Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bevyengine
GitHub Repository: bevyengine/bevy
Path: blob/main/crates/bevy_mesh/src/primitives/dim3/conical_frustum.rs
6598 views
1
use crate::{Indices, Mesh, MeshBuilder, Meshable, PrimitiveTopology};
2
use bevy_asset::RenderAssetUsages;
3
use bevy_math::{ops, primitives::ConicalFrustum, Vec3};
4
use bevy_reflect::prelude::*;
5
6
/// A builder used for creating a [`Mesh`] with a [`ConicalFrustum`] shape.
7
#[derive(Clone, Copy, Debug, Reflect)]
8
#[reflect(Default, Debug, Clone)]
9
pub struct ConicalFrustumMeshBuilder {
10
/// The [`ConicalFrustum`] shape.
11
pub frustum: ConicalFrustum,
12
/// The number of vertices used for the top and bottom of the conical frustum.
13
///
14
/// The default is `32`.
15
pub resolution: u32,
16
/// The number of horizontal lines subdividing the lateral surface of the conical frustum.
17
///
18
/// The default is `1`.
19
pub segments: u32,
20
}
21
22
impl Default for ConicalFrustumMeshBuilder {
23
fn default() -> Self {
24
Self {
25
frustum: ConicalFrustum::default(),
26
resolution: 32,
27
segments: 1,
28
}
29
}
30
}
31
32
impl ConicalFrustumMeshBuilder {
33
/// Creates a new [`ConicalFrustumMeshBuilder`] from the given top and bottom radii, a height,
34
/// and a resolution used for the top and bottom.
35
#[inline]
36
pub const fn new(radius_top: f32, radius_bottom: f32, height: f32, resolution: u32) -> Self {
37
Self {
38
frustum: ConicalFrustum {
39
radius_top,
40
radius_bottom,
41
height,
42
},
43
resolution,
44
segments: 1,
45
}
46
}
47
48
/// Sets the number of vertices used for the top and bottom of the conical frustum.
49
#[inline]
50
pub const fn resolution(mut self, resolution: u32) -> Self {
51
self.resolution = resolution;
52
self
53
}
54
55
/// Sets the number of horizontal lines subdividing the lateral surface of the conical frustum.
56
#[inline]
57
pub const fn segments(mut self, segments: u32) -> Self {
58
self.segments = segments;
59
self
60
}
61
}
62
63
impl MeshBuilder for ConicalFrustumMeshBuilder {
64
fn build(&self) -> Mesh {
65
debug_assert!(self.resolution > 2);
66
debug_assert!(self.segments > 0);
67
68
let ConicalFrustum {
69
radius_top,
70
radius_bottom,
71
height,
72
} = self.frustum;
73
let half_height = height / 2.0;
74
75
let num_rings = self.segments + 1;
76
let num_vertices = (self.resolution * 2 + num_rings * (self.resolution + 1)) as usize;
77
let num_faces = self.resolution * (num_rings - 2);
78
let num_indices = ((2 * num_faces + 2 * (self.resolution - 1) * 2) * 3) as usize;
79
80
let mut positions = Vec::with_capacity(num_vertices);
81
let mut normals = Vec::with_capacity(num_vertices);
82
let mut uvs = Vec::with_capacity(num_vertices);
83
let mut indices = Vec::with_capacity(num_indices);
84
85
let step_theta = core::f32::consts::TAU / self.resolution as f32;
86
let step_y = height / self.segments as f32;
87
let step_radius = (radius_top - radius_bottom) / self.segments as f32;
88
89
// Rings
90
for ring in 0..num_rings {
91
let y = -half_height + ring as f32 * step_y;
92
let radius = radius_bottom + ring as f32 * step_radius;
93
94
for segment in 0..=self.resolution {
95
let theta = segment as f32 * step_theta;
96
let (sin, cos) = ops::sin_cos(theta);
97
98
positions.push([radius * cos, y, radius * sin]);
99
normals.push(
100
Vec3::new(cos, (radius_bottom - radius_top) / height, sin)
101
.normalize()
102
.to_array(),
103
);
104
uvs.push([
105
segment as f32 / self.resolution as f32,
106
ring as f32 / self.segments as f32,
107
]);
108
}
109
}
110
111
// Lateral surface
112
for i in 0..self.segments {
113
let ring = i * (self.resolution + 1);
114
let next_ring = (i + 1) * (self.resolution + 1);
115
116
for j in 0..self.resolution {
117
indices.extend_from_slice(&[
118
ring + j,
119
next_ring + j,
120
ring + j + 1,
121
next_ring + j,
122
next_ring + j + 1,
123
ring + j + 1,
124
]);
125
}
126
}
127
128
// Caps
129
let mut build_cap = |top: bool, radius: f32| {
130
let offset = positions.len() as u32;
131
let (y, normal_y, winding) = if top {
132
(half_height, 1.0, (1, 0))
133
} else {
134
(-half_height, -1.0, (0, 1))
135
};
136
137
for i in 0..self.resolution {
138
let theta = i as f32 * step_theta;
139
let (sin, cos) = ops::sin_cos(theta);
140
141
positions.push([cos * radius, y, sin * radius]);
142
normals.push([0.0, normal_y, 0.0]);
143
uvs.push([0.5 * (cos + 1.0), 1.0 - 0.5 * (sin + 1.0)]);
144
}
145
146
for i in 1..(self.resolution - 1) {
147
indices.extend_from_slice(&[
148
offset,
149
offset + i + winding.0,
150
offset + i + winding.1,
151
]);
152
}
153
};
154
155
build_cap(true, radius_top);
156
build_cap(false, radius_bottom);
157
158
Mesh::new(
159
PrimitiveTopology::TriangleList,
160
RenderAssetUsages::default(),
161
)
162
.with_inserted_indices(Indices::U32(indices))
163
.with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, positions)
164
.with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, normals)
165
.with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, uvs)
166
}
167
}
168
169
impl Meshable for ConicalFrustum {
170
type Output = ConicalFrustumMeshBuilder;
171
172
fn mesh(&self) -> Self::Output {
173
ConicalFrustumMeshBuilder {
174
frustum: *self,
175
..Default::default()
176
}
177
}
178
}
179
180
impl From<ConicalFrustum> for Mesh {
181
fn from(frustum: ConicalFrustum) -> Self {
182
frustum.mesh().build()
183
}
184
}
185
186