#define_import_path bevy_render::maths const PI: f32 = 3.141592653589793; // π const PI_2: f32 = 6.283185307179586; // 2π const HALF_PI: f32 = 1.57079632679; // π/2 const FRAC_PI_3: f32 = 1.0471975512; // π/3 const E: f32 = 2.718281828459045; // exp(1) fn affine2_to_square(affine: mat3x2<f32>) -> mat3x3<f32> { return mat3x3<f32>( vec3<f32>(affine[0].xy, 0.0), vec3<f32>(affine[1].xy, 0.0), vec3<f32>(affine[2].xy, 1.0), ); } fn affine3_to_square(affine: mat3x4<f32>) -> mat4x4<f32> { return transpose(mat4x4<f32>( affine[0], affine[1], affine[2], vec4<f32>(0.0, 0.0, 0.0, 1.0), )); } fn mat2x4_f32_to_mat3x3_unpack( a: mat2x4<f32>, b: f32, ) -> mat3x3<f32> { return mat3x3<f32>( a[0].xyz, vec3<f32>(a[0].w, a[1].xy), vec3<f32>(a[1].zw, b), ); } // Extracts the square portion of an affine matrix: i.e. discards the // translation. fn affine3_to_mat3x3(affine: mat4x3<f32>) -> mat3x3<f32> { return mat3x3<f32>(affine[0].xyz, affine[1].xyz, affine[2].xyz); } // Returns the inverse of a 3x3 matrix. fn inverse_mat3x3(matrix: mat3x3<f32>) -> mat3x3<f32> { let tmp0 = cross(matrix[1], matrix[2]); let tmp1 = cross(matrix[2], matrix[0]); let tmp2 = cross(matrix[0], matrix[1]); let inv_det = 1.0 / dot(matrix[2], tmp2); return transpose(mat3x3<f32>(tmp0 * inv_det, tmp1 * inv_det, tmp2 * inv_det)); } // Returns the inverse of an affine matrix. // // https://en.wikipedia.org/wiki/Affine_transformation#Groups fn inverse_affine3(affine: mat4x3<f32>) -> mat4x3<f32> { let matrix3 = affine3_to_mat3x3(affine); let inv_matrix3 = inverse_mat3x3(matrix3); return mat4x3<f32>(inv_matrix3[0], inv_matrix3[1], inv_matrix3[2], -(inv_matrix3 * affine[3])); } // Extracts the upper 3x3 portion of a 4x4 matrix. fn mat4x4_to_mat3x3(m: mat4x4<f32>) -> mat3x3<f32> { return mat3x3<f32>(m[0].xyz, m[1].xyz, m[2].xyz); } // Copy the sign bit from B onto A. // copysign allows proper handling of negative zero to match the rust implementation of orthonormalize fn copysign(a: f32, b: f32) -> f32 { return bitcast<f32>((bitcast<u32>(a) & 0x7FFFFFFF) | (bitcast<u32>(b) & 0x80000000)); } // Constructs a right-handed orthonormal basis from a given unit Z vector. // // NOTE: requires unit-length (normalized) input to function properly. // // https://jcgt.org/published/0006/01/01/paper.pdf // this method of constructing a basis from a vec3 is also used by `glam::Vec3::any_orthonormal_pair` // the construction of the orthonormal basis up and right vectors here needs to precisely match the rust // implementation in bevy_light/spot_light.rs:spot_light_world_from_view fn orthonormalize(z_basis: vec3<f32>) -> mat3x3<f32> { let sign = copysign(1.0, z_basis.z); let a = -1.0 / (sign + z_basis.z); let b = z_basis.x * z_basis.y * a; let x_basis = vec3(1.0 + sign * z_basis.x * z_basis.x * a, sign * b, -sign * z_basis.x); let y_basis = vec3(b, sign + z_basis.y * z_basis.y * a, -z_basis.y); return mat3x3(x_basis, y_basis, z_basis); } // Returns true if any part of a sphere is on the positive side of a plane. // // `sphere_center.w` should be 1.0. // // This is used for frustum culling. fn sphere_intersects_plane_half_space( plane: vec4<f32>, sphere_center: vec4<f32>, sphere_radius: f32 ) -> bool { return dot(plane, sphere_center) + sphere_radius > 0.0; } // Returns the distances along the ray to its intersections with a sphere // centered at the origin. // // r: distance from the sphere center to the ray origin // mu: cosine of the zenith angle // sphere_radius: radius of the sphere // // Returns vec2(t0, t1). If there is no intersection, returns vec2(-1.0). fn ray_sphere_intersect(r: f32, mu: f32, sphere_radius: f32) -> vec2<f32> { let discriminant = r * r * (mu * mu - 1.0) + sphere_radius * sphere_radius; // No intersection if discriminant < 0.0 { return vec2(-1.0); } let q = -r * mu; let sqrt_discriminant = sqrt(discriminant); // Return both intersection distances return vec2( q - sqrt_discriminant, q + sqrt_discriminant ); } // pow() but safe for NaNs/negatives fn powsafe(color: vec3<f32>, power: f32) -> vec3<f32> { return pow(abs(color), vec3(power)) * sign(color); } // https://en.wikipedia.org/wiki/Vector_projection#Vector_projection_2 fn project_onto(lhs: vec3<f32>, rhs: vec3<f32>) -> vec3<f32> { let other_len_sq_rcp = 1.0 / dot(rhs, rhs); return rhs * dot(lhs, rhs) * other_len_sq_rcp; } // Below are fast approximations of common irrational and trig functions. These // are likely most useful when raymarching, for example, where complete numeric // accuracy can be sacrificed for greater sample count. // Slightly less accurate than fast_acos_4, but much simpler. fn fast_acos(in_x: f32) -> f32 { let x = abs(in_x); var res = -0.156583 * x + HALF_PI; res *= sqrt(1.0 - x); return select(PI - res, res, in_x >= 0.0); } // 4th order polynomial approximation // 4 VGRP, 16 ALU Full Rate // 7 * 10^-5 radians precision // Reference : Handbook of Mathematical Functions (chapter : Elementary Transcendental Functions), M. Abramowitz and I.A. Stegun, Ed. fn fast_acos_4(x: f32) -> f32 { let x1 = abs(x); let x2 = x1 * x1; let x3 = x2 * x1; var s: f32; s = -0.2121144 * x1 + 1.5707288; s = 0.0742610 * x2 + s; s = -0.0187293 * x3 + s; s = sqrt(1.0 - x1) * s; // acos function mirroring return select(PI - s, s, x >= 0.0); } fn fast_atan2(y: f32, x: f32) -> f32 { var t0 = max(abs(x), abs(y)); var t1 = min(abs(x), abs(y)); var t3 = t1 / t0; var t4 = t3 * t3; t0 = 0.0872929; t0 = t0 * t4 - 0.301895; t0 = t0 * t4 + 1.0; t3 = t0 * t3; t3 = select(t3, (0.5 * PI) - t3, abs(y) > abs(x)); t3 = select(t3, PI - t3, x < 0); t3 = select(-t3, t3, y > 0); return t3; }