use crate::material_bind_groups::{MaterialBindGroupIndex, MaterialBindGroupSlot};
use bevy_asset::{embedded_asset, load_embedded_asset, AssetId};
use bevy_camera::{
primitives::Aabb,
visibility::{NoFrustumCulling, RenderLayers, ViewVisibility, VisibilityRange},
Camera, Camera3d, Projection,
};
use bevy_core_pipeline::{
core_3d::{AlphaMask3d, Opaque3d, Transmissive3d, Transparent3d, CORE_3D_DEPTH_FORMAT},
deferred::{AlphaMask3dDeferred, Opaque3dDeferred},
oit::{prepare_oit_buffers, OrderIndependentTransparencySettingsOffset},
prepass::MotionVectorPrepass,
};
use bevy_derive::{Deref, DerefMut};
use bevy_diagnostic::FrameCount;
use bevy_ecs::{
prelude::*,
query::{QueryData, ROQueryItem},
system::{lifetimeless::*, SystemParamItem, SystemState},
};
use bevy_image::{BevyDefault, ImageSampler, TextureFormatPixelInfo};
use bevy_light::{
EnvironmentMapLight, IrradianceVolume, NotShadowCaster, NotShadowReceiver,
ShadowFilteringMethod, TransmittedShadowReceiver,
};
use bevy_math::{Affine3, Rect, UVec2, Vec3, Vec4};
use bevy_mesh::{
skinning::SkinnedMesh, BaseMeshPipelineKey, Mesh, Mesh3d, MeshTag, MeshVertexBufferLayoutRef,
VertexAttributeDescriptor,
};
use bevy_platform::collections::{hash_map::Entry, HashMap};
use bevy_render::{
batching::{
gpu_preprocessing::{
self, GpuPreprocessingSupport, IndirectBatchSet, IndirectParametersBuffers,
IndirectParametersCpuMetadata, IndirectParametersIndexed, IndirectParametersNonIndexed,
InstanceInputUniformBuffer, UntypedPhaseIndirectParametersBuffers,
},
no_gpu_preprocessing, GetBatchData, GetFullBatchData, NoAutomaticBatching,
},
mesh::{allocator::MeshAllocator, RenderMesh, RenderMeshBufferInfo},
render_asset::RenderAssets,
render_phase::{
BinnedRenderPhasePlugin, InputUniformIndex, PhaseItem, PhaseItemExtraIndex, RenderCommand,
RenderCommandResult, SortedRenderPhasePlugin, TrackedRenderPass,
},
render_resource::*,
renderer::{RenderAdapter, RenderDevice, RenderQueue},
sync_world::MainEntityHashSet,
texture::{DefaultImageSampler, GpuImage},
view::{
self, NoIndirectDrawing, RenderVisibilityRanges, RetainedViewEntity, ViewTarget,
ViewUniformOffset,
},
Extract,
};
use bevy_shader::{load_shader_library, Shader, ShaderDefVal, ShaderSettings};
use bevy_transform::components::GlobalTransform;
use bevy_utils::{default, Parallel, TypeIdMap};
use core::any::TypeId;
use core::mem::size_of;
use material_bind_groups::MaterialBindingId;
use tracing::{error, warn};
use self::irradiance_volume::IRRADIANCE_VOLUMES_ARE_USABLE;
use crate::{
render::{
morph::{
extract_morphs, no_automatic_morph_batching, prepare_morphs, MorphIndices,
MorphUniforms,
},
skin::no_automatic_skin_batching,
},
*,
};
use bevy_core_pipeline::oit::OrderIndependentTransparencySettings;
use bevy_core_pipeline::prepass::{DeferredPrepass, DepthPrepass, NormalPrepass};
use bevy_core_pipeline::tonemapping::{DebandDither, Tonemapping};
use bevy_ecs::component::Tick;
use bevy_ecs::system::SystemChangeTick;
use bevy_render::camera::TemporalJitter;
use bevy_render::prelude::Msaa;
use bevy_render::sync_world::{MainEntity, MainEntityHashMap};
use bevy_render::view::ExtractedView;
use bevy_render::RenderSystems::PrepareAssets;
use bytemuck::{Pod, Zeroable};
use nonmax::{NonMaxU16, NonMaxU32};
use smallvec::{smallvec, SmallVec};
use static_assertions::const_assert_eq;
pub struct MeshRenderPlugin {
pub use_gpu_instance_buffer_builder: bool,
pub debug_flags: RenderDebugFlags,
}
impl MeshRenderPlugin {
pub fn new(debug_flags: RenderDebugFlags) -> MeshRenderPlugin {
MeshRenderPlugin {
use_gpu_instance_buffer_builder: false,
debug_flags,
}
}
}
#[cfg(debug_assertions)]
pub const MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES: usize = 10;
impl Plugin for MeshRenderPlugin {
fn build(&self, app: &mut App) {
load_shader_library!(app, "forward_io.wgsl");
load_shader_library!(app, "mesh_view_types.wgsl", |settings| *settings =
ShaderSettings {
shader_defs: vec![
ShaderDefVal::UInt(
"MAX_DIRECTIONAL_LIGHTS".into(),
MAX_DIRECTIONAL_LIGHTS as u32
),
ShaderDefVal::UInt(
"MAX_CASCADES_PER_LIGHT".into(),
MAX_CASCADES_PER_LIGHT as u32,
)
]
});
load_shader_library!(app, "mesh_view_bindings.wgsl");
load_shader_library!(app, "mesh_types.wgsl");
load_shader_library!(app, "mesh_functions.wgsl");
load_shader_library!(app, "skinning.wgsl");
load_shader_library!(app, "morph.wgsl");
load_shader_library!(app, "occlusion_culling.wgsl");
embedded_asset!(app, "mesh.wgsl");
if app.get_sub_app(RenderApp).is_none() {
return;
}
app.add_systems(
PostUpdate,
(no_automatic_skin_batching, no_automatic_morph_batching),
)
.add_plugins((
BinnedRenderPhasePlugin::<Opaque3d, MeshPipeline>::new(self.debug_flags),
BinnedRenderPhasePlugin::<AlphaMask3d, MeshPipeline>::new(self.debug_flags),
BinnedRenderPhasePlugin::<Shadow, MeshPipeline>::new(self.debug_flags),
BinnedRenderPhasePlugin::<Opaque3dDeferred, MeshPipeline>::new(self.debug_flags),
BinnedRenderPhasePlugin::<AlphaMask3dDeferred, MeshPipeline>::new(self.debug_flags),
SortedRenderPhasePlugin::<Transmissive3d, MeshPipeline>::new(self.debug_flags),
SortedRenderPhasePlugin::<Transparent3d, MeshPipeline>::new(self.debug_flags),
));
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<MorphUniforms>()
.init_resource::<MorphIndices>()
.init_resource::<MeshCullingDataBuffer>()
.init_resource::<RenderMaterialInstances>()
.configure_sets(
ExtractSchedule,
MeshExtractionSystems
.after(view::extract_visibility_ranges)
.after(late_sweep_material_instances),
)
.add_systems(
ExtractSchedule,
(
extract_skins,
extract_morphs,
gpu_preprocessing::clear_batched_gpu_instance_buffers::<MeshPipeline>
.before(MeshExtractionSystems),
),
)
.add_systems(
Render,
(
set_mesh_motion_vector_flags.in_set(RenderSystems::PrepareMeshes),
prepare_skins.in_set(RenderSystems::PrepareResources),
prepare_morphs.in_set(RenderSystems::PrepareResources),
prepare_mesh_bind_groups.in_set(RenderSystems::PrepareBindGroups),
prepare_mesh_view_bind_groups
.in_set(RenderSystems::PrepareBindGroups)
.after(prepare_oit_buffers),
no_gpu_preprocessing::clear_batched_cpu_instance_buffers::<MeshPipeline>
.in_set(RenderSystems::Cleanup)
.after(RenderSystems::Render),
),
);
}
}
fn finish(&self, app: &mut App) {
let mut mesh_bindings_shader_defs = Vec::with_capacity(1);
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<ViewKeyCache>()
.init_resource::<ViewSpecializationTicks>()
.init_resource::<GpuPreprocessingSupport>()
.init_resource::<SkinUniforms>()
.add_systems(
Render,
check_views_need_specialization.in_set(PrepareAssets),
);
let gpu_preprocessing_support =
render_app.world().resource::<GpuPreprocessingSupport>();
let use_gpu_instance_buffer_builder =
self.use_gpu_instance_buffer_builder && gpu_preprocessing_support.is_available();
let render_mesh_instances = RenderMeshInstances::new(use_gpu_instance_buffer_builder);
render_app.insert_resource(render_mesh_instances);
if use_gpu_instance_buffer_builder {
render_app
.init_resource::<gpu_preprocessing::BatchedInstanceBuffers<
MeshUniform,
MeshInputUniform
>>()
.init_resource::<RenderMeshInstanceGpuQueues>()
.init_resource::<MeshesToReextractNextFrame>()
.add_systems(
ExtractSchedule,
extract_meshes_for_gpu_building.in_set(MeshExtractionSystems),
)
.add_systems(
Render,
(
gpu_preprocessing::write_batched_instance_buffers::<MeshPipeline>
.in_set(RenderSystems::PrepareResourcesFlush),
gpu_preprocessing::delete_old_work_item_buffers::<MeshPipeline>
.in_set(RenderSystems::PrepareResources),
collect_meshes_for_gpu_building
.in_set(RenderSystems::PrepareMeshes)
.before(set_mesh_motion_vector_flags),
),
);
} else {
let render_device = render_app.world().resource::<RenderDevice>();
let cpu_batched_instance_buffer =
no_gpu_preprocessing::BatchedInstanceBuffer::<MeshUniform>::new(render_device);
render_app
.insert_resource(cpu_batched_instance_buffer)
.add_systems(
ExtractSchedule,
extract_meshes_for_cpu_building.in_set(MeshExtractionSystems),
)
.add_systems(
Render,
no_gpu_preprocessing::write_batched_instance_buffer::<MeshPipeline>
.in_set(RenderSystems::PrepareResourcesFlush),
);
};
let render_device = render_app.world().resource::<RenderDevice>();
if let Some(per_object_buffer_batch_size) =
GpuArrayBuffer::<MeshUniform>::batch_size(render_device)
{
mesh_bindings_shader_defs.push(ShaderDefVal::UInt(
"PER_OBJECT_BUFFER_BATCH_SIZE".into(),
per_object_buffer_batch_size,
));
}
render_app
.init_resource::<MeshPipelineViewLayouts>()
.init_resource::<MeshPipeline>();
}
load_shader_library!(app, "mesh_bindings.wgsl", move |settings| *settings =
ShaderSettings {
shader_defs: mesh_bindings_shader_defs.clone(),
});
}
}
#[derive(Resource, Deref, DerefMut, Default, Debug, Clone)]
pub struct ViewKeyCache(HashMap<RetainedViewEntity, MeshPipelineKey>);
#[derive(Resource, Deref, DerefMut, Default, Debug, Clone)]
pub struct ViewSpecializationTicks(HashMap<RetainedViewEntity, Tick>);
pub fn check_views_need_specialization(
mut view_key_cache: ResMut<ViewKeyCache>,
mut view_specialization_ticks: ResMut<ViewSpecializationTicks>,
mut views: Query<(
&ExtractedView,
&Msaa,
Option<&Tonemapping>,
Option<&DebandDither>,
Option<&ShadowFilteringMethod>,
Has<ScreenSpaceAmbientOcclusion>,
(
Has<NormalPrepass>,
Has<DepthPrepass>,
Has<MotionVectorPrepass>,
Has<DeferredPrepass>,
),
Option<&Camera3d>,
Has<TemporalJitter>,
Option<&Projection>,
Has<DistanceFog>,
(
Has<RenderViewLightProbes<EnvironmentMapLight>>,
Has<RenderViewLightProbes<IrradianceVolume>>,
),
Has<OrderIndependentTransparencySettings>,
)>,
ticks: SystemChangeTick,
) {
for (
view,
msaa,
tonemapping,
dither,
shadow_filter_method,
ssao,
(normal_prepass, depth_prepass, motion_vector_prepass, deferred_prepass),
camera_3d,
temporal_jitter,
projection,
distance_fog,
(has_environment_maps, has_irradiance_volumes),
has_oit,
) in views.iter_mut()
{
let mut view_key = MeshPipelineKey::from_msaa_samples(msaa.samples())
| MeshPipelineKey::from_hdr(view.hdr);
if normal_prepass {
view_key |= MeshPipelineKey::NORMAL_PREPASS;
}
if depth_prepass {
view_key |= MeshPipelineKey::DEPTH_PREPASS;
}
if motion_vector_prepass {
view_key |= MeshPipelineKey::MOTION_VECTOR_PREPASS;
}
if deferred_prepass {
view_key |= MeshPipelineKey::DEFERRED_PREPASS;
}
if temporal_jitter {
view_key |= MeshPipelineKey::TEMPORAL_JITTER;
}
if has_environment_maps {
view_key |= MeshPipelineKey::ENVIRONMENT_MAP;
}
if has_irradiance_volumes {
view_key |= MeshPipelineKey::IRRADIANCE_VOLUME;
}
if has_oit {
view_key |= MeshPipelineKey::OIT_ENABLED;
}
if let Some(projection) = projection {
view_key |= match projection {
Projection::Perspective(_) => MeshPipelineKey::VIEW_PROJECTION_PERSPECTIVE,
Projection::Orthographic(_) => MeshPipelineKey::VIEW_PROJECTION_ORTHOGRAPHIC,
Projection::Custom(_) => MeshPipelineKey::VIEW_PROJECTION_NONSTANDARD,
};
}
match shadow_filter_method.unwrap_or(&ShadowFilteringMethod::default()) {
ShadowFilteringMethod::Hardware2x2 => {
view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_HARDWARE_2X2;
}
ShadowFilteringMethod::Gaussian => {
view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_GAUSSIAN;
}
ShadowFilteringMethod::Temporal => {
view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_TEMPORAL;
}
}
if !view.hdr {
if let Some(tonemapping) = tonemapping {
view_key |= MeshPipelineKey::TONEMAP_IN_SHADER;
view_key |= tonemapping_pipeline_key(*tonemapping);
}
if let Some(DebandDither::Enabled) = dither {
view_key |= MeshPipelineKey::DEBAND_DITHER;
}
}
if ssao {
view_key |= MeshPipelineKey::SCREEN_SPACE_AMBIENT_OCCLUSION;
}
if distance_fog {
view_key |= MeshPipelineKey::DISTANCE_FOG;
}
if let Some(camera_3d) = camera_3d {
view_key |= screen_space_specular_transmission_pipeline_key(
camera_3d.screen_space_specular_transmission_quality,
);
}
if !view_key_cache
.get_mut(&view.retained_view_entity)
.is_some_and(|current_key| *current_key == view_key)
{
view_key_cache.insert(view.retained_view_entity, view_key);
view_specialization_ticks.insert(view.retained_view_entity, ticks.this_run());
}
}
}
#[derive(Component)]
pub struct MeshTransforms {
pub world_from_local: Affine3,
pub previous_world_from_local: Affine3,
pub flags: u32,
}
#[derive(ShaderType, Clone)]
pub struct MeshUniform {
pub world_from_local: [Vec4; 3],
pub previous_world_from_local: [Vec4; 3],
pub local_from_world_transpose_a: [Vec4; 2],
pub local_from_world_transpose_b: f32,
pub flags: u32,
pub lightmap_uv_rect: UVec2,
pub first_vertex_index: u32,
pub current_skin_index: u32,
pub material_and_lightmap_bind_group_slot: u32,
pub tag: u32,
pub pad: u32,
}
#[derive(ShaderType, Pod, Zeroable, Clone, Copy, Default, Debug)]
#[repr(C)]
pub struct MeshInputUniform {
pub world_from_local: [Vec4; 3],
pub lightmap_uv_rect: UVec2,
pub flags: u32,
pub previous_input_index: u32,
pub first_vertex_index: u32,
pub first_index_index: u32,
pub index_count: u32,
pub current_skin_index: u32,
pub material_and_lightmap_bind_group_slot: u32,
pub timestamp: u32,
pub tag: u32,
pub pad: u32,
}
#[derive(ShaderType, Pod, Zeroable, Clone, Copy, Default)]
#[repr(C)]
pub struct MeshCullingData {
pub aabb_center: Vec4,
pub aabb_half_extents: Vec4,
}
#[derive(Resource, Deref, DerefMut)]
pub struct MeshCullingDataBuffer(RawBufferVec<MeshCullingData>);
impl MeshUniform {
pub fn new(
mesh_transforms: &MeshTransforms,
first_vertex_index: u32,
material_bind_group_slot: MaterialBindGroupSlot,
maybe_lightmap: Option<(LightmapSlotIndex, Rect)>,
current_skin_index: Option<u32>,
tag: Option<u32>,
) -> Self {
let (local_from_world_transpose_a, local_from_world_transpose_b) =
mesh_transforms.world_from_local.inverse_transpose_3x3();
let lightmap_bind_group_slot = match maybe_lightmap {
None => u16::MAX,
Some((slot_index, _)) => slot_index.into(),
};
Self {
world_from_local: mesh_transforms.world_from_local.to_transpose(),
previous_world_from_local: mesh_transforms.previous_world_from_local.to_transpose(),
lightmap_uv_rect: pack_lightmap_uv_rect(maybe_lightmap.map(|(_, uv_rect)| uv_rect)),
local_from_world_transpose_a,
local_from_world_transpose_b,
flags: mesh_transforms.flags,
first_vertex_index,
current_skin_index: current_skin_index.unwrap_or(u32::MAX),
material_and_lightmap_bind_group_slot: u32::from(material_bind_group_slot)
| ((lightmap_bind_group_slot as u32) << 16),
tag: tag.unwrap_or(0),
pad: 0,
}
}
}
bitflags::bitflags! {
#[repr(transparent)]
pub struct MeshFlags: u32 {
const LOD_INDEX_MASK = (1 << 16) - 1;
const NO_FRUSTUM_CULLING = 1 << 28;
const SHADOW_RECEIVER = 1 << 29;
const TRANSMITTED_SHADOW_RECEIVER = 1 << 30;
const SIGN_DETERMINANT_MODEL_3X3 = 1 << 31;
const NONE = 0;
const UNINITIALIZED = 0xFFFFFFFF;
}
}
impl MeshFlags {
fn from_components(
transform: &GlobalTransform,
lod_index: Option<NonMaxU16>,
no_frustum_culling: bool,
not_shadow_receiver: bool,
transmitted_receiver: bool,
) -> MeshFlags {
let mut mesh_flags = if not_shadow_receiver {
MeshFlags::empty()
} else {
MeshFlags::SHADOW_RECEIVER
};
if no_frustum_culling {
mesh_flags |= MeshFlags::NO_FRUSTUM_CULLING;
}
if transmitted_receiver {
mesh_flags |= MeshFlags::TRANSMITTED_SHADOW_RECEIVER;
}
if transform.affine().matrix3.determinant().is_sign_positive() {
mesh_flags |= MeshFlags::SIGN_DETERMINANT_MODEL_3X3;
}
let lod_index_bits = match lod_index {
None => u16::MAX,
Some(lod_index) => u16::from(lod_index),
};
mesh_flags |=
MeshFlags::from_bits_retain((lod_index_bits as u32) << MeshFlags::LOD_INDEX_SHIFT);
mesh_flags
}
pub const LOD_INDEX_SHIFT: u32 = 0;
}
bitflags::bitflags! {
#[derive(Clone, Copy)]
pub struct RenderMeshInstanceFlags: u8 {
const SHADOW_CASTER = 1 << 0;
const AUTOMATIC_BATCHING = 1 << 1;
const HAS_PREVIOUS_TRANSFORM = 1 << 2;
const HAS_PREVIOUS_SKIN = 1 << 3;
const HAS_PREVIOUS_MORPH = 1 << 4;
}
}
#[derive(Deref, DerefMut)]
pub struct RenderMeshInstanceCpu {
#[deref]
pub shared: RenderMeshInstanceShared,
pub transforms: MeshTransforms,
}
#[derive(Deref, DerefMut)]
pub struct RenderMeshInstanceGpu {
#[deref]
pub shared: RenderMeshInstanceShared,
pub translation: Vec3,
pub current_uniform_index: NonMaxU32,
}
pub struct RenderMeshInstanceShared {
pub mesh_asset_id: AssetId<Mesh>,
pub material_bindings_index: MaterialBindingId,
pub flags: RenderMeshInstanceFlags,
pub lightmap_slab_index: Option<LightmapSlabIndex>,
pub tag: u32,
pub render_layers: Option<RenderLayers>,
}
pub struct RenderMeshInstanceGpuBuilder {
pub shared: RenderMeshInstanceShared,
pub world_from_local: Affine3,
pub lightmap_uv_rect: UVec2,
pub previous_input_index: Option<NonMaxU32>,
pub mesh_flags: MeshFlags,
}
#[derive(Default)]
pub enum RenderMeshInstanceGpuQueue {
#[default]
None,
CpuCulling {
changed: Vec<(MainEntity, RenderMeshInstanceGpuBuilder)>,
removed: Vec<MainEntity>,
},
GpuCulling {
changed: Vec<(MainEntity, RenderMeshInstanceGpuBuilder, MeshCullingData)>,
removed: Vec<MainEntity>,
},
}
#[derive(Resource, Default, Deref, DerefMut)]
pub struct RenderMeshInstanceGpuQueues(Parallel<RenderMeshInstanceGpuQueue>);
#[derive(Resource, Default, Deref, DerefMut)]
pub struct MeshesToReextractNextFrame(MainEntityHashSet);
impl RenderMeshInstanceShared {
fn for_gpu_building(
previous_transform: Option<&PreviousGlobalTransform>,
mesh: &Mesh3d,
tag: Option<&MeshTag>,
not_shadow_caster: bool,
no_automatic_batching: bool,
render_layers: Option<&RenderLayers>,
) -> Self {
Self::for_cpu_building(
previous_transform,
mesh,
tag,
default(),
not_shadow_caster,
no_automatic_batching,
render_layers,
)
}
fn for_cpu_building(
previous_transform: Option<&PreviousGlobalTransform>,
mesh: &Mesh3d,
tag: Option<&MeshTag>,
material_bindings_index: MaterialBindingId,
not_shadow_caster: bool,
no_automatic_batching: bool,
render_layers: Option<&RenderLayers>,
) -> Self {
let mut mesh_instance_flags = RenderMeshInstanceFlags::empty();
mesh_instance_flags.set(RenderMeshInstanceFlags::SHADOW_CASTER, !not_shadow_caster);
mesh_instance_flags.set(
RenderMeshInstanceFlags::AUTOMATIC_BATCHING,
!no_automatic_batching,
);
mesh_instance_flags.set(
RenderMeshInstanceFlags::HAS_PREVIOUS_TRANSFORM,
previous_transform.is_some(),
);
RenderMeshInstanceShared {
mesh_asset_id: mesh.id(),
flags: mesh_instance_flags,
material_bindings_index,
lightmap_slab_index: None,
tag: tag.map_or(0, |i| **i),
render_layers: render_layers.cloned(),
}
}
#[inline]
pub fn should_batch(&self) -> bool {
self.flags
.contains(RenderMeshInstanceFlags::AUTOMATIC_BATCHING)
}
}
#[derive(Resource)]
pub enum RenderMeshInstances {
CpuBuilding(RenderMeshInstancesCpu),
GpuBuilding(RenderMeshInstancesGpu),
}
#[derive(Default, Deref, DerefMut)]
pub struct RenderMeshInstancesCpu(MainEntityHashMap<RenderMeshInstanceCpu>);
#[derive(Default, Deref, DerefMut)]
pub struct RenderMeshInstancesGpu(MainEntityHashMap<RenderMeshInstanceGpu>);
impl RenderMeshInstances {
fn new(use_gpu_instance_buffer_builder: bool) -> RenderMeshInstances {
if use_gpu_instance_buffer_builder {
RenderMeshInstances::GpuBuilding(RenderMeshInstancesGpu::default())
} else {
RenderMeshInstances::CpuBuilding(RenderMeshInstancesCpu::default())
}
}
pub fn mesh_asset_id(&self, entity: MainEntity) -> Option<AssetId<Mesh>> {
match *self {
RenderMeshInstances::CpuBuilding(ref instances) => instances.mesh_asset_id(entity),
RenderMeshInstances::GpuBuilding(ref instances) => instances.mesh_asset_id(entity),
}
}
pub fn render_mesh_queue_data(&self, entity: MainEntity) -> Option<RenderMeshQueueData<'_>> {
match *self {
RenderMeshInstances::CpuBuilding(ref instances) => {
instances.render_mesh_queue_data(entity)
}
RenderMeshInstances::GpuBuilding(ref instances) => {
instances.render_mesh_queue_data(entity)
}
}
}
fn insert_mesh_instance_flags(&mut self, entity: MainEntity, flags: RenderMeshInstanceFlags) {
match *self {
RenderMeshInstances::CpuBuilding(ref mut instances) => {
instances.insert_mesh_instance_flags(entity, flags);
}
RenderMeshInstances::GpuBuilding(ref mut instances) => {
instances.insert_mesh_instance_flags(entity, flags);
}
}
}
}
impl RenderMeshInstancesCpu {
fn mesh_asset_id(&self, entity: MainEntity) -> Option<AssetId<Mesh>> {
self.get(&entity)
.map(|render_mesh_instance| render_mesh_instance.mesh_asset_id)
}
fn render_mesh_queue_data(&self, entity: MainEntity) -> Option<RenderMeshQueueData<'_>> {
self.get(&entity)
.map(|render_mesh_instance| RenderMeshQueueData {
shared: &render_mesh_instance.shared,
translation: render_mesh_instance.transforms.world_from_local.translation,
current_uniform_index: InputUniformIndex::default(),
})
}
fn insert_mesh_instance_flags(&mut self, entity: MainEntity, flags: RenderMeshInstanceFlags) {
if let Some(instance) = self.get_mut(&entity) {
instance.flags.insert(flags);
}
}
}
impl RenderMeshInstancesGpu {
fn mesh_asset_id(&self, entity: MainEntity) -> Option<AssetId<Mesh>> {
self.get(&entity)
.map(|render_mesh_instance| render_mesh_instance.mesh_asset_id)
}
fn render_mesh_queue_data(&self, entity: MainEntity) -> Option<RenderMeshQueueData<'_>> {
self.get(&entity)
.map(|render_mesh_instance| RenderMeshQueueData {
shared: &render_mesh_instance.shared,
translation: render_mesh_instance.translation,
current_uniform_index: InputUniformIndex(
render_mesh_instance.current_uniform_index.into(),
),
})
}
fn insert_mesh_instance_flags(&mut self, entity: MainEntity, flags: RenderMeshInstanceFlags) {
if let Some(instance) = self.get_mut(&entity) {
instance.flags.insert(flags);
}
}
}
impl RenderMeshInstanceGpuQueue {
fn init(&mut self, any_gpu_culling: bool) {
match (any_gpu_culling, &mut *self) {
(true, RenderMeshInstanceGpuQueue::GpuCulling { changed, removed }) => {
changed.clear();
removed.clear();
}
(true, _) => {
*self = RenderMeshInstanceGpuQueue::GpuCulling {
changed: vec![],
removed: vec![],
}
}
(false, RenderMeshInstanceGpuQueue::CpuCulling { changed, removed }) => {
changed.clear();
removed.clear();
}
(false, _) => {
*self = RenderMeshInstanceGpuQueue::CpuCulling {
changed: vec![],
removed: vec![],
}
}
}
}
fn push(
&mut self,
entity: MainEntity,
instance_builder: RenderMeshInstanceGpuBuilder,
culling_data_builder: Option<MeshCullingData>,
) {
match (&mut *self, culling_data_builder) {
(
&mut RenderMeshInstanceGpuQueue::CpuCulling {
changed: ref mut queue,
..
},
None,
) => {
queue.push((entity, instance_builder));
}
(
&mut RenderMeshInstanceGpuQueue::GpuCulling {
changed: ref mut queue,
..
},
Some(culling_data_builder),
) => {
queue.push((entity, instance_builder, culling_data_builder));
}
(_, None) => {
*self = RenderMeshInstanceGpuQueue::CpuCulling {
changed: vec![(entity, instance_builder)],
removed: vec![],
};
}
(_, Some(culling_data_builder)) => {
*self = RenderMeshInstanceGpuQueue::GpuCulling {
changed: vec![(entity, instance_builder, culling_data_builder)],
removed: vec![],
};
}
}
}
fn remove(&mut self, entity: MainEntity, gpu_culling: bool) {
match (&mut *self, gpu_culling) {
(RenderMeshInstanceGpuQueue::None, false) => {
*self = RenderMeshInstanceGpuQueue::CpuCulling {
changed: vec![],
removed: vec![entity],
}
}
(RenderMeshInstanceGpuQueue::None, true) => {
*self = RenderMeshInstanceGpuQueue::GpuCulling {
changed: vec![],
removed: vec![entity],
}
}
(RenderMeshInstanceGpuQueue::CpuCulling { removed, .. }, _)
| (RenderMeshInstanceGpuQueue::GpuCulling { removed, .. }, _) => {
removed.push(entity);
}
}
}
}
impl RenderMeshInstanceGpuBuilder {
fn update(
mut self,
entity: MainEntity,
render_mesh_instances: &mut MainEntityHashMap<RenderMeshInstanceGpu>,
current_input_buffer: &mut InstanceInputUniformBuffer<MeshInputUniform>,
previous_input_buffer: &mut InstanceInputUniformBuffer<MeshInputUniform>,
mesh_allocator: &MeshAllocator,
mesh_material_ids: &RenderMaterialInstances,
render_material_bindings: &RenderMaterialBindings,
render_lightmaps: &RenderLightmaps,
skin_uniforms: &SkinUniforms,
timestamp: FrameCount,
meshes_to_reextract_next_frame: &mut MeshesToReextractNextFrame,
) -> Option<u32> {
let (first_vertex_index, vertex_count) =
match mesh_allocator.mesh_vertex_slice(&self.shared.mesh_asset_id) {
Some(mesh_vertex_slice) => (
mesh_vertex_slice.range.start,
mesh_vertex_slice.range.end - mesh_vertex_slice.range.start,
),
None => (0, 0),
};
let (mesh_is_indexed, first_index_index, index_count) =
match mesh_allocator.mesh_index_slice(&self.shared.mesh_asset_id) {
Some(mesh_index_slice) => (
true,
mesh_index_slice.range.start,
mesh_index_slice.range.end - mesh_index_slice.range.start,
),
None => (false, 0, 0),
};
let current_skin_index = match skin_uniforms.skin_byte_offset(entity) {
Some(skin_index) => skin_index.index(),
None => u32::MAX,
};
let mesh_material = mesh_material_ids.mesh_material(entity);
let mesh_material_binding_id = if mesh_material != DUMMY_MESH_MATERIAL.untyped() {
match render_material_bindings.get(&mesh_material) {
Some(binding_id) => *binding_id,
None => {
meshes_to_reextract_next_frame.insert(entity);
return None;
}
}
} else {
MaterialBindingId::default()
};
self.shared.material_bindings_index = mesh_material_binding_id;
let lightmap_slot = match render_lightmaps.render_lightmaps.get(&entity) {
Some(render_lightmap) => u16::from(*render_lightmap.slot_index),
None => u16::MAX,
};
let lightmap_slab_index = render_lightmaps
.render_lightmaps
.get(&entity)
.map(|lightmap| lightmap.slab_index);
self.shared.lightmap_slab_index = lightmap_slab_index;
let mut mesh_input_uniform = MeshInputUniform {
world_from_local: self.world_from_local.to_transpose(),
lightmap_uv_rect: self.lightmap_uv_rect,
flags: self.mesh_flags.bits(),
previous_input_index: u32::MAX,
timestamp: timestamp.0,
first_vertex_index,
first_index_index,
index_count: if mesh_is_indexed {
index_count
} else {
vertex_count
},
current_skin_index,
material_and_lightmap_bind_group_slot: u32::from(
self.shared.material_bindings_index.slot,
) | ((lightmap_slot as u32) << 16),
tag: self.shared.tag,
pad: 0,
};
let current_uniform_index;
match render_mesh_instances.entry(entity) {
Entry::Occupied(mut occupied_entry) => {
current_uniform_index = u32::from(occupied_entry.get_mut().current_uniform_index);
let previous_mesh_input_uniform =
current_input_buffer.get_unchecked(current_uniform_index);
let previous_input_index = previous_input_buffer.add(previous_mesh_input_uniform);
mesh_input_uniform.previous_input_index = previous_input_index;
current_input_buffer.set(current_uniform_index, mesh_input_uniform);
occupied_entry.replace_entry_with(|_, _| {
Some(RenderMeshInstanceGpu {
translation: self.world_from_local.translation,
shared: self.shared,
current_uniform_index: NonMaxU32::new(current_uniform_index)
.unwrap_or_default(),
})
});
}
Entry::Vacant(vacant_entry) => {
current_uniform_index = current_input_buffer.add(mesh_input_uniform);
vacant_entry.insert(RenderMeshInstanceGpu {
translation: self.world_from_local.translation,
shared: self.shared,
current_uniform_index: NonMaxU32::new(current_uniform_index)
.unwrap_or_default(),
});
}
}
Some(current_uniform_index)
}
}
fn remove_mesh_input_uniform(
entity: MainEntity,
render_mesh_instances: &mut MainEntityHashMap<RenderMeshInstanceGpu>,
current_input_buffer: &mut InstanceInputUniformBuffer<MeshInputUniform>,
) -> Option<u32> {
let removed_render_mesh_instance = render_mesh_instances.remove(&entity)?;
let removed_uniform_index = removed_render_mesh_instance.current_uniform_index.get();
current_input_buffer.remove(removed_uniform_index);
Some(removed_uniform_index)
}
impl MeshCullingData {
fn new(aabb: Option<&Aabb>) -> Self {
match aabb {
Some(aabb) => MeshCullingData {
aabb_center: aabb.center.extend(0.0),
aabb_half_extents: aabb.half_extents.extend(0.0),
},
None => MeshCullingData {
aabb_center: Vec3::ZERO.extend(0.0),
aabb_half_extents: Vec3::INFINITY.extend(0.0),
},
}
}
fn update(
&self,
mesh_culling_data_buffer: &mut MeshCullingDataBuffer,
instance_data_index: usize,
) {
while mesh_culling_data_buffer.len() < instance_data_index + 1 {
mesh_culling_data_buffer.push(MeshCullingData::default());
}
mesh_culling_data_buffer.values_mut()[instance_data_index] = *self;
}
}
impl Default for MeshCullingDataBuffer {
#[inline]
fn default() -> Self {
Self(RawBufferVec::new(BufferUsages::STORAGE))
}
}
#[derive(Deref)]
pub struct RenderMeshQueueData<'a> {
#[deref]
pub shared: &'a RenderMeshInstanceShared,
pub translation: Vec3,
pub current_uniform_index: InputUniformIndex,
}
#[derive(SystemSet, Clone, PartialEq, Eq, Debug, Hash)]
pub struct MeshExtractionSystems;
#[deprecated(since = "0.17.0", note = "Renamed to `MeshExtractionSystems`.")]
pub type ExtractMeshesSet = MeshExtractionSystems;
pub fn extract_meshes_for_cpu_building(
mut render_mesh_instances: ResMut<RenderMeshInstances>,
mesh_material_ids: Res<RenderMaterialInstances>,
render_material_bindings: Res<RenderMaterialBindings>,
render_visibility_ranges: Res<RenderVisibilityRanges>,
mut render_mesh_instance_queues: Local<Parallel<Vec<(Entity, RenderMeshInstanceCpu)>>>,
meshes_query: Extract<
Query<(
Entity,
&ViewVisibility,
&GlobalTransform,
Option<&PreviousGlobalTransform>,
&Mesh3d,
Option<&MeshTag>,
Has<NoFrustumCulling>,
Has<NotShadowReceiver>,
Has<TransmittedShadowReceiver>,
Has<NotShadowCaster>,
Has<NoAutomaticBatching>,
Has<VisibilityRange>,
Option<&RenderLayers>,
)>,
>,
) {
meshes_query.par_iter().for_each_init(
|| render_mesh_instance_queues.borrow_local_mut(),
|queue,
(
entity,
view_visibility,
transform,
previous_transform,
mesh,
tag,
no_frustum_culling,
not_shadow_receiver,
transmitted_receiver,
not_shadow_caster,
no_automatic_batching,
visibility_range,
render_layers,
)| {
if !view_visibility.get() {
return;
}
let mut lod_index = None;
if visibility_range {
lod_index = render_visibility_ranges.lod_index_for_entity(entity.into());
}
let mesh_flags = MeshFlags::from_components(
transform,
lod_index,
no_frustum_culling,
not_shadow_receiver,
transmitted_receiver,
);
let mesh_material = mesh_material_ids.mesh_material(MainEntity::from(entity));
let material_bindings_index = render_material_bindings
.get(&mesh_material)
.copied()
.unwrap_or_default();
let shared = RenderMeshInstanceShared::for_cpu_building(
previous_transform,
mesh,
tag,
material_bindings_index,
not_shadow_caster,
no_automatic_batching,
render_layers,
);
let world_from_local = transform.affine();
queue.push((
entity,
RenderMeshInstanceCpu {
transforms: MeshTransforms {
world_from_local: (&world_from_local).into(),
previous_world_from_local: (&previous_transform
.map(|t| t.0)
.unwrap_or(world_from_local))
.into(),
flags: mesh_flags.bits(),
},
shared,
},
));
},
);
let RenderMeshInstances::CpuBuilding(ref mut render_mesh_instances) = *render_mesh_instances
else {
panic!(
"`extract_meshes_for_cpu_building` should only be called if we're using CPU \
`MeshUniform` building"
);
};
render_mesh_instances.clear();
for queue in render_mesh_instance_queues.iter_mut() {
for (entity, render_mesh_instance) in queue.drain(..) {
render_mesh_instances.insert(entity.into(), render_mesh_instance);
}
}
}
type GpuMeshExtractionQuery = (
Entity,
Read<ViewVisibility>,
Read<GlobalTransform>,
Option<Read<PreviousGlobalTransform>>,
Option<Read<Lightmap>>,
Option<Read<Aabb>>,
Read<Mesh3d>,
Option<Read<MeshTag>>,
Has<NoFrustumCulling>,
Has<NotShadowReceiver>,
Has<TransmittedShadowReceiver>,
Has<NotShadowCaster>,
Has<NoAutomaticBatching>,
Has<VisibilityRange>,
Option<Read<RenderLayers>>,
);
pub fn extract_meshes_for_gpu_building(
mut render_mesh_instances: ResMut<RenderMeshInstances>,
render_visibility_ranges: Res<RenderVisibilityRanges>,
mut render_mesh_instance_queues: ResMut<RenderMeshInstanceGpuQueues>,
changed_meshes_query: Extract<
Query<
GpuMeshExtractionQuery,
Or<(
Changed<ViewVisibility>,
Changed<GlobalTransform>,
Changed<PreviousGlobalTransform>,
Changed<Lightmap>,
Changed<Aabb>,
Changed<Mesh3d>,
Changed<NoFrustumCulling>,
Changed<NotShadowReceiver>,
Changed<TransmittedShadowReceiver>,
Changed<NotShadowCaster>,
Changed<NoAutomaticBatching>,
Changed<VisibilityRange>,
Changed<SkinnedMesh>,
)>,
>,
>,
all_meshes_query: Extract<Query<GpuMeshExtractionQuery>>,
mut removed_meshes_query: Extract<RemovedComponents<Mesh3d>>,
gpu_culling_query: Extract<Query<(), (With<Camera>, Without<NoIndirectDrawing>)>>,
meshes_to_reextract_next_frame: ResMut<MeshesToReextractNextFrame>,
) {
let any_gpu_culling = !gpu_culling_query.is_empty();
for render_mesh_instance_queue in render_mesh_instance_queues.iter_mut() {
render_mesh_instance_queue.init(any_gpu_culling);
}
let RenderMeshInstances::GpuBuilding(ref mut render_mesh_instances) = *render_mesh_instances
else {
panic!(
"`extract_meshes_for_gpu_building` should only be called if we're \
using GPU `MeshUniform` building"
);
};
changed_meshes_query.par_iter().for_each_init(
|| render_mesh_instance_queues.borrow_local_mut(),
|queue, query_row| {
extract_mesh_for_gpu_building(
query_row,
&render_visibility_ranges,
render_mesh_instances,
queue,
any_gpu_culling,
);
},
);
let mut queue = render_mesh_instance_queues.borrow_local_mut();
for &mesh_entity in &**meshes_to_reextract_next_frame {
if let Ok(query_row) = all_meshes_query.get(*mesh_entity) {
extract_mesh_for_gpu_building(
query_row,
&render_visibility_ranges,
render_mesh_instances,
&mut queue,
any_gpu_culling,
);
}
}
for entity in removed_meshes_query.read() {
let entity = MainEntity::from(entity);
if !changed_meshes_query.contains(*entity)
&& !meshes_to_reextract_next_frame.contains(&entity)
{
queue.remove(entity, any_gpu_culling);
}
}
}
fn extract_mesh_for_gpu_building(
(
entity,
view_visibility,
transform,
previous_transform,
lightmap,
aabb,
mesh,
tag,
no_frustum_culling,
not_shadow_receiver,
transmitted_receiver,
not_shadow_caster,
no_automatic_batching,
visibility_range,
render_layers,
): <GpuMeshExtractionQuery as QueryData>::Item<'_, '_>,
render_visibility_ranges: &RenderVisibilityRanges,
render_mesh_instances: &RenderMeshInstancesGpu,
queue: &mut RenderMeshInstanceGpuQueue,
any_gpu_culling: bool,
) {
if !view_visibility.get() {
queue.remove(entity.into(), any_gpu_culling);
return;
}
let mut lod_index = None;
if visibility_range {
lod_index = render_visibility_ranges.lod_index_for_entity(entity.into());
}
let mesh_flags = MeshFlags::from_components(
transform,
lod_index,
no_frustum_culling,
not_shadow_receiver,
transmitted_receiver,
);
let shared = RenderMeshInstanceShared::for_gpu_building(
previous_transform,
mesh,
tag,
not_shadow_caster,
no_automatic_batching,
render_layers,
);
let lightmap_uv_rect = pack_lightmap_uv_rect(lightmap.map(|lightmap| lightmap.uv_rect));
let gpu_mesh_culling_data = any_gpu_culling.then(|| MeshCullingData::new(aabb));
let previous_input_index = if shared
.flags
.contains(RenderMeshInstanceFlags::HAS_PREVIOUS_TRANSFORM)
{
render_mesh_instances
.get(&MainEntity::from(entity))
.map(|render_mesh_instance| render_mesh_instance.current_uniform_index)
} else {
None
};
let gpu_mesh_instance_builder = RenderMeshInstanceGpuBuilder {
shared,
world_from_local: (&transform.affine()).into(),
lightmap_uv_rect,
mesh_flags,
previous_input_index,
};
queue.push(
entity.into(),
gpu_mesh_instance_builder,
gpu_mesh_culling_data,
);
}
pub(crate) fn set_mesh_motion_vector_flags(
mut render_mesh_instances: ResMut<RenderMeshInstances>,
skin_uniforms: Res<SkinUniforms>,
morph_indices: Res<MorphIndices>,
) {
for &entity in skin_uniforms.all_skins() {
render_mesh_instances
.insert_mesh_instance_flags(entity, RenderMeshInstanceFlags::HAS_PREVIOUS_SKIN);
}
for &entity in morph_indices.prev.keys() {
render_mesh_instances
.insert_mesh_instance_flags(entity, RenderMeshInstanceFlags::HAS_PREVIOUS_MORPH);
}
}
pub fn collect_meshes_for_gpu_building(
render_mesh_instances: ResMut<RenderMeshInstances>,
batched_instance_buffers: ResMut<
gpu_preprocessing::BatchedInstanceBuffers<MeshUniform, MeshInputUniform>,
>,
mut mesh_culling_data_buffer: ResMut<MeshCullingDataBuffer>,
mut render_mesh_instance_queues: ResMut<RenderMeshInstanceGpuQueues>,
mesh_allocator: Res<MeshAllocator>,
mesh_material_ids: Res<RenderMaterialInstances>,
render_material_bindings: Res<RenderMaterialBindings>,
render_lightmaps: Res<RenderLightmaps>,
skin_uniforms: Res<SkinUniforms>,
frame_count: Res<FrameCount>,
mut meshes_to_reextract_next_frame: ResMut<MeshesToReextractNextFrame>,
) {
let RenderMeshInstances::GpuBuilding(render_mesh_instances) =
render_mesh_instances.into_inner()
else {
return;
};
meshes_to_reextract_next_frame.clear();
let gpu_preprocessing::BatchedInstanceBuffers {
current_input_buffer,
previous_input_buffer,
..
} = batched_instance_buffers.into_inner();
previous_input_buffer.clear();
for queue in render_mesh_instance_queues.iter_mut() {
match *queue {
RenderMeshInstanceGpuQueue::None => {
}
RenderMeshInstanceGpuQueue::CpuCulling {
ref mut changed,
ref mut removed,
} => {
for (entity, mesh_instance_builder) in changed.drain(..) {
mesh_instance_builder.update(
entity,
&mut *render_mesh_instances,
current_input_buffer,
previous_input_buffer,
&mesh_allocator,
&mesh_material_ids,
&render_material_bindings,
&render_lightmaps,
&skin_uniforms,
*frame_count,
&mut meshes_to_reextract_next_frame,
);
}
for entity in removed.drain(..) {
remove_mesh_input_uniform(
entity,
&mut *render_mesh_instances,
current_input_buffer,
);
}
}
RenderMeshInstanceGpuQueue::GpuCulling {
ref mut changed,
ref mut removed,
} => {
for (entity, mesh_instance_builder, mesh_culling_builder) in changed.drain(..) {
let Some(instance_data_index) = mesh_instance_builder.update(
entity,
&mut *render_mesh_instances,
current_input_buffer,
previous_input_buffer,
&mesh_allocator,
&mesh_material_ids,
&render_material_bindings,
&render_lightmaps,
&skin_uniforms,
*frame_count,
&mut meshes_to_reextract_next_frame,
) else {
continue;
};
mesh_culling_builder
.update(&mut mesh_culling_data_buffer, instance_data_index as usize);
}
for entity in removed.drain(..) {
remove_mesh_input_uniform(
entity,
&mut *render_mesh_instances,
current_input_buffer,
);
}
}
}
}
previous_input_buffer.ensure_nonempty();
}
#[derive(Resource, Clone)]
pub struct MeshPipeline {
pub view_layouts: MeshPipelineViewLayouts,
pub dummy_white_gpu_image: GpuImage,
pub clustered_forward_buffer_binding_type: BufferBindingType,
pub mesh_layouts: MeshLayouts,
pub shader: Handle<Shader>,
pub per_object_buffer_batch_size: Option<u32>,
pub binding_arrays_are_usable: bool,
pub clustered_decals_are_usable: bool,
pub skins_use_uniform_buffers: bool,
}
impl FromWorld for MeshPipeline {
fn from_world(world: &mut World) -> Self {
let shader = load_embedded_asset!(world, "mesh.wgsl");
let mut system_state: SystemState<(
Res<RenderDevice>,
Res<RenderAdapter>,
Res<DefaultImageSampler>,
Res<RenderQueue>,
Res<MeshPipelineViewLayouts>,
)> = SystemState::new(world);
let (render_device, render_adapter, default_sampler, render_queue, view_layouts) =
system_state.get_mut(world);
let clustered_forward_buffer_binding_type = render_device
.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT);
let dummy_white_gpu_image = {
let image = Image::default();
let texture = render_device.create_texture(&image.texture_descriptor);
let sampler = match image.sampler {
ImageSampler::Default => (**default_sampler).clone(),
ImageSampler::Descriptor(ref descriptor) => {
render_device.create_sampler(&descriptor.as_wgpu())
}
};
if let Ok(format_size) = image.texture_descriptor.format.pixel_size() {
render_queue.write_texture(
texture.as_image_copy(),
image.data.as_ref().expect("Image was created without data"),
TexelCopyBufferLayout {
offset: 0,
bytes_per_row: Some(image.width() * format_size as u32),
rows_per_image: None,
},
image.texture_descriptor.size,
);
}
let texture_view = texture.create_view(&TextureViewDescriptor::default());
GpuImage {
texture,
texture_view,
texture_format: image.texture_descriptor.format,
sampler,
size: image.texture_descriptor.size,
mip_level_count: image.texture_descriptor.mip_level_count,
}
};
MeshPipeline {
view_layouts: view_layouts.clone(),
clustered_forward_buffer_binding_type,
dummy_white_gpu_image,
mesh_layouts: MeshLayouts::new(&render_device, &render_adapter),
shader,
per_object_buffer_batch_size: GpuArrayBuffer::<MeshUniform>::batch_size(&render_device),
binding_arrays_are_usable: binding_arrays_are_usable(&render_device, &render_adapter),
clustered_decals_are_usable: decal::clustered::clustered_decals_are_usable(
&render_device,
&render_adapter,
),
skins_use_uniform_buffers: skins_use_uniform_buffers(&render_device),
}
}
}
impl MeshPipeline {
pub fn get_image_texture<'a>(
&'a self,
gpu_images: &'a RenderAssets<GpuImage>,
handle_option: &Option<Handle<Image>>,
) -> Option<(&'a TextureView, &'a Sampler)> {
if let Some(handle) = handle_option {
let gpu_image = gpu_images.get(handle)?;
Some((&gpu_image.texture_view, &gpu_image.sampler))
} else {
Some((
&self.dummy_white_gpu_image.texture_view,
&self.dummy_white_gpu_image.sampler,
))
}
}
pub fn get_view_layout(
&self,
layout_key: MeshPipelineViewLayoutKey,
) -> &MeshPipelineViewLayout {
self.view_layouts.get_view_layout(layout_key)
}
}
impl GetBatchData for MeshPipeline {
type Param = (
SRes<RenderMeshInstances>,
SRes<RenderLightmaps>,
SRes<RenderAssets<RenderMesh>>,
SRes<MeshAllocator>,
SRes<SkinUniforms>,
);
type CompareData = (
MaterialBindGroupIndex,
AssetId<Mesh>,
Option<LightmapSlabIndex>,
);
type BufferData = MeshUniform;
fn get_batch_data(
(mesh_instances, lightmaps, _, mesh_allocator, skin_uniforms): &SystemParamItem<
Self::Param,
>,
(_entity, main_entity): (Entity, MainEntity),
) -> Option<(Self::BufferData, Option<Self::CompareData>)> {
let RenderMeshInstances::CpuBuilding(ref mesh_instances) = **mesh_instances else {
error!(
"`get_batch_data` should never be called in GPU mesh uniform \
building mode"
);
return None;
};
let mesh_instance = mesh_instances.get(&main_entity)?;
let first_vertex_index =
match mesh_allocator.mesh_vertex_slice(&mesh_instance.mesh_asset_id) {
Some(mesh_vertex_slice) => mesh_vertex_slice.range.start,
None => 0,
};
let maybe_lightmap = lightmaps.render_lightmaps.get(&main_entity);
let current_skin_index = skin_uniforms.skin_index(main_entity);
let material_bind_group_index = mesh_instance.material_bindings_index;
Some((
MeshUniform::new(
&mesh_instance.transforms,
first_vertex_index,
material_bind_group_index.slot,
maybe_lightmap.map(|lightmap| (lightmap.slot_index, lightmap.uv_rect)),
current_skin_index,
Some(mesh_instance.tag),
),
mesh_instance.should_batch().then_some((
material_bind_group_index.group,
mesh_instance.mesh_asset_id,
maybe_lightmap.map(|lightmap| lightmap.slab_index),
)),
))
}
}
impl GetFullBatchData for MeshPipeline {
type BufferInputData = MeshInputUniform;
fn get_index_and_compare_data(
(mesh_instances, lightmaps, _, _, _): &SystemParamItem<Self::Param>,
main_entity: MainEntity,
) -> Option<(NonMaxU32, Option<Self::CompareData>)> {
let RenderMeshInstances::GpuBuilding(ref mesh_instances) = **mesh_instances else {
error!(
"`get_index_and_compare_data` should never be called in CPU mesh uniform building \
mode"
);
return None;
};
let mesh_instance = mesh_instances.get(&main_entity)?;
let maybe_lightmap = lightmaps.render_lightmaps.get(&main_entity);
Some((
mesh_instance.current_uniform_index,
mesh_instance.should_batch().then_some((
mesh_instance.material_bindings_index.group,
mesh_instance.mesh_asset_id,
maybe_lightmap.map(|lightmap| lightmap.slab_index),
)),
))
}
fn get_binned_batch_data(
(mesh_instances, lightmaps, _, mesh_allocator, skin_uniforms): &SystemParamItem<
Self::Param,
>,
main_entity: MainEntity,
) -> Option<Self::BufferData> {
let RenderMeshInstances::CpuBuilding(ref mesh_instances) = **mesh_instances else {
error!(
"`get_binned_batch_data` should never be called in GPU mesh uniform building mode"
);
return None;
};
let mesh_instance = mesh_instances.get(&main_entity)?;
let first_vertex_index =
match mesh_allocator.mesh_vertex_slice(&mesh_instance.mesh_asset_id) {
Some(mesh_vertex_slice) => mesh_vertex_slice.range.start,
None => 0,
};
let maybe_lightmap = lightmaps.render_lightmaps.get(&main_entity);
let current_skin_index = skin_uniforms.skin_index(main_entity);
Some(MeshUniform::new(
&mesh_instance.transforms,
first_vertex_index,
mesh_instance.material_bindings_index.slot,
maybe_lightmap.map(|lightmap| (lightmap.slot_index, lightmap.uv_rect)),
current_skin_index,
Some(mesh_instance.tag),
))
}
fn get_binned_index(
(mesh_instances, _, _, _, _): &SystemParamItem<Self::Param>,
main_entity: MainEntity,
) -> Option<NonMaxU32> {
let RenderMeshInstances::GpuBuilding(ref mesh_instances) = **mesh_instances else {
error!(
"`get_binned_index` should never be called in CPU mesh uniform \
building mode"
);
return None;
};
mesh_instances
.get(&main_entity)
.map(|entity| entity.current_uniform_index)
}
fn write_batch_indirect_parameters_metadata(
indexed: bool,
base_output_index: u32,
batch_set_index: Option<NonMaxU32>,
phase_indirect_parameters_buffers: &mut UntypedPhaseIndirectParametersBuffers,
indirect_parameters_offset: u32,
) {
let indirect_parameters = IndirectParametersCpuMetadata {
base_output_index,
batch_set_index: match batch_set_index {
Some(batch_set_index) => u32::from(batch_set_index),
None => !0,
},
};
if indexed {
phase_indirect_parameters_buffers
.indexed
.set(indirect_parameters_offset, indirect_parameters);
} else {
phase_indirect_parameters_buffers
.non_indexed
.set(indirect_parameters_offset, indirect_parameters);
}
}
}
bitflags::bitflags! {
#[derive(Default, Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct MeshPipelineKey: u64 {
const NONE = 0;
const MORPH_TARGETS = BaseMeshPipelineKey::MORPH_TARGETS.bits();
const HDR = 1 << 0;
const TONEMAP_IN_SHADER = 1 << 1;
const DEBAND_DITHER = 1 << 2;
const DEPTH_PREPASS = 1 << 3;
const NORMAL_PREPASS = 1 << 4;
const DEFERRED_PREPASS = 1 << 5;
const MOTION_VECTOR_PREPASS = 1 << 6;
const MAY_DISCARD = 1 << 7;
const ENVIRONMENT_MAP = 1 << 8;
const SCREEN_SPACE_AMBIENT_OCCLUSION = 1 << 9;
const UNCLIPPED_DEPTH_ORTHO = 1 << 10;
const TEMPORAL_JITTER = 1 << 11;
const READS_VIEW_TRANSMISSION_TEXTURE = 1 << 12;
const LIGHTMAPPED = 1 << 13;
const LIGHTMAP_BICUBIC_SAMPLING = 1 << 14;
const IRRADIANCE_VOLUME = 1 << 15;
const VISIBILITY_RANGE_DITHER = 1 << 16;
const SCREEN_SPACE_REFLECTIONS = 1 << 17;
const HAS_PREVIOUS_SKIN = 1 << 18;
const HAS_PREVIOUS_MORPH = 1 << 19;
const OIT_ENABLED = 1 << 20;
const DISTANCE_FOG = 1 << 21;
const LAST_FLAG = Self::DISTANCE_FOG.bits();
const MSAA_RESERVED_BITS = Self::MSAA_MASK_BITS << Self::MSAA_SHIFT_BITS;
const BLEND_RESERVED_BITS = Self::BLEND_MASK_BITS << Self::BLEND_SHIFT_BITS;
const BLEND_OPAQUE = 0 << Self::BLEND_SHIFT_BITS;
const BLEND_PREMULTIPLIED_ALPHA = 1 << Self::BLEND_SHIFT_BITS;
const BLEND_MULTIPLY = 2 << Self::BLEND_SHIFT_BITS;
const BLEND_ALPHA = 3 << Self::BLEND_SHIFT_BITS;
const BLEND_ALPHA_TO_COVERAGE = 4 << Self::BLEND_SHIFT_BITS;
const TONEMAP_METHOD_RESERVED_BITS = Self::TONEMAP_METHOD_MASK_BITS << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_NONE = 0 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD = 1 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD_LUMINANCE = 2 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_ACES_FITTED = 3 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_AGX = 4 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM = 5 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_TONY_MC_MAPFACE = 6 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_BLENDER_FILMIC = 7 << Self::TONEMAP_METHOD_SHIFT_BITS;
const SHADOW_FILTER_METHOD_RESERVED_BITS = Self::SHADOW_FILTER_METHOD_MASK_BITS << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const SHADOW_FILTER_METHOD_HARDWARE_2X2 = 0 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const SHADOW_FILTER_METHOD_GAUSSIAN = 1 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const SHADOW_FILTER_METHOD_TEMPORAL = 2 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const VIEW_PROJECTION_RESERVED_BITS = Self::VIEW_PROJECTION_MASK_BITS << Self::VIEW_PROJECTION_SHIFT_BITS;
const VIEW_PROJECTION_NONSTANDARD = 0 << Self::VIEW_PROJECTION_SHIFT_BITS;
const VIEW_PROJECTION_PERSPECTIVE = 1 << Self::VIEW_PROJECTION_SHIFT_BITS;
const VIEW_PROJECTION_ORTHOGRAPHIC = 2 << Self::VIEW_PROJECTION_SHIFT_BITS;
const VIEW_PROJECTION_RESERVED = 3 << Self::VIEW_PROJECTION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS = Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_MASK_BITS << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW = 0 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM = 1 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH = 2 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA = 3 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const ALL_RESERVED_BITS =
Self::BLEND_RESERVED_BITS.bits() |
Self::MSAA_RESERVED_BITS.bits() |
Self::TONEMAP_METHOD_RESERVED_BITS.bits() |
Self::SHADOW_FILTER_METHOD_RESERVED_BITS.bits() |
Self::VIEW_PROJECTION_RESERVED_BITS.bits() |
Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS.bits();
}
}
impl MeshPipelineKey {
const MSAA_MASK_BITS: u64 = 0b111;
const MSAA_SHIFT_BITS: u64 = Self::LAST_FLAG.bits().trailing_zeros() as u64 + 1;
const BLEND_MASK_BITS: u64 = 0b111;
const BLEND_SHIFT_BITS: u64 = Self::MSAA_MASK_BITS.count_ones() as u64 + Self::MSAA_SHIFT_BITS;
const TONEMAP_METHOD_MASK_BITS: u64 = 0b111;
const TONEMAP_METHOD_SHIFT_BITS: u64 =
Self::BLEND_MASK_BITS.count_ones() as u64 + Self::BLEND_SHIFT_BITS;
const SHADOW_FILTER_METHOD_MASK_BITS: u64 = 0b11;
const SHADOW_FILTER_METHOD_SHIFT_BITS: u64 =
Self::TONEMAP_METHOD_MASK_BITS.count_ones() as u64 + Self::TONEMAP_METHOD_SHIFT_BITS;
const VIEW_PROJECTION_MASK_BITS: u64 = 0b11;
const VIEW_PROJECTION_SHIFT_BITS: u64 = Self::SHADOW_FILTER_METHOD_MASK_BITS.count_ones()
as u64
+ Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_MASK_BITS: u64 = 0b11;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS: u64 =
Self::VIEW_PROJECTION_MASK_BITS.count_ones() as u64 + Self::VIEW_PROJECTION_SHIFT_BITS;
pub fn from_msaa_samples(msaa_samples: u32) -> Self {
let msaa_bits =
(msaa_samples.trailing_zeros() as u64 & Self::MSAA_MASK_BITS) << Self::MSAA_SHIFT_BITS;
Self::from_bits_retain(msaa_bits)
}
pub fn from_hdr(hdr: bool) -> Self {
if hdr {
MeshPipelineKey::HDR
} else {
MeshPipelineKey::NONE
}
}
pub fn msaa_samples(&self) -> u32 {
1 << ((self.bits() >> Self::MSAA_SHIFT_BITS) & Self::MSAA_MASK_BITS)
}
pub fn from_primitive_topology(primitive_topology: PrimitiveTopology) -> Self {
let primitive_topology_bits = ((primitive_topology as u64)
& BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_MASK_BITS)
<< BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
Self::from_bits_retain(primitive_topology_bits)
}
pub fn primitive_topology(&self) -> PrimitiveTopology {
let primitive_topology_bits = (self.bits()
>> BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_SHIFT_BITS)
& BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_MASK_BITS;
match primitive_topology_bits {
x if x == PrimitiveTopology::PointList as u64 => PrimitiveTopology::PointList,
x if x == PrimitiveTopology::LineList as u64 => PrimitiveTopology::LineList,
x if x == PrimitiveTopology::LineStrip as u64 => PrimitiveTopology::LineStrip,
x if x == PrimitiveTopology::TriangleList as u64 => PrimitiveTopology::TriangleList,
x if x == PrimitiveTopology::TriangleStrip as u64 => PrimitiveTopology::TriangleStrip,
_ => PrimitiveTopology::default(),
}
}
}
const_assert_eq!(
(((MeshPipelineKey::LAST_FLAG.bits() << 1) - 1) | MeshPipelineKey::ALL_RESERVED_BITS.bits())
& BaseMeshPipelineKey::all().bits(),
0
);
const_assert_eq!(
(BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_MASK_BITS
<< BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_SHIFT_BITS)
& MeshPipelineKey::ALL_RESERVED_BITS.bits(),
0
);
fn is_skinned(layout: &MeshVertexBufferLayoutRef) -> bool {
layout.0.contains(Mesh::ATTRIBUTE_JOINT_INDEX)
&& layout.0.contains(Mesh::ATTRIBUTE_JOINT_WEIGHT)
}
pub fn setup_morph_and_skinning_defs(
mesh_layouts: &MeshLayouts,
layout: &MeshVertexBufferLayoutRef,
offset: u32,
key: &MeshPipelineKey,
shader_defs: &mut Vec<ShaderDefVal>,
vertex_attributes: &mut Vec<VertexAttributeDescriptor>,
skins_use_uniform_buffers: bool,
) -> BindGroupLayout {
let is_morphed = key.intersects(MeshPipelineKey::MORPH_TARGETS);
let is_lightmapped = key.intersects(MeshPipelineKey::LIGHTMAPPED);
let motion_vector_prepass = key.intersects(MeshPipelineKey::MOTION_VECTOR_PREPASS);
if skins_use_uniform_buffers {
shader_defs.push("SKINS_USE_UNIFORM_BUFFERS".into());
}
let mut add_skin_data = || {
shader_defs.push("SKINNED".into());
vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_INDEX.at_shader_location(offset));
vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_WEIGHT.at_shader_location(offset + 1));
};
match (
is_skinned(layout),
is_morphed,
is_lightmapped,
motion_vector_prepass,
) {
(true, false, _, true) => {
add_skin_data();
mesh_layouts.skinned_motion.clone()
}
(true, false, _, false) => {
add_skin_data();
mesh_layouts.skinned.clone()
}
(true, true, _, true) => {
add_skin_data();
shader_defs.push("MORPH_TARGETS".into());
mesh_layouts.morphed_skinned_motion.clone()
}
(true, true, _, false) => {
add_skin_data();
shader_defs.push("MORPH_TARGETS".into());
mesh_layouts.morphed_skinned.clone()
}
(false, true, _, true) => {
shader_defs.push("MORPH_TARGETS".into());
mesh_layouts.morphed_motion.clone()
}
(false, true, _, false) => {
shader_defs.push("MORPH_TARGETS".into());
mesh_layouts.morphed.clone()
}
(false, false, true, _) => mesh_layouts.lightmapped.clone(),
(false, false, false, _) => mesh_layouts.model_only.clone(),
}
}
impl SpecializedMeshPipeline for MeshPipeline {
type Key = MeshPipelineKey;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayoutRef,
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
let mut shader_defs = Vec::new();
let mut vertex_attributes = Vec::new();
shader_defs.push("MESH_PIPELINE".into());
shader_defs.push("VERTEX_OUTPUT_INSTANCE_INDEX".into());
if layout.0.contains(Mesh::ATTRIBUTE_POSITION) {
shader_defs.push("VERTEX_POSITIONS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_POSITION.at_shader_location(0));
}
if layout.0.contains(Mesh::ATTRIBUTE_NORMAL) {
shader_defs.push("VERTEX_NORMALS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_NORMAL.at_shader_location(1));
}
if layout.0.contains(Mesh::ATTRIBUTE_UV_0) {
shader_defs.push("VERTEX_UVS".into());
shader_defs.push("VERTEX_UVS_A".into());
vertex_attributes.push(Mesh::ATTRIBUTE_UV_0.at_shader_location(2));
}
if layout.0.contains(Mesh::ATTRIBUTE_UV_1) {
shader_defs.push("VERTEX_UVS".into());
shader_defs.push("VERTEX_UVS_B".into());
vertex_attributes.push(Mesh::ATTRIBUTE_UV_1.at_shader_location(3));
}
if layout.0.contains(Mesh::ATTRIBUTE_TANGENT) {
shader_defs.push("VERTEX_TANGENTS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(4));
}
if layout.0.contains(Mesh::ATTRIBUTE_COLOR) {
shader_defs.push("VERTEX_COLORS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_COLOR.at_shader_location(5));
}
if cfg!(feature = "pbr_transmission_textures") {
shader_defs.push("PBR_TRANSMISSION_TEXTURES_SUPPORTED".into());
}
if cfg!(feature = "pbr_multi_layer_material_textures") {
shader_defs.push("PBR_MULTI_LAYER_MATERIAL_TEXTURES_SUPPORTED".into());
}
if cfg!(feature = "pbr_anisotropy_texture") {
shader_defs.push("PBR_ANISOTROPY_TEXTURE_SUPPORTED".into());
}
if cfg!(feature = "pbr_specular_textures") {
shader_defs.push("PBR_SPECULAR_TEXTURES_SUPPORTED".into());
}
let bind_group_layout = self.get_view_layout(key.into());
let mut bind_group_layout = vec![
bind_group_layout.main_layout.clone(),
bind_group_layout.binding_array_layout.clone(),
];
if key.msaa_samples() > 1 {
shader_defs.push("MULTISAMPLED".into());
};
bind_group_layout.push(setup_morph_and_skinning_defs(
&self.mesh_layouts,
layout,
6,
&key,
&mut shader_defs,
&mut vertex_attributes,
self.skins_use_uniform_buffers,
));
if key.contains(MeshPipelineKey::SCREEN_SPACE_AMBIENT_OCCLUSION) {
shader_defs.push("SCREEN_SPACE_AMBIENT_OCCLUSION".into());
}
let vertex_buffer_layout = layout.0.get_layout(&vertex_attributes)?;
let (label, blend, depth_write_enabled);
let pass = key.intersection(MeshPipelineKey::BLEND_RESERVED_BITS);
let (mut is_opaque, mut alpha_to_coverage_enabled) = (false, false);
if key.contains(MeshPipelineKey::OIT_ENABLED) && pass == MeshPipelineKey::BLEND_ALPHA {
label = "oit_mesh_pipeline".into();
blend = None;
shader_defs.push("OIT_ENABLED".into());
depth_write_enabled = false;
} else if pass == MeshPipelineKey::BLEND_ALPHA {
label = "alpha_blend_mesh_pipeline".into();
blend = Some(BlendState::ALPHA_BLENDING);
depth_write_enabled = false;
} else if pass == MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA {
label = "premultiplied_alpha_mesh_pipeline".into();
blend = Some(BlendState::PREMULTIPLIED_ALPHA_BLENDING);
shader_defs.push("PREMULTIPLY_ALPHA".into());
shader_defs.push("BLEND_PREMULTIPLIED_ALPHA".into());
depth_write_enabled = false;
} else if pass == MeshPipelineKey::BLEND_MULTIPLY {
label = "multiply_mesh_pipeline".into();
blend = Some(BlendState {
color: BlendComponent {
src_factor: BlendFactor::Dst,
dst_factor: BlendFactor::OneMinusSrcAlpha,
operation: BlendOperation::Add,
},
alpha: BlendComponent::OVER,
});
shader_defs.push("PREMULTIPLY_ALPHA".into());
shader_defs.push("BLEND_MULTIPLY".into());
depth_write_enabled = false;
} else if pass == MeshPipelineKey::BLEND_ALPHA_TO_COVERAGE {
label = "alpha_to_coverage_mesh_pipeline".into();
blend = None;
depth_write_enabled = true;
is_opaque = !key.contains(MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE);
alpha_to_coverage_enabled = true;
shader_defs.push("ALPHA_TO_COVERAGE".into());
} else {
label = "opaque_mesh_pipeline".into();
blend = None;
depth_write_enabled = true;
is_opaque = !key.contains(MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE);
}
if key.contains(MeshPipelineKey::NORMAL_PREPASS) {
shader_defs.push("NORMAL_PREPASS".into());
}
if key.contains(MeshPipelineKey::DEPTH_PREPASS) {
shader_defs.push("DEPTH_PREPASS".into());
}
if key.contains(MeshPipelineKey::MOTION_VECTOR_PREPASS) {
shader_defs.push("MOTION_VECTOR_PREPASS".into());
}
if key.contains(MeshPipelineKey::HAS_PREVIOUS_SKIN) {
shader_defs.push("HAS_PREVIOUS_SKIN".into());
}
if key.contains(MeshPipelineKey::HAS_PREVIOUS_MORPH) {
shader_defs.push("HAS_PREVIOUS_MORPH".into());
}
if key.contains(MeshPipelineKey::DEFERRED_PREPASS) {
shader_defs.push("DEFERRED_PREPASS".into());
}
if key.contains(MeshPipelineKey::NORMAL_PREPASS) && key.msaa_samples() == 1 && is_opaque {
shader_defs.push("LOAD_PREPASS_NORMALS".into());
}
let view_projection = key.intersection(MeshPipelineKey::VIEW_PROJECTION_RESERVED_BITS);
if view_projection == MeshPipelineKey::VIEW_PROJECTION_NONSTANDARD {
shader_defs.push("VIEW_PROJECTION_NONSTANDARD".into());
} else if view_projection == MeshPipelineKey::VIEW_PROJECTION_PERSPECTIVE {
shader_defs.push("VIEW_PROJECTION_PERSPECTIVE".into());
} else if view_projection == MeshPipelineKey::VIEW_PROJECTION_ORTHOGRAPHIC {
shader_defs.push("VIEW_PROJECTION_ORTHOGRAPHIC".into());
}
#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
shader_defs.push("WEBGL2".into());
#[cfg(feature = "experimental_pbr_pcss")]
shader_defs.push("PCSS_SAMPLERS_AVAILABLE".into());
if key.contains(MeshPipelineKey::TONEMAP_IN_SHADER) {
shader_defs.push("TONEMAP_IN_SHADER".into());
shader_defs.push(ShaderDefVal::UInt(
"TONEMAPPING_LUT_TEXTURE_BINDING_INDEX".into(),
TONEMAPPING_LUT_TEXTURE_BINDING_INDEX,
));
shader_defs.push(ShaderDefVal::UInt(
"TONEMAPPING_LUT_SAMPLER_BINDING_INDEX".into(),
TONEMAPPING_LUT_SAMPLER_BINDING_INDEX,
));
let method = key.intersection(MeshPipelineKey::TONEMAP_METHOD_RESERVED_BITS);
if method == MeshPipelineKey::TONEMAP_METHOD_NONE {
shader_defs.push("TONEMAP_METHOD_NONE".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD {
shader_defs.push("TONEMAP_METHOD_REINHARD".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE {
shader_defs.push("TONEMAP_METHOD_REINHARD_LUMINANCE".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_ACES_FITTED {
shader_defs.push("TONEMAP_METHOD_ACES_FITTED".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_AGX {
shader_defs.push("TONEMAP_METHOD_AGX".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM {
shader_defs.push("TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC {
shader_defs.push("TONEMAP_METHOD_BLENDER_FILMIC".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE {
shader_defs.push("TONEMAP_METHOD_TONY_MC_MAPFACE".into());
}
if key.contains(MeshPipelineKey::DEBAND_DITHER) {
shader_defs.push("DEBAND_DITHER".into());
}
}
if key.contains(MeshPipelineKey::MAY_DISCARD) {
shader_defs.push("MAY_DISCARD".into());
}
if key.contains(MeshPipelineKey::ENVIRONMENT_MAP) {
shader_defs.push("ENVIRONMENT_MAP".into());
}
if key.contains(MeshPipelineKey::IRRADIANCE_VOLUME) && IRRADIANCE_VOLUMES_ARE_USABLE {
shader_defs.push("IRRADIANCE_VOLUME".into());
}
if key.contains(MeshPipelineKey::LIGHTMAPPED) {
shader_defs.push("LIGHTMAP".into());
}
if key.contains(MeshPipelineKey::LIGHTMAP_BICUBIC_SAMPLING) {
shader_defs.push("LIGHTMAP_BICUBIC_SAMPLING".into());
}
if key.contains(MeshPipelineKey::TEMPORAL_JITTER) {
shader_defs.push("TEMPORAL_JITTER".into());
}
let shadow_filter_method =
key.intersection(MeshPipelineKey::SHADOW_FILTER_METHOD_RESERVED_BITS);
if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_HARDWARE_2X2 {
shader_defs.push("SHADOW_FILTER_METHOD_HARDWARE_2X2".into());
} else if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_GAUSSIAN {
shader_defs.push("SHADOW_FILTER_METHOD_GAUSSIAN".into());
} else if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_TEMPORAL {
shader_defs.push("SHADOW_FILTER_METHOD_TEMPORAL".into());
}
let blur_quality =
key.intersection(MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS);
shader_defs.push(ShaderDefVal::Int(
"SCREEN_SPACE_SPECULAR_TRANSMISSION_BLUR_TAPS".into(),
match blur_quality {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW => 4,
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM => 8,
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH => 16,
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA => 32,
_ => unreachable!(),
},
));
if key.contains(MeshPipelineKey::VISIBILITY_RANGE_DITHER) {
shader_defs.push("VISIBILITY_RANGE_DITHER".into());
}
if key.contains(MeshPipelineKey::DISTANCE_FOG) {
shader_defs.push("DISTANCE_FOG".into());
}
if self.binding_arrays_are_usable {
shader_defs.push("MULTIPLE_LIGHT_PROBES_IN_ARRAY".into());
shader_defs.push("MULTIPLE_LIGHTMAPS_IN_ARRAY".into());
}
if IRRADIANCE_VOLUMES_ARE_USABLE {
shader_defs.push("IRRADIANCE_VOLUMES_ARE_USABLE".into());
}
if self.clustered_decals_are_usable {
shader_defs.push("CLUSTERED_DECALS_ARE_USABLE".into());
if cfg!(feature = "pbr_light_textures") {
shader_defs.push("LIGHT_TEXTURES".into());
}
}
let format = if key.contains(MeshPipelineKey::HDR) {
ViewTarget::TEXTURE_FORMAT_HDR
} else {
TextureFormat::bevy_default()
};
if let Some(per_object_buffer_batch_size) = self.per_object_buffer_batch_size {
shader_defs.push(ShaderDefVal::UInt(
"PER_OBJECT_BUFFER_BATCH_SIZE".into(),
per_object_buffer_batch_size,
));
}
Ok(RenderPipelineDescriptor {
vertex: VertexState {
shader: self.shader.clone(),
shader_defs: shader_defs.clone(),
buffers: vec![vertex_buffer_layout],
..default()
},
fragment: Some(FragmentState {
shader: self.shader.clone(),
shader_defs,
targets: vec![Some(ColorTargetState {
format,
blend,
write_mask: ColorWrites::ALL,
})],
..default()
}),
layout: bind_group_layout,
primitive: PrimitiveState {
cull_mode: Some(Face::Back),
unclipped_depth: false,
topology: key.primitive_topology(),
..default()
},
depth_stencil: Some(DepthStencilState {
format: CORE_3D_DEPTH_FORMAT,
depth_write_enabled,
depth_compare: CompareFunction::GreaterEqual,
stencil: StencilState {
front: StencilFaceState::IGNORE,
back: StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
}),
multisample: MultisampleState {
count: key.msaa_samples(),
mask: !0,
alpha_to_coverage_enabled,
},
label: Some(label),
..default()
})
}
}
#[derive(Default)]
pub struct MeshPhaseBindGroups {
model_only: Option<BindGroup>,
skinned: Option<MeshBindGroupPair>,
morph_targets: HashMap<AssetId<Mesh>, MeshBindGroupPair>,
lightmaps: HashMap<LightmapSlabIndex, BindGroup>,
}
pub struct MeshBindGroupPair {
motion_vectors: BindGroup,
no_motion_vectors: BindGroup,
}
#[derive(Resource)]
pub enum MeshBindGroups {
CpuPreprocessing(MeshPhaseBindGroups),
GpuPreprocessing(TypeIdMap<MeshPhaseBindGroups>),
}
impl MeshPhaseBindGroups {
pub fn reset(&mut self) {
self.model_only = None;
self.skinned = None;
self.morph_targets.clear();
self.lightmaps.clear();
}
pub fn get(
&self,
asset_id: AssetId<Mesh>,
lightmap: Option<LightmapSlabIndex>,
is_skinned: bool,
morph: bool,
motion_vectors: bool,
) -> Option<&BindGroup> {
match (is_skinned, morph, lightmap) {
(_, true, _) => self
.morph_targets
.get(&asset_id)
.map(|bind_group_pair| bind_group_pair.get(motion_vectors)),
(true, false, _) => self
.skinned
.as_ref()
.map(|bind_group_pair| bind_group_pair.get(motion_vectors)),
(false, false, Some(lightmap_slab)) => self.lightmaps.get(&lightmap_slab),
(false, false, None) => self.model_only.as_ref(),
}
}
}
impl MeshBindGroupPair {
fn get(&self, motion_vectors: bool) -> &BindGroup {
if motion_vectors {
&self.motion_vectors
} else {
&self.no_motion_vectors
}
}
}
pub fn prepare_mesh_bind_groups(
mut commands: Commands,
meshes: Res<RenderAssets<RenderMesh>>,
mesh_pipeline: Res<MeshPipeline>,
render_device: Res<RenderDevice>,
cpu_batched_instance_buffer: Option<
Res<no_gpu_preprocessing::BatchedInstanceBuffer<MeshUniform>>,
>,
gpu_batched_instance_buffers: Option<
Res<gpu_preprocessing::BatchedInstanceBuffers<MeshUniform, MeshInputUniform>>,
>,
skins_uniform: Res<SkinUniforms>,
weights_uniform: Res<MorphUniforms>,
mut render_lightmaps: ResMut<RenderLightmaps>,
) {
if let Some(cpu_batched_instance_buffer) = cpu_batched_instance_buffer
&& let Some(instance_data_binding) = cpu_batched_instance_buffer
.into_inner()
.instance_data_binding()
{
let cpu_preprocessing_mesh_bind_groups = prepare_mesh_bind_groups_for_phase(
instance_data_binding,
&meshes,
&mesh_pipeline,
&render_device,
&skins_uniform,
&weights_uniform,
&mut render_lightmaps,
);
commands.insert_resource(MeshBindGroups::CpuPreprocessing(
cpu_preprocessing_mesh_bind_groups,
));
return;
}
if let Some(gpu_batched_instance_buffers) = gpu_batched_instance_buffers {
let mut gpu_preprocessing_mesh_bind_groups = TypeIdMap::default();
for (phase_type_id, batched_phase_instance_buffers) in
&gpu_batched_instance_buffers.phase_instance_buffers
{
let Some(instance_data_binding) =
batched_phase_instance_buffers.instance_data_binding()
else {
continue;
};
let mesh_phase_bind_groups = prepare_mesh_bind_groups_for_phase(
instance_data_binding,
&meshes,
&mesh_pipeline,
&render_device,
&skins_uniform,
&weights_uniform,
&mut render_lightmaps,
);
gpu_preprocessing_mesh_bind_groups.insert(*phase_type_id, mesh_phase_bind_groups);
}
commands.insert_resource(MeshBindGroups::GpuPreprocessing(
gpu_preprocessing_mesh_bind_groups,
));
}
}
fn prepare_mesh_bind_groups_for_phase(
model: BindingResource,
meshes: &RenderAssets<RenderMesh>,
mesh_pipeline: &MeshPipeline,
render_device: &RenderDevice,
skins_uniform: &SkinUniforms,
weights_uniform: &MorphUniforms,
render_lightmaps: &mut RenderLightmaps,
) -> MeshPhaseBindGroups {
let layouts = &mesh_pipeline.mesh_layouts;
let mut groups = MeshPhaseBindGroups {
model_only: Some(layouts.model_only(render_device, &model)),
..default()
};
let (skin, prev_skin) = (&skins_uniform.current_buffer, &skins_uniform.prev_buffer);
groups.skinned = Some(MeshBindGroupPair {
motion_vectors: layouts.skinned_motion(render_device, &model, skin, prev_skin),
no_motion_vectors: layouts.skinned(render_device, &model, skin),
});
if let Some(weights) = weights_uniform.current_buffer.buffer() {
let prev_weights = weights_uniform.prev_buffer.buffer().unwrap_or(weights);
for (id, gpu_mesh) in meshes.iter() {
if let Some(targets) = gpu_mesh.morph_targets.as_ref() {
let bind_group_pair = if is_skinned(&gpu_mesh.layout) {
let prev_skin = &skins_uniform.prev_buffer;
MeshBindGroupPair {
motion_vectors: layouts.morphed_skinned_motion(
render_device,
&model,
skin,
weights,
targets,
prev_skin,
prev_weights,
),
no_motion_vectors: layouts.morphed_skinned(
render_device,
&model,
skin,
weights,
targets,
),
}
} else {
MeshBindGroupPair {
motion_vectors: layouts.morphed_motion(
render_device,
&model,
weights,
targets,
prev_weights,
),
no_motion_vectors: layouts.morphed(render_device, &model, weights, targets),
}
};
groups.morph_targets.insert(id, bind_group_pair);
}
}
}
let bindless_supported = render_lightmaps.bindless_supported;
for (lightmap_slab_id, lightmap_slab) in render_lightmaps.slabs.iter_mut().enumerate() {
groups.lightmaps.insert(
LightmapSlabIndex(NonMaxU32::new(lightmap_slab_id as u32).unwrap()),
layouts.lightmapped(render_device, &model, lightmap_slab, bindless_supported),
);
}
groups
}
pub struct SetMeshViewBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshViewBindGroup<I> {
type Param = ();
type ViewQuery = (
Read<ViewUniformOffset>,
Read<ViewLightsUniformOffset>,
Read<ViewFogUniformOffset>,
Read<ViewLightProbesUniformOffset>,
Read<ViewScreenSpaceReflectionsUniformOffset>,
Read<ViewEnvironmentMapUniformOffset>,
Read<MeshViewBindGroup>,
Option<Read<OrderIndependentTransparencySettingsOffset>>,
);
type ItemQuery = ();
#[inline]
fn render<'w>(
_item: &P,
(
view_uniform,
view_lights,
view_fog,
view_light_probes,
view_ssr,
view_environment_map,
mesh_view_bind_group,
maybe_oit_layers_count_offset,
): ROQueryItem<'w, '_, Self::ViewQuery>,
_entity: Option<()>,
_: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let mut offsets: SmallVec<[u32; 8]> = smallvec![
view_uniform.offset,
view_lights.offset,
view_fog.offset,
**view_light_probes,
**view_ssr,
**view_environment_map,
];
if let Some(layers_count_offset) = maybe_oit_layers_count_offset {
offsets.push(layers_count_offset.offset);
}
pass.set_bind_group(I, &mesh_view_bind_group.main, &offsets);
RenderCommandResult::Success
}
}
pub struct SetMeshViewBindingArrayBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshViewBindingArrayBindGroup<I> {
type Param = ();
type ViewQuery = (Read<MeshViewBindGroup>,);
type ItemQuery = ();
#[inline]
fn render<'w>(
_item: &P,
(mesh_view_bind_group,): ROQueryItem<'w, '_, Self::ViewQuery>,
_entity: Option<()>,
_: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
pass.set_bind_group(I, &mesh_view_bind_group.binding_array, &[]);
RenderCommandResult::Success
}
}
pub struct SetMeshViewEmptyBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshViewEmptyBindGroup<I> {
type Param = ();
type ViewQuery = (Read<MeshViewBindGroup>,);
type ItemQuery = ();
#[inline]
fn render<'w>(
_item: &P,
(mesh_view_bind_group,): ROQueryItem<'w, '_, Self::ViewQuery>,
_entity: Option<()>,
_: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
pass.set_bind_group(I, &mesh_view_bind_group.empty, &[]);
RenderCommandResult::Success
}
}
pub struct SetMeshBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshBindGroup<I> {
type Param = (
SRes<RenderDevice>,
SRes<MeshBindGroups>,
SRes<RenderMeshInstances>,
SRes<SkinUniforms>,
SRes<MorphIndices>,
SRes<RenderLightmaps>,
);
type ViewQuery = Has<MotionVectorPrepass>;
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
has_motion_vector_prepass: bool,
_item_query: Option<()>,
(
render_device,
bind_groups,
mesh_instances,
skin_uniforms,
morph_indices,
lightmaps,
): SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let bind_groups = bind_groups.into_inner();
let mesh_instances = mesh_instances.into_inner();
let skin_uniforms = skin_uniforms.into_inner();
let morph_indices = morph_indices.into_inner();
let entity = &item.main_entity();
let Some(mesh_asset_id) = mesh_instances.mesh_asset_id(*entity) else {
return RenderCommandResult::Success;
};
let current_skin_byte_offset = skin_uniforms.skin_byte_offset(*entity);
let current_morph_index = morph_indices.current.get(entity);
let prev_morph_index = morph_indices.prev.get(entity);
let is_skinned = current_skin_byte_offset.is_some();
let is_morphed = current_morph_index.is_some();
let lightmap_slab_index = lightmaps
.render_lightmaps
.get(entity)
.map(|render_lightmap| render_lightmap.slab_index);
let Some(mesh_phase_bind_groups) = (match *bind_groups {
MeshBindGroups::CpuPreprocessing(ref mesh_phase_bind_groups) => {
Some(mesh_phase_bind_groups)
}
MeshBindGroups::GpuPreprocessing(ref mesh_phase_bind_groups) => {
mesh_phase_bind_groups.get(&TypeId::of::<P>())
}
}) else {
return RenderCommandResult::Success;
};
let Some(bind_group) = mesh_phase_bind_groups.get(
mesh_asset_id,
lightmap_slab_index,
is_skinned,
is_morphed,
has_motion_vector_prepass,
) else {
return RenderCommandResult::Failure(
"The MeshBindGroups resource wasn't set in the render phase. \
It should be set by the prepare_mesh_bind_group system.\n\
This is a bevy bug! Please open an issue.",
);
};
let mut dynamic_offsets: [u32; 5] = Default::default();
let mut offset_count = 0;
if let PhaseItemExtraIndex::DynamicOffset(dynamic_offset) = item.extra_index() {
dynamic_offsets[offset_count] = dynamic_offset;
offset_count += 1;
}
if let Some(current_skin_index) = current_skin_byte_offset
&& skins_use_uniform_buffers(&render_device)
{
dynamic_offsets[offset_count] = current_skin_index.byte_offset;
offset_count += 1;
}
if let Some(current_morph_index) = current_morph_index {
dynamic_offsets[offset_count] = current_morph_index.index;
offset_count += 1;
}
if has_motion_vector_prepass {
if skins_use_uniform_buffers(&render_device)
&& let Some(current_skin_byte_offset) = current_skin_byte_offset
{
dynamic_offsets[offset_count] = current_skin_byte_offset.byte_offset;
offset_count += 1;
}
if current_morph_index.is_some() {
match prev_morph_index {
Some(prev_morph_index) => {
dynamic_offsets[offset_count] = prev_morph_index.index;
}
None => dynamic_offsets[offset_count] = 0,
}
offset_count += 1;
}
}
pass.set_bind_group(I, bind_group, &dynamic_offsets[0..offset_count]);
RenderCommandResult::Success
}
}
pub struct DrawMesh;
impl<P: PhaseItem> RenderCommand<P> for DrawMesh {
type Param = (
SRes<RenderAssets<RenderMesh>>,
SRes<RenderMeshInstances>,
SRes<IndirectParametersBuffers>,
SRes<PipelineCache>,
SRes<MeshAllocator>,
Option<SRes<PreprocessPipelines>>,
SRes<GpuPreprocessingSupport>,
);
type ViewQuery = Has<PreprocessBindGroups>;
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
has_preprocess_bind_group: ROQueryItem<Self::ViewQuery>,
_item_query: Option<()>,
(
meshes,
mesh_instances,
indirect_parameters_buffer,
pipeline_cache,
mesh_allocator,
preprocess_pipelines,
preprocessing_support,
): SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
if let Some(preprocess_pipelines) = preprocess_pipelines
&& (!has_preprocess_bind_group
|| !preprocess_pipelines
.pipelines_are_loaded(&pipeline_cache, &preprocessing_support))
{
return RenderCommandResult::Skip;
}
let meshes = meshes.into_inner();
let mesh_instances = mesh_instances.into_inner();
let indirect_parameters_buffer = indirect_parameters_buffer.into_inner();
let mesh_allocator = mesh_allocator.into_inner();
let Some(mesh_asset_id) = mesh_instances.mesh_asset_id(item.main_entity()) else {
return RenderCommandResult::Skip;
};
let Some(gpu_mesh) = meshes.get(mesh_asset_id) else {
return RenderCommandResult::Skip;
};
let Some(vertex_buffer_slice) = mesh_allocator.mesh_vertex_slice(&mesh_asset_id) else {
return RenderCommandResult::Skip;
};
pass.set_vertex_buffer(0, vertex_buffer_slice.buffer.slice(..));
let batch_range = item.batch_range();
match &gpu_mesh.buffer_info {
RenderMeshBufferInfo::Indexed {
index_format,
count,
} => {
let Some(index_buffer_slice) = mesh_allocator.mesh_index_slice(&mesh_asset_id)
else {
return RenderCommandResult::Skip;
};
pass.set_index_buffer(index_buffer_slice.buffer.slice(..), 0, *index_format);
match item.extra_index() {
PhaseItemExtraIndex::None | PhaseItemExtraIndex::DynamicOffset(_) => {
pass.draw_indexed(
index_buffer_slice.range.start
..(index_buffer_slice.range.start + *count),
vertex_buffer_slice.range.start as i32,
batch_range.clone(),
);
}
PhaseItemExtraIndex::IndirectParametersIndex {
range: indirect_parameters_range,
batch_set_index,
} => {
let Some(phase_indirect_parameters_buffers) =
indirect_parameters_buffer.get(&TypeId::of::<P>())
else {
warn!(
"Not rendering mesh because indexed indirect parameters buffer \
wasn't present for this phase",
);
return RenderCommandResult::Skip;
};
let (Some(indirect_parameters_buffer), Some(batch_sets_buffer)) = (
phase_indirect_parameters_buffers.indexed.data_buffer(),
phase_indirect_parameters_buffers
.indexed
.batch_sets_buffer(),
) else {
warn!(
"Not rendering mesh because indexed indirect parameters buffer \
wasn't present",
);
return RenderCommandResult::Skip;
};
let indirect_parameters_offset = indirect_parameters_range.start as u64
* size_of::<IndirectParametersIndexed>() as u64;
let indirect_parameters_count =
indirect_parameters_range.end - indirect_parameters_range.start;
match batch_set_index {
Some(batch_set_index) => {
let count_offset = u32::from(batch_set_index)
* (size_of::<IndirectBatchSet>() as u32);
pass.multi_draw_indexed_indirect_count(
indirect_parameters_buffer,
indirect_parameters_offset,
batch_sets_buffer,
count_offset as u64,
indirect_parameters_count,
);
}
None => {
pass.multi_draw_indexed_indirect(
indirect_parameters_buffer,
indirect_parameters_offset,
indirect_parameters_count,
);
}
}
}
}
}
RenderMeshBufferInfo::NonIndexed => match item.extra_index() {
PhaseItemExtraIndex::None | PhaseItemExtraIndex::DynamicOffset(_) => {
pass.draw(vertex_buffer_slice.range, batch_range.clone());
}
PhaseItemExtraIndex::IndirectParametersIndex {
range: indirect_parameters_range,
batch_set_index,
} => {
let Some(phase_indirect_parameters_buffers) =
indirect_parameters_buffer.get(&TypeId::of::<P>())
else {
warn!(
"Not rendering mesh because non-indexed indirect parameters buffer \
wasn't present for this phase",
);
return RenderCommandResult::Skip;
};
let (Some(indirect_parameters_buffer), Some(batch_sets_buffer)) = (
phase_indirect_parameters_buffers.non_indexed.data_buffer(),
phase_indirect_parameters_buffers
.non_indexed
.batch_sets_buffer(),
) else {
warn!(
"Not rendering mesh because non-indexed indirect parameters buffer \
wasn't present"
);
return RenderCommandResult::Skip;
};
let indirect_parameters_offset = indirect_parameters_range.start as u64
* size_of::<IndirectParametersNonIndexed>() as u64;
let indirect_parameters_count =
indirect_parameters_range.end - indirect_parameters_range.start;
match batch_set_index {
Some(batch_set_index) => {
let count_offset =
u32::from(batch_set_index) * (size_of::<IndirectBatchSet>() as u32);
pass.multi_draw_indirect_count(
indirect_parameters_buffer,
indirect_parameters_offset,
batch_sets_buffer,
count_offset as u64,
indirect_parameters_count,
);
}
None => {
pass.multi_draw_indirect(
indirect_parameters_buffer,
indirect_parameters_offset,
indirect_parameters_count,
);
}
}
}
},
}
RenderCommandResult::Success
}
}
#[cfg(test)]
mod tests {
use super::MeshPipelineKey;
#[test]
fn mesh_key_msaa_samples() {
for i in [1, 2, 4, 8, 16, 32, 64, 128] {
assert_eq!(MeshPipelineKey::from_msaa_samples(i).msaa_samples(), i);
}
}
}