
/// A type that supports the mathematical operations of a real vector space, irrespective of dimension.
11
/// In particular, this means that the implementing type supports:
12
/// - Scalar multiplication and division on the right by elements of `Self::Scalar`
13
/// - Negation
14
/// - Addition and subtraction
15
/// - Zero
16
///
17
/// Within the limitations of floating point arithmetic, all the following are required to hold:
18
/// - (Associativity of addition) For all `u, v, w: Self`, `(u + v) + w == u + (v + w)`.
19
/// - (Commutativity of addition) For all `u, v: Self`, `u + v == v + u`.
20
/// - (Additive identity) For all `v: Self`, `v + Self::ZERO == v`.
21
/// - (Additive inverse) For all `v: Self`, `v - v == v + (-v) == Self::ZERO`.
22
/// - (Compatibility of multiplication) For all `a, b: Self::Scalar`, `v: Self`, `v * (a * b) == (v * a) * b`.
23
/// - (Multiplicative identity) For all `v: Self`, `v * 1.0 == v`.
24
/// - (Distributivity for vector addition) For all `a: Self::Scalar`, `u, v: Self`, `(u + v) * a == u * a + v * a`.
25
/// - (Distributivity for scalar addition) For all `a, b: Self::Scalar`, `v: Self`, `v * (a + b) == v * a + v * b`.
26
///
27
/// Note that, because implementing types use floating point arithmetic, they are not required to actually
28
/// implement `PartialEq` or `Eq`.
29
pub trait VectorSpace:
30
Mul<Self::Scalar, Output = Self>
31
+ Div<Self::Scalar, Output = Self>
32
+ Add<Self, Output = Self>
33
+ Sub<Self, Output = Self>
34
+ Neg<Output = Self>
35
+ Default
36
+ Debug
37
+ Clone
38
+ Copy
39
{
40
/// The scalar type of this vector space.
41
type Scalar: ScalarField;
42
43
/// The zero vector, which is the identity of addition for the vector space type.
44
const ZERO: Self;
45
46
/// Perform vector space linear interpolation between this element and another, based
47
/// on the parameter `t`. When `t` is `0`, `self` is recovered. When `t` is `1`, `rhs`
48
/// is recovered.
49
///
50
/// Note that the value of `t` is not clamped by this function, so extrapolating outside
51
/// of the interval `[0,1]` is allowed.
52
#[inline]
53
fn lerp(self, rhs: Self, t: Self::Scalar) -> Self {
54
self * (Self::Scalar::ONE - t) + rhs * t
55
}
56
}
57
58
impl VectorSpace for Vec4 {
59
type Scalar = f32;
60
const ZERO: Self = Vec4::ZERO;
61
}
62
63
impl VectorSpace for Vec3 {
64
type Scalar = f32;
65
const ZERO: Self = Vec3::ZERO;
66
}
67
68
impl VectorSpace for Vec3A {
69
type Scalar = f32;
70
const ZERO: Self = Vec3A::ZERO;
71
}
72
73
impl VectorSpace for Vec2 {
74
type Scalar = f32;
75
const ZERO: Self = Vec2::ZERO;
76
}
77
78
impl VectorSpace for DVec4 {
79
type Scalar = f64;
80
const ZERO: Self = DVec4::ZERO;
81
}
82
83
impl VectorSpace for DVec3 {
84
type Scalar = f64;
85
const ZERO: Self = DVec3::ZERO;
86
}
87
88
impl VectorSpace for DVec2 {
89
type Scalar = f64;
90
const ZERO: Self = DVec2::ZERO;
91
}
92
93
// Every scalar field is a 1-dimensional vector space over itself.
94
impl<T: ScalarField> VectorSpace for T {
95
type Scalar = Self;
96
const ZERO: Self = Self::ZERO;
97
}
98
99
/// A type that supports the operations of a scalar field. An implementation should support:
100
/// - Addition and subtraction
101
/// - Multiplication and division
102
/// - Negation
103
/// - Zero (additive identity)
104
/// - One (multiplicative identity)
105
///
106
/// Within the limitations of floating point arithmetic, all the following are required to hold:
107
/// - (Associativity of addition) For all `u, v, w: Self`, `(u + v) + w == u + (v + w)`.
108
/// - (Commutativity of addition) For all `u, v: Self`, `u + v == v + u`.
109
/// - (Additive identity) For all `v: Self`, `v + Self::ZERO == v`.
110
/// - (Additive inverse) For all `v: Self`, `v - v == v + (-v) == Self::ZERO`.
111
/// - (Associativity of multiplication) For all `u, v, w: Self`, `(u * v) * w == u * (v * w)`.
112
/// - (Commutativity of multiplication) For all `u, v: Self`, `u * v == v * u`.
113
/// - (Multiplicative identity) For all `v: Self`, `v * Self::ONE == v`.
114
/// - (Multiplicative inverse) For all `v: Self`, `v / v == v * v.inverse() == Self::ONE`.
115
/// - (Distributivity over addition) For all `a, b: Self`, `u, v: Self`, `(u + v) * a == u * a + v * a`.
116
pub trait ScalarField:
117
Mul<Self, Output = Self>
118
+ Div<Self, Output = Self>
119
+ Add<Self, Output = Self>
120
+ Sub<Self, Output = Self>
121
+ Neg<Output = Self>
122
+ Default
123
+ Debug
124
+ Clone
125
+ Copy
126
{
127
/// The additive identity.
128
const ZERO: Self;
129
/// The multiplicative identity.
130
const ONE: Self;
131
132
/// The multiplicative inverse of this element. This is equivalent to `1.0 / self`.
133
fn recip(self) -> Self {
134
Self::ONE / self
135
}
136
}
137
138
impl ScalarField for f32 {
139
const ZERO: Self = 0.0;
140
const ONE: Self = 1.0;
141
}
142
143
impl ScalarField for f64 {
144
const ZERO: Self = 0.0;
145
const ONE: Self = 1.0;
146
}
147
148
/// A type consisting of formal sums of elements from `V` and `W`. That is,
149
/// each value `Sum(v, w)` is thought of as `v + w`, with no available
150
/// simplification. In particular, if `V` and `W` are [vector spaces], then
151
/// `Sum<V, W>` is a vector space whose dimension is the sum of those of `V`
152
/// and `W`, and the field accessors `.0` and `.1` are vector space projections.
153
///
154
/// [vector spaces]: VectorSpace
155
#[derive(Debug, Clone, Copy)]
156
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
157
#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
158
pub struct Sum<V, W>(pub V, pub W);
159
160
impl<F: ScalarField, V, W> Mul<F> for Sum<V, W>
161
where
162
V: VectorSpace<Scalar = F>,
163
W: VectorSpace<Scalar = F>,
164
{
165
type Output = Self;
166
fn mul(self, rhs: F) -> Self::Output {
167
Sum(self.0 * rhs, self.1 * rhs)
168
}
169
}
170
171
impl<F: ScalarField, V, W> Div<F> for Sum<V, W>
172
where
173
V: VectorSpace<Scalar = F>,
174
W: VectorSpace<Scalar = F>,
175
{
176
type Output = Self;
177
fn div(self, rhs: F) -> Self::Output {
178
Sum(self.0 / rhs, self.1 / rhs)
179
}
180
}
181
182
impl<V, W> Add<Self> for Sum<V, W>
183
where
184
V: VectorSpace,
185
W: VectorSpace,
186
{
187
type Output = Self;
188
fn add(self, other: Self) -> Self::Output {
189
Sum(self.0 + other.0, self.1 + other.1)
190
}
191
}
192
193
impl<V, W> Sub<Self> for Sum<V, W>
194
where
195
V: VectorSpace,
196
W: VectorSpace,
197
{
198
type Output = Self;
199
fn sub(self, other: Self) -> Self::Output {
200
Sum(self.0 - other.0, self.1 - other.1)
201
}
202
}
203
204
impl<V, W> Neg for Sum<V, W>
205
where
206
V: VectorSpace,
207
W: VectorSpace,
208
{
209
type Output = Self;
210
fn neg(self) -> Self::Output {
211
Sum(-self.0, -self.1)
212
}
213
}
214
215
impl<V, W> Default for Sum<V, W>
216
where
217
V: VectorSpace,
218
W: VectorSpace,
219
{
220
fn default() -> Self {
221
Sum(V::default(), W::default())
222
}
223
}
224
225
impl<F: ScalarField, V, W> VectorSpace for Sum<V, W>
226
where
227
V: VectorSpace<Scalar = F>,
228
W: VectorSpace<Scalar = F>,
229
{
230
type Scalar = F;
231
const ZERO: Self = Sum(V::ZERO, W::ZERO);
232
}
233
234
/// A type that supports the operations of a normed vector space; i.e. a norm operation in addition
235
/// to those of [`VectorSpace`]. Specifically, the implementor must guarantee that the following
236
/// relationships hold, within the limitations of floating point arithmetic:
237
/// - (Nonnegativity) For all `v: Self`, `v.norm() >= 0.0`.
238
/// - (Positive definiteness) For all `v: Self`, `v.norm() == 0.0` implies `v == Self::ZERO`.
239
/// - (Absolute homogeneity) For all `c: Self::Scalar`, `v: Self`, `(v * c).norm() == v.norm() * c.abs()`.
240
/// - (Triangle inequality) For all `v, w: Self`, `(v + w).norm() <= v.norm() + w.norm()`.
241
///
242
/// Note that, because implementing types use floating point arithmetic, they are not required to actually
243
/// implement `PartialEq` or `Eq`.
244
pub trait NormedVectorSpace: VectorSpace {
245
/// The size of this element. The return value should always be nonnegative.
246
fn norm(self) -> Self::Scalar;
247
248
/// The squared norm of this element. Computing this is often faster than computing
249
/// [`NormedVectorSpace::norm`].
250
#[inline]
251
fn norm_squared(self) -> Self::Scalar {
252
self.norm() * self.norm()
253
}
254
255
/// The distance between this element and another, as determined by the norm.
256
#[inline]
257
fn distance(self, rhs: Self) -> Self::Scalar {
258
(rhs - self).norm()
259
}
260
261
/// The squared distance between this element and another, as determined by the norm. Note that
262
/// this is often faster to compute in practice than [`NormedVectorSpace::distance`].
263
#[inline]
264
fn distance_squared(self, rhs: Self) -> Self::Scalar {
265
(rhs - self).norm_squared()
266
}
267
}
268
269
impl NormedVectorSpace for Vec4 {
270
#[inline]
271
fn norm(self) -> f32 {
272
self.length()
273
}
274
275
#[inline]
276
fn norm_squared(self) -> f32 {
277
self.length_squared()
278
}
279
}
280
281
impl NormedVectorSpace for Vec3 {
282
#[inline]
283
fn norm(self) -> f32 {
284
self.length()
285
}
286
287
#[inline]
288
fn norm_squared(self) -> f32 {
289
self.length_squared()
290
}
291
}
292
293
impl NormedVectorSpace for Vec3A {
294
#[inline]
295
fn norm(self) -> f32 {
296
self.length()
297
}
298
299
#[inline]
300
fn norm_squared(self) -> f32 {
301
self.length_squared()
302
}
303
}
304
305
impl NormedVectorSpace for Vec2 {
306
#[inline]
307
fn norm(self) -> f32 {
308
self.length()
309
}
310
311
#[inline]
312
fn norm_squared(self) -> f32 {
313
self.length_squared()
314
}
315
}
316
317
impl NormedVectorSpace for f32 {
318
#[inline]
319
fn norm(self) -> f32 {
320
ops::abs(self)
321
}
322
}
323
324
impl NormedVectorSpace for DVec4 {
325
#[inline]
326
fn norm(self) -> f64 {
327
self.length()
328
}
329
330
#[inline]
331
fn norm_squared(self) -> f64 {
332
self.length_squared()
333
}
334
}
335
336
impl NormedVectorSpace for DVec3 {
337
#[inline]
338
fn norm(self) -> f64 {
339
self.length()
340
}
341
342
#[inline]
343
fn norm_squared(self) -> f64 {
344
self.length_squared()
345
}
346
}
347
348
impl NormedVectorSpace for DVec2 {
349
#[inline]
350
fn norm(self) -> f64 {
351
self.length()
352
}
353
354
#[inline]
355
fn norm_squared(self) -> f64 {
356
self.length_squared()
357
}
358
}
359
360
impl NormedVectorSpace for f64 {
361
#[inline]
362
#[cfg(feature = "std")]
363
fn norm(self) -> f64 {
364
f64::abs(self)
365
}
366
367
#[inline]
368
#[cfg(all(any(feature = "libm", feature = "nostd-libm"), not(feature = "std")))]
369
fn norm(self) -> f64 {
370
libm::fabs(self)
371
}
372
}
373
374
/// A type with a natural interpolation that provides strong subdivision guarantees.
375
///
376
/// Although the only required method is `interpolate_stable`, many things are expected of it:
377
///
378
/// 1. The notion of interpolation should follow naturally from the semantics of the type, so
379
/// that inferring the interpolation mode from the type alone is sensible.
380
///
381
/// 2. The interpolation recovers something equivalent to the starting value at `t = 0.0`
382
/// and likewise with the ending value at `t = 1.0`. They do not have to be data-identical, but
383
/// they should be semantically identical. For example, [`Quat::slerp`] doesn't always yield its
384
/// second rotation input exactly at `t = 1.0`, but it always returns an equivalent rotation.
385
///
386
/// 3. Importantly, the interpolation must be *subdivision-stable*: for any interpolation curve
387
/// between two (unnamed) values and any parameter-value pairs `(t0, p)` and `(t1, q)`, the
388
/// interpolation curve between `p` and `q` must be the *linear* reparameterization of the original
389
/// interpolation curve restricted to the interval `[t0, t1]`.
390
///
391
/// The last of these conditions is very strong and indicates something like constant speed. It
392
/// is called "subdivision stability" because it guarantees that breaking up the interpolation
393
/// into segments and joining them back together has no effect.
394
///
395
/// Here is a diagram depicting it:
396
/// ```text
397
/// top curve = u.interpolate_stable(v, t)
398
///
399
/// t0 => p t1 => q
400
/// |-------------|---------|-------------|
401
/// 0 => u / \ 1 => v
402
/// / \
403
/// / \
404
/// / linear \
405
/// / reparameterization \
406
/// / t = t0 * (1 - s) + t1 * s \
407
/// / \
408
/// |-------------------------------------|
409
/// 0 => p 1 => q
410
///
411
/// bottom curve = p.interpolate_stable(q, s)
412
/// ```
413
///
414
/// Note that some common forms of interpolation do not satisfy this criterion. For example,
415
/// [`Quat::lerp`] and [`Rot2::nlerp`] are not subdivision-stable.
416
///
417
/// Furthermore, this is not to be used as a general trait for abstract interpolation.
418
/// Consumers rely on the strong guarantees in order for behavior based on this trait to be
419
/// well-behaved.
420
///
421
/// [`Quat::slerp`]: crate::Quat::slerp
422
/// [`Quat::lerp`]: crate::Quat::lerp
423
/// [`Rot2::nlerp`]: crate::Rot2::nlerp
424
pub trait StableInterpolate: Clone {
425
/// Interpolate between this value and the `other` given value using the parameter `t`. At
426
/// `t = 0.0`, a value equivalent to `self` is recovered, while `t = 1.0` recovers a value
427
/// equivalent to `other`, with intermediate values interpolating between the two.
428
/// See the [trait-level documentation] for details.
429
///
430
/// [trait-level documentation]: StableInterpolate
431
fn interpolate_stable(&self, other: &Self, t: f32) -> Self;
432
433
/// A version of [`interpolate_stable`] that assigns the result to `self` for convenience.
434
///
435
/// [`interpolate_stable`]: StableInterpolate::interpolate_stable
436
fn interpolate_stable_assign(&mut self, other: &Self, t: f32) {
437
*self = self.interpolate_stable(other, t);
438
}
439
440
/// Smoothly nudge this value towards the `target` at a given decay rate. The `decay_rate`
441
/// parameter controls how fast the distance between `self` and `target` decays relative to
442
/// the units of `delta`; the intended usage is for `decay_rate` to generally remain fixed,
443
/// while `delta` is something like `delta_time` from an updating system. This produces a
444
/// smooth following of the target that is independent of framerate.
445
///
446
/// More specifically, when this is called repeatedly, the result is that the distance between
447
/// `self` and a fixed `target` attenuates exponentially, with the rate of this exponential
448
/// decay given by `decay_rate`.
449
///
450
/// For example, at `decay_rate = 0.0`, this has no effect.
451
/// At `decay_rate = f32::INFINITY`, `self` immediately snaps to `target`.
452
/// In general, higher rates mean that `self` moves more quickly towards `target`.
453
///
454
/// # Example
455
/// ```
456
/// # use bevy_math::{Vec3, StableInterpolate};
457
/// # let delta_time: f32 = 1.0 / 60.0;
458
/// let mut object_position: Vec3 = Vec3::ZERO;
459
/// let target_position: Vec3 = Vec3::new(2.0, 3.0, 5.0);
460
/// // Decay rate of ln(10) => after 1 second, remaining distance is 1/10th
461
/// let decay_rate = f32::ln(10.0);
462
/// // Calling this repeatedly will move `object_position` towards `target_position`:
463
/// object_position.smooth_nudge(&target_position, decay_rate, delta_time);
464
/// ```
465
fn smooth_nudge(&mut self, target: &Self, decay_rate: f32, delta: f32) {
466
self.interpolate_stable_assign(target, 1.0 - ops::exp(-decay_rate * delta));
467
}
468
}
469
470
// Conservatively, we presently only apply this for normed vector spaces, where the notion
471
// of being constant-speed is literally true. The technical axioms are satisfied for any
472
// VectorSpace type, but the "natural from the semantics" part is less clear in general.
473
impl<V> StableInterpolate for V
474
where
475
V: NormedVectorSpace<Scalar = f32>,
476
{
477
#[inline]
478
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
479
self.lerp(*other, t)
480
}
481
}
482
483
impl StableInterpolate for Rot2 {
484
#[inline]
485
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
486
self.slerp(*other, t)
487
}
488
}
489
490
impl StableInterpolate for Quat {
491
#[inline]
492
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
493
self.slerp(*other, t)
494
}
495
}
496
497
impl StableInterpolate for Dir2 {
498
#[inline]
499
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
500
self.slerp(*other, t)
501
}
502
}
503
504
impl StableInterpolate for Dir3 {
505
#[inline]
506
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
507
self.slerp(*other, t)
508
}
509
}
510
511
impl StableInterpolate for Dir3A {
512
#[inline]
513
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
514
self.slerp(*other, t)
515
}
516
}
517
518
macro_rules! impl_stable_interpolate_tuple {
519
($(#[$meta:meta])* $(($n:tt, $T:ident)),*) => {
520
$(#[$meta])*
521
impl<$($T: StableInterpolate),*> StableInterpolate for ($($T,)*) {
522
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
523
(
524
$(
525
<$T as StableInterpolate>::interpolate_stable(&self.$n, &other.$n, t),
526
)*
527
)
528
}
529
}
530
};
531
}
532
533
all_tuples_enumerated!(
534
#[doc(fake_variadic)]
535
impl_stable_interpolate_tuple,
536
1,
537
11,
538
T
539
);
540
541
/// A type that has tangents.
542
pub trait HasTangent {
543
/// The tangent type.
544
type Tangent: VectorSpace;
545
}
546
547
/// A value with its derivative.
548
#[derive(Debug, Clone, Copy)]
549
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
550
#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
551
pub struct WithDerivative<T>
552
where
553
T: HasTangent,
554
{
555
/// The underlying value.
556
pub value: T,
557
558
/// The derivative at `value`.
559
pub derivative: T::Tangent,
560
}
561
562
/// A value together with its first and second derivatives.
563
#[derive(Debug, Clone, Copy)]
564
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
565
#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
566
pub struct WithTwoDerivatives<T>
567
where
568
T: HasTangent,
569
{
570
/// The underlying value.
571
pub value: T,
572
573
/// The derivative at `value`.
574
pub derivative: T::Tangent,
575
576
/// The second derivative at `value`.
577
pub second_derivative: <T::Tangent as HasTangent>::Tangent,
578
}
579
580
impl<V: VectorSpace> HasTangent for V {
581
type Tangent = V;
582
}
583
584
impl<F, U, V, M, N> HasTangent for (M, N)
585
where
586
F: ScalarField,
587
U: VectorSpace<Scalar = F>,
588
V: VectorSpace<Scalar = F>,
589
M: HasTangent<Tangent = U>,
590
N: HasTangent<Tangent = V>,
591
{
592
type Tangent = Sum<M::Tangent, N::Tangent>;
593
}
594
595