#define_import_path bevy_render::maths
const PI: f32 = 3.141592653589793; // π
const PI_2: f32 = 6.283185307179586; // 2π
const HALF_PI: f32 = 1.57079632679; // π/2
const FRAC_PI_3: f32 = 1.0471975512; // π/3
const E: f32 = 2.718281828459045; // exp(1)
fn affine2_to_square(affine: mat3x2<f32>) -> mat3x3<f32> {
return mat3x3<f32>(
vec3<f32>(affine[0].xy, 0.0),
vec3<f32>(affine[1].xy, 0.0),
vec3<f32>(affine[2].xy, 1.0),
);
}
fn affine3_to_square(affine: mat3x4<f32>) -> mat4x4<f32> {
return transpose(mat4x4<f32>(
affine[0],
affine[1],
affine[2],
vec4<f32>(0.0, 0.0, 0.0, 1.0),
));
}
fn mat2x4_f32_to_mat3x3_unpack(
a: mat2x4<f32>,
b: f32,
) -> mat3x3<f32> {
return mat3x3<f32>(
a[0].xyz,
vec3<f32>(a[0].w, a[1].xy),
vec3<f32>(a[1].zw, b),
);
}
// Extracts the square portion of an affine matrix: i.e. discards the
// translation.
fn affine3_to_mat3x3(affine: mat4x3<f32>) -> mat3x3<f32> {
return mat3x3<f32>(affine[0].xyz, affine[1].xyz, affine[2].xyz);
}
// Returns the inverse of a 3x3 matrix.
fn inverse_mat3x3(matrix: mat3x3<f32>) -> mat3x3<f32> {
let tmp0 = cross(matrix[1], matrix[2]);
let tmp1 = cross(matrix[2], matrix[0]);
let tmp2 = cross(matrix[0], matrix[1]);
let inv_det = 1.0 / dot(matrix[2], tmp2);
return transpose(mat3x3<f32>(tmp0 * inv_det, tmp1 * inv_det, tmp2 * inv_det));
}
// Returns the inverse of an affine matrix.
//
// https://en.wikipedia.org/wiki/Affine_transformation#Groups
fn inverse_affine3(affine: mat4x3<f32>) -> mat4x3<f32> {
let matrix3 = affine3_to_mat3x3(affine);
let inv_matrix3 = inverse_mat3x3(matrix3);
return mat4x3<f32>(inv_matrix3[0], inv_matrix3[1], inv_matrix3[2], -(inv_matrix3 * affine[3]));
}
// Extracts the upper 3x3 portion of a 4x4 matrix.
fn mat4x4_to_mat3x3(m: mat4x4<f32>) -> mat3x3<f32> {
return mat3x3<f32>(m[0].xyz, m[1].xyz, m[2].xyz);
}
// Copy the sign bit from B onto A.
// copysign allows proper handling of negative zero to match the rust implementation of orthonormalize
fn copysign(a: f32, b: f32) -> f32 {
return bitcast<f32>((bitcast<u32>(a) & 0x7FFFFFFF) | (bitcast<u32>(b) & 0x80000000));
}
// Constructs a right-handed orthonormal basis from a given unit Z vector.
//
// NOTE: requires unit-length (normalized) input to function properly.
//
// https://jcgt.org/published/0006/01/01/paper.pdf
// this method of constructing a basis from a vec3 is also used by `glam::Vec3::any_orthonormal_pair`
// the construction of the orthonormal basis up and right vectors here needs to precisely match the rust
// implementation in bevy_light/spot_light.rs:spot_light_world_from_view
fn orthonormalize(z_basis: vec3<f32>) -> mat3x3<f32> {
let sign = copysign(1.0, z_basis.z);
let a = -1.0 / (sign + z_basis.z);
let b = z_basis.x * z_basis.y * a;
let x_basis = vec3(1.0 + sign * z_basis.x * z_basis.x * a, sign * b, -sign * z_basis.x);
let y_basis = vec3(b, sign + z_basis.y * z_basis.y * a, -z_basis.y);
return mat3x3(x_basis, y_basis, z_basis);
}
// Returns true if any part of a sphere is on the positive side of a plane.
//
// `sphere_center.w` should be 1.0.
//
// This is used for frustum culling.
fn sphere_intersects_plane_half_space(
plane: vec4<f32>,
sphere_center: vec4<f32>,
sphere_radius: f32
) -> bool {
return dot(plane, sphere_center) + sphere_radius > 0.0;
}
// Returns the distances along the ray to its intersections with a sphere
// centered at the origin.
//
// r: distance from the sphere center to the ray origin
// mu: cosine of the zenith angle
// sphere_radius: radius of the sphere
//
// Returns vec2(t0, t1). If there is no intersection, returns vec2(-1.0).
fn ray_sphere_intersect(r: f32, mu: f32, sphere_radius: f32) -> vec2<f32> {
let discriminant = r * r * (mu * mu - 1.0) + sphere_radius * sphere_radius;
// No intersection
if discriminant < 0.0 {
return vec2(-1.0);
}
let q = -r * mu;
let sqrt_discriminant = sqrt(discriminant);
// Return both intersection distances
return vec2(
q - sqrt_discriminant,
q + sqrt_discriminant
);
}
// pow() but safe for NaNs/negatives
fn powsafe(color: vec3<f32>, power: f32) -> vec3<f32> {
return pow(abs(color), vec3(power)) * sign(color);
}
// https://en.wikipedia.org/wiki/Vector_projection#Vector_projection_2
fn project_onto(lhs: vec3<f32>, rhs: vec3<f32>) -> vec3<f32> {
let other_len_sq_rcp = 1.0 / dot(rhs, rhs);
return rhs * dot(lhs, rhs) * other_len_sq_rcp;
}
// Below are fast approximations of common irrational and trig functions. These
// are likely most useful when raymarching, for example, where complete numeric
// accuracy can be sacrificed for greater sample count.
// Slightly less accurate than fast_acos_4, but much simpler.
fn fast_acos(in_x: f32) -> f32 {
let x = abs(in_x);
var res = -0.156583 * x + HALF_PI;
res *= sqrt(1.0 - x);
return select(PI - res, res, in_x >= 0.0);
}
// 4th order polynomial approximation
// 4 VGRP, 16 ALU Full Rate
// 7 * 10^-5 radians precision
// Reference : Handbook of Mathematical Functions (chapter : Elementary Transcendental Functions), M. Abramowitz and I.A. Stegun, Ed.
fn fast_acos_4(x: f32) -> f32 {
let x1 = abs(x);
let x2 = x1 * x1;
let x3 = x2 * x1;
var s: f32;
s = -0.2121144 * x1 + 1.5707288;
s = 0.0742610 * x2 + s;
s = -0.0187293 * x3 + s;
s = sqrt(1.0 - x1) * s;
// acos function mirroring
return select(PI - s, s, x >= 0.0);
}
fn fast_atan2(y: f32, x: f32) -> f32 {
var t0 = max(abs(x), abs(y));
var t1 = min(abs(x), abs(y));
var t3 = t1 / t0;
var t4 = t3 * t3;
t0 = 0.0872929;
t0 = t0 * t4 - 0.301895;
t0 = t0 * t4 + 1.0;
t3 = t0 * t3;
t3 = select(t3, (0.5 * PI) - t3, abs(y) > abs(x));
t3 = select(t3, PI - t3, x < 0);
t3 = select(-t3, t3, y > 0);
return t3;
}