#define_import_path bevy_render::view struct ColorGrading { balance: mat3x3<f32>, saturation: vec3<f32>, contrast: vec3<f32>, gamma: vec3<f32>, gain: vec3<f32>, lift: vec3<f32>, midtone_range: vec2<f32>, exposure: f32, hue: f32, post_saturation: f32, } struct View { clip_from_world: mat4x4<f32>, unjittered_clip_from_world: mat4x4<f32>, world_from_clip: mat4x4<f32>, world_from_view: mat4x4<f32>, view_from_world: mat4x4<f32>, // Typically a column-major right-handed projection matrix, one of either: // // Perspective (infinite reverse z) // ``` // f = 1 / tan(fov_y_radians / 2) // // ⎡ f / aspect 0 0 0 ⎤ // ⎢ 0 f 0 0 ⎥ // ⎢ 0 0 0 near ⎥ // ⎣ 0 0 -1 0 ⎦ // ``` // // Orthographic // ``` // w = right - left // h = top - bottom // d = far - near // cw = -right - left // ch = -top - bottom // // ⎡ 2 / w 0 0 cw / w ⎤ // ⎢ 0 2 / h 0 ch / h ⎥ // ⎢ 0 0 1 / d far / d ⎥ // ⎣ 0 0 0 1 ⎦ // ``` // // `clip_from_view[3][3] == 1.0` is the standard way to check if a projection is orthographic // // Wgsl matrices are column major, so for example getting the near plane of a perspective projection is `clip_from_view[3][2]` // // Custom projections are also possible however. clip_from_view: mat4x4<f32>, view_from_clip: mat4x4<f32>, world_position: vec3<f32>, exposure: f32, // viewport(x_origin, y_origin, width, height) viewport: vec4<f32>, main_pass_viewport: vec4<f32>, // 6 world-space half spaces (normal: vec3, distance: f32) ordered left, right, top, bottom, near, far. // The normal vectors point towards the interior of the frustum. // A half space contains `p` if `normal.dot(p) + distance > 0.` frustum: array<vec4<f32>, 6>, color_grading: ColorGrading, mip_bias: f32, frame_count: u32, }; /// World space: /// +y is up /// View space: /// -z is forward, +x is right, +y is up /// Forward is from the camera position into the scene. /// (0.0, 0.0, -1.0) is linear distance of 1.0 in front of the camera's view relative to the camera's rotation /// (0.0, 1.0, 0.0) is linear distance of 1.0 above the camera's view relative to the camera's rotation /// NDC (normalized device coordinate): /// https://www.w3.org/TR/webgpu/#coordinate-systems /// (-1.0, -1.0) in NDC is located at the bottom-left corner of NDC /// (1.0, 1.0) in NDC is located at the top-right corner of NDC /// Z is depth where: /// 1.0 is near clipping plane /// Perspective projection: 0.0 is inf far away /// Orthographic projection: 0.0 is far clipping plane /// Clip space: /// This is NDC before the perspective divide, still in homogenous coordinate space. /// Dividing a clip space point by its w component yields a point in NDC space. /// UV space: /// 0.0, 0.0 is the top left /// 1.0, 1.0 is the bottom right // ----------------- // TO WORLD -------- // ----------------- /// Convert a view space position to world space fn position_view_to_world(view_pos: vec3<f32>, world_from_view: mat4x4<f32>) -> vec3<f32> { let world_pos = world_from_view * vec4(view_pos, 1.0); return world_pos.xyz; } /// Convert a clip space position to world space fn position_clip_to_world(clip_pos: vec4<f32>, world_from_clip: mat4x4<f32>) -> vec3<f32> { let world_pos = world_from_clip * clip_pos; return world_pos.xyz; } /// Convert a ndc space position to world space fn position_ndc_to_world(ndc_pos: vec3<f32>, world_from_clip: mat4x4<f32>) -> vec3<f32> { let world_pos = world_from_clip * vec4(ndc_pos, 1.0); return world_pos.xyz / world_pos.w; } /// Convert a view space direction to world space fn direction_view_to_world(view_dir: vec3<f32>, world_from_view: mat4x4<f32>) -> vec3<f32> { let world_dir = world_from_view * vec4(view_dir, 0.0); return world_dir.xyz; } /// Convert a clip space direction to world space fn direction_clip_to_world(clip_dir: vec4<f32>, world_from_clip: mat4x4<f32>) -> vec3<f32> { let world_dir = world_from_clip * clip_dir; return world_dir.xyz; } // ----------------- // TO VIEW --------- // ----------------- /// Convert a world space position to view space fn position_world_to_view(world_pos: vec3<f32>, view_from_world: mat4x4<f32>) -> vec3<f32> { let view_pos = view_from_world * vec4(world_pos, 1.0); return view_pos.xyz; } /// Convert a clip space position to view space fn position_clip_to_view(clip_pos: vec4<f32>, view_from_clip: mat4x4<f32>) -> vec3<f32> { let view_pos = view_from_clip * clip_pos; return view_pos.xyz; } /// Convert a ndc space position to view space fn position_ndc_to_view(ndc_pos: vec3<f32>, view_from_clip: mat4x4<f32>) -> vec3<f32> { let view_pos = view_from_clip * vec4(ndc_pos, 1.0); return view_pos.xyz / view_pos.w; } /// Convert a world space direction to view space fn direction_world_to_view(world_dir: vec3<f32>, view_from_world: mat4x4<f32>) -> vec3<f32> { let view_dir = view_from_world * vec4(world_dir, 0.0); return view_dir.xyz; } /// Convert a clip space direction to view space fn direction_clip_to_view(clip_dir: vec4<f32>, view_from_clip: mat4x4<f32>) -> vec3<f32> { let view_dir = view_from_clip * clip_dir; return view_dir.xyz; } // ----------------- // TO CLIP --------- // ----------------- /// Convert a world space position to clip space fn position_world_to_clip(world_pos: vec3<f32>, clip_from_world: mat4x4<f32>) -> vec4<f32> { let clip_pos = clip_from_world * vec4(world_pos, 1.0); return clip_pos; } /// Convert a view space position to clip space fn position_view_to_clip(view_pos: vec3<f32>, clip_from_view: mat4x4<f32>) -> vec4<f32> { let clip_pos = clip_from_view * vec4(view_pos, 1.0); return clip_pos; } /// Convert a world space direction to clip space fn direction_world_to_clip(world_dir: vec3<f32>, clip_from_world: mat4x4<f32>) -> vec4<f32> { let clip_dir = clip_from_world * vec4(world_dir, 0.0); return clip_dir; } /// Convert a view space direction to clip space fn direction_view_to_clip(view_dir: vec3<f32>, clip_from_view: mat4x4<f32>) -> vec4<f32> { let clip_dir = clip_from_view * vec4(view_dir, 0.0); return clip_dir; } // ----------------- // TO NDC ---------- // ----------------- /// Convert a world space position to ndc space fn position_world_to_ndc(world_pos: vec3<f32>, clip_from_world: mat4x4<f32>) -> vec3<f32> { let ndc_pos = clip_from_world * vec4(world_pos, 1.0); return ndc_pos.xyz / ndc_pos.w; } /// Convert a view space position to ndc space fn position_view_to_ndc(view_pos: vec3<f32>, clip_from_view: mat4x4<f32>) -> vec3<f32> { let ndc_pos = clip_from_view * vec4(view_pos, 1.0); return ndc_pos.xyz / ndc_pos.w; } // ----------------- // DEPTH ----------- // ----------------- /// Retrieve the perspective camera near clipping plane fn perspective_camera_near(clip_from_view: mat4x4<f32>) -> f32 { return clip_from_view[3][2]; } /// Convert ndc depth to linear view z. /// Note: Depth values in front of the camera will be negative as -z is forward fn depth_ndc_to_view_z(ndc_depth: f32, clip_from_view: mat4x4<f32>, view_from_clip: mat4x4<f32>) -> f32 { #ifdef VIEW_PROJECTION_PERSPECTIVE return -perspective_camera_near(clip_from_view) / ndc_depth; #else ifdef VIEW_PROJECTION_ORTHOGRAPHIC return -(clip_from_view[3][2] - ndc_depth) / clip_from_view[2][2]; #else let view_pos = view_from_clip * vec4(0.0, 0.0, ndc_depth, 1.0); return view_pos.z / view_pos.w; #endif } /// Convert linear view z to ndc depth. /// Note: View z input should be negative for values in front of the camera as -z is forward fn view_z_to_depth_ndc(view_z: f32, clip_from_view: mat4x4<f32>) -> f32 { #ifdef VIEW_PROJECTION_PERSPECTIVE return -perspective_camera_near(clip_from_view) / view_z; #else ifdef VIEW_PROJECTION_ORTHOGRAPHIC return clip_from_view[3][2] + view_z * clip_from_view[2][2]; #else let ndc_pos = clip_from_view * vec4(0.0, 0.0, view_z, 1.0); return ndc_pos.z / ndc_pos.w; #endif } // ----------------- // UV -------------- // ----------------- /// Convert ndc space xy coordinate [-1.0 .. 1.0] to uv [0.0 .. 1.0] fn ndc_to_uv(ndc: vec2<f32>) -> vec2<f32> { return ndc * vec2(0.5, -0.5) + vec2(0.5); } /// Convert uv [0.0 .. 1.0] coordinate to ndc space xy [-1.0 .. 1.0] fn uv_to_ndc(uv: vec2<f32>) -> vec2<f32> { return uv * vec2(2.0, -2.0) + vec2(-1.0, 1.0); } /// returns the (0.0, 0.0) .. (1.0, 1.0) position within the viewport for the current render target /// [0 .. render target viewport size] eg. [(0.0, 0.0) .. (1280.0, 720.0)] to [(0.0, 0.0) .. (1.0, 1.0)] fn frag_coord_to_uv(frag_coord: vec2<f32>, viewport: vec4<f32>) -> vec2<f32> { return (frag_coord - viewport.xy) / viewport.zw; } /// Convert frag coord to ndc fn frag_coord_to_ndc(frag_coord: vec4<f32>, viewport: vec4<f32>) -> vec3<f32> { return vec3(uv_to_ndc(frag_coord_to_uv(frag_coord.xy, viewport)), frag_coord.z); } /// Convert ndc space xy coordinate [-1.0 .. 1.0] to [0 .. render target /// viewport size] fn ndc_to_frag_coord(ndc: vec2<f32>, viewport: vec4<f32>) -> vec2<f32> { return ndc_to_uv(ndc) * viewport.zw; }