Path: blob/main/crates/bevy_pbr/src/render/clustered_forward.wgsl
6600 views
#define_import_path bevy_pbr::clustered_forward #import bevy_pbr::{ mesh_view_bindings as bindings, utils::rand_f, } #import bevy_render::{ color_operations::hsv_to_rgb, maths::PI_2, } // Offsets within the `cluster_offsets_and_counts` buffer for a single cluster. // // These offsets must be monotonically nondecreasing. That is, indices are // always sorted into the following order: point lights, spot lights, reflection // probes, irradiance volumes. struct ClusterableObjectIndexRanges { // The offset of the index of the first point light. first_point_light_index_offset: u32, // The offset of the index of the first spot light, which also terminates // the list of point lights. first_spot_light_index_offset: u32, // The offset of the index of the first reflection probe, which also // terminates the list of spot lights. first_reflection_probe_index_offset: u32, // The offset of the index of the first irradiance volumes, which also // terminates the list of reflection probes. first_irradiance_volume_index_offset: u32, first_decal_offset: u32, // One past the offset of the index of the final clusterable object for this // cluster. last_clusterable_object_index_offset: u32, } // NOTE: Keep in sync with bevy_pbr/src/light.rs fn view_z_to_z_slice(view_z: f32, is_orthographic: bool) -> u32 { var z_slice: u32 = 0u; if is_orthographic { // NOTE: view_z is correct in the orthographic case z_slice = u32(floor((view_z - bindings::lights.cluster_factors.z) * bindings::lights.cluster_factors.w)); } else { // NOTE: had to use -view_z to make it positive else log(negative) is nan z_slice = u32(log(-view_z) * bindings::lights.cluster_factors.z - bindings::lights.cluster_factors.w + 1.0); } // NOTE: We use min as we may limit the far z plane used for clustering to be closer than // the furthest thing being drawn. This means that we need to limit to the maximum cluster. return min(z_slice, bindings::lights.cluster_dimensions.z - 1u); } fn fragment_cluster_index(frag_coord: vec2<f32>, view_z: f32, is_orthographic: bool) -> u32 { let xy = vec2<u32>(floor((frag_coord - bindings::view.viewport.xy) * bindings::lights.cluster_factors.xy)); let z_slice = view_z_to_z_slice(view_z, is_orthographic); // NOTE: Restricting cluster index to avoid undefined behavior when accessing uniform buffer // arrays based on the cluster index. return min( (xy.y * bindings::lights.cluster_dimensions.x + xy.x) * bindings::lights.cluster_dimensions.z + z_slice, bindings::lights.cluster_dimensions.w - 1u ); } // this must match CLUSTER_COUNT_SIZE in light.rs const CLUSTER_COUNT_SIZE = 9u; // Returns the indices of clusterable objects belonging to the given cluster. // // Note that if fewer than 3 SSBO bindings are available (in WebGL 2, // primarily), light probes aren't clustered, and therefore both light probe // index ranges will be empty. fn unpack_clusterable_object_index_ranges(cluster_index: u32) -> ClusterableObjectIndexRanges { #if AVAILABLE_STORAGE_BUFFER_BINDINGS >= 3 let offset_and_counts_a = bindings::cluster_offsets_and_counts.data[cluster_index][0]; let offset_and_counts_b = bindings::cluster_offsets_and_counts.data[cluster_index][1]; // Sum up the counts to produce the range brackets. // // We could have stored the range brackets in `cluster_offsets_and_counts` // directly, but doing it this way makes the logic in this path more // consistent with the WebGL 2 path below. let point_light_offset = offset_and_counts_a.x; let spot_light_offset = point_light_offset + offset_and_counts_a.y; let reflection_probe_offset = spot_light_offset + offset_and_counts_a.z; let irradiance_volume_offset = reflection_probe_offset + offset_and_counts_a.w; let decal_offset = irradiance_volume_offset + offset_and_counts_b.x; let last_clusterable_offset = decal_offset + offset_and_counts_b.y; return ClusterableObjectIndexRanges( point_light_offset, spot_light_offset, reflection_probe_offset, irradiance_volume_offset, decal_offset, last_clusterable_offset ); #else // AVAILABLE_STORAGE_BUFFER_BINDINGS >= 3 let raw_offset_and_counts = bindings::cluster_offsets_and_counts.data[cluster_index >> 2u][cluster_index & ((1u << 2u) - 1u)]; // [ 31 .. 18 | 17 .. 9 | 8 .. 0 ] // [ offset | point light count | spot light count ] let offset_and_counts = vec3<u32>( (raw_offset_and_counts >> (CLUSTER_COUNT_SIZE * 2u)) & ((1u << (32u - (CLUSTER_COUNT_SIZE * 2u))) - 1u), (raw_offset_and_counts >> CLUSTER_COUNT_SIZE) & ((1u << CLUSTER_COUNT_SIZE) - 1u), raw_offset_and_counts & ((1u << CLUSTER_COUNT_SIZE) - 1u), ); // We don't cluster reflection probes or irradiance volumes on this // platform, as there's no room in the UBO. Thus, those offset ranges // (corresponding to `offset_d` and `offset_e` above) are empty and are // simply copies of `offset_c`. let offset_a = offset_and_counts.x; let offset_b = offset_a + offset_and_counts.y; let offset_c = offset_b + offset_and_counts.z; return ClusterableObjectIndexRanges(offset_a, offset_b, offset_c, offset_c, offset_c, offset_c); #endif // AVAILABLE_STORAGE_BUFFER_BINDINGS >= 3 } // Returns the index of the clusterable object at the given offset. // // Note that, in the case of a light probe, the index refers to an element in // one of the two `light_probes` sublists, not the `clusterable_objects` list. fn get_clusterable_object_id(index: u32) -> u32 { #if AVAILABLE_STORAGE_BUFFER_BINDINGS >= 3 return bindings::clusterable_object_index_lists.data[index]; #else // The index is correct but in clusterable_object_index_lists we pack 4 u8s into a u32 // This means the index into clusterable_object_index_lists is index / 4 let indices = bindings::clusterable_object_index_lists.data[index >> 4u][(index >> 2u) & ((1u << 2u) - 1u)]; // And index % 4 gives the sub-index of the u8 within the u32 so we shift by 8 * sub-index return (indices >> (8u * (index & ((1u << 2u) - 1u)))) & ((1u << 8u) - 1u); #endif } fn cluster_debug_visualization( input_color: vec4<f32>, view_z: f32, is_orthographic: bool, clusterable_object_index_ranges: ClusterableObjectIndexRanges, cluster_index: u32, ) -> vec4<f32> { var output_color = input_color; // Cluster allocation debug (using 'over' alpha blending) #ifdef CLUSTERED_FORWARD_DEBUG_Z_SLICES // NOTE: This debug mode visualizes the z-slices let cluster_overlay_alpha = 0.1; var z_slice: u32 = view_z_to_z_slice(view_z, is_orthographic); // A hack to make the colors alternate a bit more if (z_slice & 1u) == 1u { z_slice = z_slice + bindings::lights.cluster_dimensions.z / 2u; } let slice_color_hsv = vec3( f32(z_slice) / f32(bindings::lights.cluster_dimensions.z + 1u) * PI_2, 1.0, 0.5 ); let slice_color = hsv_to_rgb(slice_color_hsv); output_color = vec4<f32>( (1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * slice_color, output_color.a ); #endif // CLUSTERED_FORWARD_DEBUG_Z_SLICES #ifdef CLUSTERED_FORWARD_DEBUG_CLUSTER_COMPLEXITY // NOTE: This debug mode visualizes the number of clusterable objects within // the cluster that contains the fragment. It shows a sort of cluster // complexity measure. let cluster_overlay_alpha = 0.1; let max_complexity_per_cluster = 64.0; let object_count = clusterable_object_index_ranges.first_reflection_probe_index_offset - clusterable_object_index_ranges.first_point_light_index_offset; output_color.r = (1.0 - cluster_overlay_alpha) * output_color.r + cluster_overlay_alpha * smoothstep(0.0, max_complexity_per_cluster, f32(object_count)); output_color.g = (1.0 - cluster_overlay_alpha) * output_color.g + cluster_overlay_alpha * (1.0 - smoothstep(0.0, max_complexity_per_cluster, f32(object_count))); #endif // CLUSTERED_FORWARD_DEBUG_CLUSTER_COMPLEXITY #ifdef CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY // NOTE: Visualizes the cluster to which the fragment belongs let cluster_overlay_alpha = 0.1; var rng = cluster_index; let cluster_color_hsv = vec3(rand_f(&rng) * PI_2, 1.0, 0.5); let cluster_color = hsv_to_rgb(cluster_color_hsv); output_color = vec4<f32>( (1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * cluster_color, output_color.a ); #endif // CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY return output_color; }