Path: blob/main/crates/bevy_solari/src/realtime/restir_di.wgsl
6596 views
// https://intro-to-restir.cwyman.org/presentations/2023ReSTIR_Course_Notes.pdf // https://d1qx31qr3h6wln.cloudfront.net/publications/ReSTIR%20GI.pdf #import bevy_core_pipeline::tonemapping::tonemapping_luminance as luminance #import bevy_pbr::pbr_deferred_types::unpack_24bit_normal #import bevy_pbr::prepass_bindings::PreviousViewUniforms #import bevy_pbr::rgb9e5::rgb9e5_to_vec3_ #import bevy_pbr::utils::{rand_f, rand_range_u, octahedral_decode, sample_disk} #import bevy_render::maths::PI #import bevy_render::view::View #import bevy_solari::presample_light_tiles::{ResolvedLightSamplePacked, unpack_resolved_light_sample} #import bevy_solari::sampling::{LightSample, calculate_resolved_light_contribution, resolve_and_calculate_light_contribution, resolve_light_sample, trace_light_visibility} #import bevy_solari::scene_bindings::{light_sources, previous_frame_light_id_translations, LIGHT_NOT_PRESENT_THIS_FRAME} @group(1) @binding(0) var view_output: texture_storage_2d<rgba16float, read_write>; @group(1) @binding(1) var<storage, read_write> light_tile_samples: array<LightSample>; @group(1) @binding(2) var<storage, read_write> light_tile_resolved_samples: array<ResolvedLightSamplePacked>; @group(1) @binding(3) var di_reservoirs_a: texture_storage_2d<rgba32uint, read_write>; @group(1) @binding(4) var di_reservoirs_b: texture_storage_2d<rgba32uint, read_write>; @group(1) @binding(7) var gbuffer: texture_2d<u32>; @group(1) @binding(8) var depth_buffer: texture_depth_2d; @group(1) @binding(9) var motion_vectors: texture_2d<f32>; @group(1) @binding(10) var previous_gbuffer: texture_2d<u32>; @group(1) @binding(11) var previous_depth_buffer: texture_depth_2d; @group(1) @binding(12) var<uniform> view: View; @group(1) @binding(13) var<uniform> previous_view: PreviousViewUniforms; struct PushConstants { frame_index: u32, reset: u32 } var<push_constant> constants: PushConstants; const INITIAL_SAMPLES = 32u; const SPATIAL_REUSE_RADIUS_PIXELS = 30.0; const CONFIDENCE_WEIGHT_CAP = 20.0; const NULL_RESERVOIR_SAMPLE = 0xFFFFFFFFu; @compute @workgroup_size(8, 8, 1) fn initial_and_temporal(@builtin(workgroup_id) workgroup_id: vec3<u32>, @builtin(global_invocation_id) global_id: vec3<u32>) { if any(global_id.xy >= vec2u(view.main_pass_viewport.zw)) { return; } let pixel_index = global_id.x + global_id.y * u32(view.main_pass_viewport.z); var rng = pixel_index + constants.frame_index; let depth = textureLoad(depth_buffer, global_id.xy, 0); if depth == 0.0 { store_reservoir_b(global_id.xy, empty_reservoir()); return; } let gpixel = textureLoad(gbuffer, global_id.xy, 0); let world_position = reconstruct_world_position(global_id.xy, depth); let world_normal = octahedral_decode(unpack_24bit_normal(gpixel.a)); let base_color = pow(unpack4x8unorm(gpixel.r).rgb, vec3(2.2)); let diffuse_brdf = base_color / PI; let initial_reservoir = generate_initial_reservoir(world_position, world_normal, diffuse_brdf, workgroup_id.xy, &rng); let temporal_reservoir = load_temporal_reservoir(global_id.xy, depth, world_position, world_normal); let merge_result = merge_reservoirs(initial_reservoir, temporal_reservoir, world_position, world_normal, diffuse_brdf, &rng); store_reservoir_b(global_id.xy, merge_result.merged_reservoir); } @compute @workgroup_size(8, 8, 1) fn spatial_and_shade(@builtin(global_invocation_id) global_id: vec3<u32>) { if any(global_id.xy >= vec2u(view.main_pass_viewport.zw)) { return; } let pixel_index = global_id.x + global_id.y * u32(view.main_pass_viewport.z); var rng = pixel_index + constants.frame_index; let depth = textureLoad(depth_buffer, global_id.xy, 0); if depth == 0.0 { store_reservoir_a(global_id.xy, empty_reservoir()); textureStore(view_output, global_id.xy, vec4(vec3(0.0), 1.0)); return; } let gpixel = textureLoad(gbuffer, global_id.xy, 0); let world_position = reconstruct_world_position(global_id.xy, depth); let world_normal = octahedral_decode(unpack_24bit_normal(gpixel.a)); let base_color = pow(unpack4x8unorm(gpixel.r).rgb, vec3(2.2)); let diffuse_brdf = base_color / PI; let emissive = rgb9e5_to_vec3_(gpixel.g); let input_reservoir = load_reservoir_b(global_id.xy); let spatial_reservoir = load_spatial_reservoir(global_id.xy, depth, world_position, world_normal, &rng); let merge_result = merge_reservoirs(input_reservoir, spatial_reservoir, world_position, world_normal, diffuse_brdf, &rng); let combined_reservoir = merge_result.merged_reservoir; store_reservoir_a(global_id.xy, combined_reservoir); var pixel_color = merge_result.selected_sample_radiance * combined_reservoir.unbiased_contribution_weight; pixel_color *= view.exposure; pixel_color *= diffuse_brdf; pixel_color += emissive; textureStore(view_output, global_id.xy, vec4(pixel_color, 1.0)); } fn generate_initial_reservoir(world_position: vec3<f32>, world_normal: vec3<f32>, diffuse_brdf: vec3<f32>, workgroup_id: vec2<u32>, rng: ptr<function, u32>) -> Reservoir { var workgroup_rng = (workgroup_id.x * 5782582u) + workgroup_id.y; let light_tile_start = rand_range_u(128u, &workgroup_rng) * 1024u; var reservoir = empty_reservoir(); var weight_sum = 0.0; let mis_weight = 1.0 / f32(INITIAL_SAMPLES); var reservoir_target_function = 0.0; var light_sample_world_position = vec4(0.0); var selected_tile_sample = 0u; for (var i = 0u; i < INITIAL_SAMPLES; i++) { let tile_sample = light_tile_start + rand_range_u(1024u, rng); let resolved_light_sample = unpack_resolved_light_sample(light_tile_resolved_samples[tile_sample], view.exposure); let light_contribution = calculate_resolved_light_contribution(resolved_light_sample, world_position, world_normal); let target_function = luminance(light_contribution.radiance * diffuse_brdf); let resampling_weight = mis_weight * (target_function * light_contribution.inverse_pdf); weight_sum += resampling_weight; if rand_f(rng) < resampling_weight / weight_sum { reservoir_target_function = target_function; light_sample_world_position = resolved_light_sample.world_position; selected_tile_sample = tile_sample; } } if reservoir_target_function != 0.0 { reservoir.sample = light_tile_samples[selected_tile_sample]; } if reservoir_valid(reservoir) { let inverse_target_function = select(0.0, 1.0 / reservoir_target_function, reservoir_target_function > 0.0); reservoir.unbiased_contribution_weight = weight_sum * inverse_target_function; reservoir.unbiased_contribution_weight *= trace_light_visibility(world_position, light_sample_world_position); } reservoir.confidence_weight = 1.0; return reservoir; } fn load_temporal_reservoir(pixel_id: vec2<u32>, depth: f32, world_position: vec3<f32>, world_normal: vec3<f32>) -> Reservoir { let motion_vector = textureLoad(motion_vectors, pixel_id, 0).xy; let temporal_pixel_id_float = round(vec2<f32>(pixel_id) - (motion_vector * view.main_pass_viewport.zw)); let temporal_pixel_id = vec2<u32>(temporal_pixel_id_float); // Check if the current pixel was off screen during the previous frame (current pixel is newly visible), // or if all temporal history should assumed to be invalid if any(temporal_pixel_id_float < vec2(0.0)) || any(temporal_pixel_id_float >= view.main_pass_viewport.zw) || bool(constants.reset) { return empty_reservoir(); } // Check if the pixel features have changed heavily between the current and previous frame let temporal_depth = textureLoad(previous_depth_buffer, temporal_pixel_id, 0); let temporal_gpixel = textureLoad(previous_gbuffer, temporal_pixel_id, 0); let temporal_world_position = reconstruct_previous_world_position(temporal_pixel_id, temporal_depth); let temporal_world_normal = octahedral_decode(unpack_24bit_normal(temporal_gpixel.a)); if pixel_dissimilar(depth, world_position, temporal_world_position, world_normal, temporal_world_normal) { return empty_reservoir(); } var temporal_reservoir = load_reservoir_a(temporal_pixel_id); // Check if the light selected in the previous frame no longer exists in the current frame (e.g. entity despawned) let previous_light_id = temporal_reservoir.sample.light_id >> 16u; let triangle_id = temporal_reservoir.sample.light_id & 0xFFFFu; let light_id = previous_frame_light_id_translations[previous_light_id]; if light_id == LIGHT_NOT_PRESENT_THIS_FRAME { return empty_reservoir(); } temporal_reservoir.sample.light_id = (light_id << 16u) | triangle_id; temporal_reservoir.confidence_weight = min(temporal_reservoir.confidence_weight, CONFIDENCE_WEIGHT_CAP); return temporal_reservoir; } fn load_spatial_reservoir(pixel_id: vec2<u32>, depth: f32, world_position: vec3<f32>, world_normal: vec3<f32>, rng: ptr<function, u32>) -> Reservoir { let spatial_pixel_id = get_neighbor_pixel_id(pixel_id, rng); let spatial_depth = textureLoad(depth_buffer, spatial_pixel_id, 0); let spatial_gpixel = textureLoad(gbuffer, spatial_pixel_id, 0); let spatial_world_position = reconstruct_world_position(spatial_pixel_id, spatial_depth); let spatial_world_normal = octahedral_decode(unpack_24bit_normal(spatial_gpixel.a)); if pixel_dissimilar(depth, world_position, spatial_world_position, world_normal, spatial_world_normal) { return empty_reservoir(); } var spatial_reservoir = load_reservoir_b(spatial_pixel_id); if reservoir_valid(spatial_reservoir) { let resolved_light_sample = resolve_light_sample(spatial_reservoir.sample, light_sources[spatial_reservoir.sample.light_id >> 16u]); spatial_reservoir.unbiased_contribution_weight *= trace_light_visibility(world_position, resolved_light_sample.world_position); } return spatial_reservoir; } fn get_neighbor_pixel_id(center_pixel_id: vec2<u32>, rng: ptr<function, u32>) -> vec2<u32> { var spatial_id = vec2<f32>(center_pixel_id) + sample_disk(SPATIAL_REUSE_RADIUS_PIXELS, rng); spatial_id = clamp(spatial_id, vec2(0.0), view.main_pass_viewport.zw - 1.0); return vec2<u32>(spatial_id); } fn reconstruct_world_position(pixel_id: vec2<u32>, depth: f32) -> vec3<f32> { let uv = (vec2<f32>(pixel_id) + 0.5) / view.main_pass_viewport.zw; let xy_ndc = (uv - vec2(0.5)) * vec2(2.0, -2.0); let world_pos = view.world_from_clip * vec4(xy_ndc, depth, 1.0); return world_pos.xyz / world_pos.w; } fn reconstruct_previous_world_position(pixel_id: vec2<u32>, depth: f32) -> vec3<f32> { let uv = (vec2<f32>(pixel_id) + 0.5) / view.main_pass_viewport.zw; let xy_ndc = (uv - vec2(0.5)) * vec2(2.0, -2.0); let world_pos = previous_view.world_from_clip * vec4(xy_ndc, depth, 1.0); return world_pos.xyz / world_pos.w; } // Reject if tangent plane difference difference more than 0.3% or angle between normals more than 25 degrees fn pixel_dissimilar(depth: f32, world_position: vec3<f32>, other_world_position: vec3<f32>, normal: vec3<f32>, other_normal: vec3<f32>) -> bool { // https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22699-fast-denoising-with-self-stabilizing-recurrent-blurs.pdf#page=45 let tangent_plane_distance = abs(dot(normal, other_world_position - world_position)); let view_z = -depth_ndc_to_view_z(depth); return tangent_plane_distance / view_z > 0.003 || dot(normal, other_normal) < 0.906; } fn depth_ndc_to_view_z(ndc_depth: f32) -> f32 { #ifdef VIEW_PROJECTION_PERSPECTIVE return -view.clip_from_view[3][2]() / ndc_depth; #else ifdef VIEW_PROJECTION_ORTHOGRAPHIC return -(view.clip_from_view[3][2] - ndc_depth) / view.clip_from_view[2][2]; #else let view_pos = view.view_from_clip * vec4(0.0, 0.0, ndc_depth, 1.0); return view_pos.z / view_pos.w; #endif } struct Reservoir { sample: LightSample, confidence_weight: f32, unbiased_contribution_weight: f32, } fn empty_reservoir() -> Reservoir { return Reservoir( LightSample(NULL_RESERVOIR_SAMPLE, 0u), 0.0, 0.0, ); } fn reservoir_valid(reservoir: Reservoir) -> bool { return reservoir.sample.light_id != NULL_RESERVOIR_SAMPLE; } fn pack_reservoir(reservoir: Reservoir) -> vec4<u32> { let weights = bitcast<vec2<u32>>(vec2<f32>(reservoir.confidence_weight, reservoir.unbiased_contribution_weight)); return vec4<u32>(reservoir.sample.light_id, reservoir.sample.seed, weights); } fn store_reservoir_a(pixel: vec2<u32>, reservoir: Reservoir) { textureStore(di_reservoirs_a, pixel, pack_reservoir(reservoir)); } fn store_reservoir_b(pixel: vec2<u32>, reservoir: Reservoir) { textureStore(di_reservoirs_b, pixel, pack_reservoir(reservoir)); } fn unpack_reservoir(packed: vec4<u32>) -> Reservoir { let weights = bitcast<vec2<f32>>(packed.zw); return Reservoir(LightSample(packed.x, packed.y), weights.x, weights.y); } fn load_reservoir_a(pixel: vec2<u32>) -> Reservoir { return unpack_reservoir(textureLoad(di_reservoirs_a, pixel)); } fn load_reservoir_b(pixel: vec2<u32>) -> Reservoir { return unpack_reservoir(textureLoad(di_reservoirs_b, pixel)); } struct ReservoirMergeResult { merged_reservoir: Reservoir, selected_sample_radiance: vec3<f32>, } fn merge_reservoirs( canonical_reservoir: Reservoir, other_reservoir: Reservoir, world_position: vec3<f32>, world_normal: vec3<f32>, diffuse_brdf: vec3<f32>, rng: ptr<function, u32>, ) -> ReservoirMergeResult { let mis_weight_denominator = 1.0 / (canonical_reservoir.confidence_weight + other_reservoir.confidence_weight); let canonical_mis_weight = canonical_reservoir.confidence_weight * mis_weight_denominator; let canonical_target_function = reservoir_target_function(canonical_reservoir, world_position, world_normal, diffuse_brdf); let canonical_resampling_weight = canonical_mis_weight * (canonical_target_function.a * canonical_reservoir.unbiased_contribution_weight); let other_mis_weight = other_reservoir.confidence_weight * mis_weight_denominator; let other_target_function = reservoir_target_function(other_reservoir, world_position, world_normal, diffuse_brdf); let other_resampling_weight = other_mis_weight * (other_target_function.a * other_reservoir.unbiased_contribution_weight); let weight_sum = canonical_resampling_weight + other_resampling_weight; var combined_reservoir = empty_reservoir(); combined_reservoir.confidence_weight = canonical_reservoir.confidence_weight + other_reservoir.confidence_weight; if rand_f(rng) < other_resampling_weight / weight_sum { combined_reservoir.sample = other_reservoir.sample; let inverse_target_function = select(0.0, 1.0 / other_target_function.a, other_target_function.a > 0.0); combined_reservoir.unbiased_contribution_weight = weight_sum * inverse_target_function; return ReservoirMergeResult(combined_reservoir, other_target_function.rgb); } else { combined_reservoir.sample = canonical_reservoir.sample; let inverse_target_function = select(0.0, 1.0 / canonical_target_function.a, canonical_target_function.a > 0.0); combined_reservoir.unbiased_contribution_weight = weight_sum * inverse_target_function; return ReservoirMergeResult(combined_reservoir, canonical_target_function.rgb); } } // TODO: Have input take ResolvedLightSample instead of reservoir.light_sample fn reservoir_target_function(reservoir: Reservoir, world_position: vec3<f32>, world_normal: vec3<f32>, diffuse_brdf: vec3<f32>) -> vec4<f32> { if !reservoir_valid(reservoir) { return vec4(0.0); } let light_contribution = resolve_and_calculate_light_contribution(reservoir.sample, world_position, world_normal).radiance; let target_function = luminance(light_contribution * diffuse_brdf); return vec4(light_contribution, target_function); }