Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bevyengine
GitHub Repository: bevyengine/bevy
Path: blob/main/crates/bevy_transform/src/components/global_transform.rs
9353 views
1
use core::ops::Mul;
2
3
use super::Transform;
4
use bevy_math::{ops, Affine3A, Dir3, Isometry3d, Mat4, Quat, Vec3, Vec3A};
5
use derive_more::derive::From;
6
7
#[cfg(all(feature = "bevy_reflect", feature = "serialize"))]
8
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
9
10
#[cfg(feature = "bevy-support")]
11
use bevy_ecs::component::Component;
12
13
#[cfg(feature = "bevy_reflect")]
14
use {
15
bevy_ecs::reflect::ReflectComponent,
16
bevy_reflect::{std_traits::ReflectDefault, Reflect},
17
};
18
19
/// [`GlobalTransform`] is an affine transformation from entity-local coordinates to worldspace coordinates.
20
///
21
/// You cannot directly mutate [`GlobalTransform`]; instead, you change an entity's transform by manipulating
22
/// its [`Transform`], which indirectly causes Bevy to update its [`GlobalTransform`].
23
///
24
/// * To get the global transform of an entity, you should get its [`GlobalTransform`].
25
/// * For transform hierarchies to work correctly, you must have both a [`Transform`] and a [`GlobalTransform`].
26
/// [`GlobalTransform`] is automatically inserted whenever [`Transform`] is inserted.
27
///
28
/// ## [`Transform`] and [`GlobalTransform`]
29
///
30
/// [`Transform`] transforms an entity relative to its parent's reference frame, or relative to world space coordinates,
31
/// if it doesn't have a [`ChildOf`](bevy_ecs::hierarchy::ChildOf) component.
32
///
33
/// [`GlobalTransform`] is managed by Bevy; it is computed by successively applying the [`Transform`] of each ancestor
34
/// entity which has a Transform. This is done automatically by Bevy-internal systems in the [`TransformSystems::Propagate`]
35
/// system set.
36
///
37
/// This system runs during [`PostUpdate`](bevy_app::PostUpdate). If you
38
/// update the [`Transform`] of an entity in this schedule or after, you will notice a 1 frame lag
39
/// before the [`GlobalTransform`] is updated.
40
///
41
/// [`TransformSystems::Propagate`]: crate::TransformSystems::Propagate
42
///
43
/// # Examples
44
///
45
/// - [`transform`][transform_example]
46
///
47
/// [transform_example]: https://github.com/bevyengine/bevy/blob/latest/examples/transforms/transform.rs
48
#[derive(Debug, PartialEq, Clone, Copy, From)]
49
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
50
#[cfg_attr(feature = "bevy-support", derive(Component))]
51
#[cfg_attr(
52
feature = "bevy_reflect",
53
derive(Reflect),
54
reflect(Component, Default, PartialEq, Debug, Clone)
55
)]
56
#[cfg_attr(
57
all(feature = "bevy_reflect", feature = "serialize"),
58
reflect(Serialize, Deserialize)
59
)]
60
pub struct GlobalTransform(Affine3A);
61
62
macro_rules! impl_local_axis {
63
($pos_name: ident, $neg_name: ident, $axis: ident) => {
64
#[doc=core::concat!("Return the local ", core::stringify!($pos_name), " vector (", core::stringify!($axis) ,").")]
65
#[inline]
66
pub fn $pos_name(&self) -> Dir3 {
67
Dir3::new_unchecked((self.0.matrix3 * Vec3::$axis).normalize())
68
}
69
70
#[doc=core::concat!("Return the local ", core::stringify!($neg_name), " vector (-", core::stringify!($axis) ,").")]
71
#[inline]
72
pub fn $neg_name(&self) -> Dir3 {
73
-self.$pos_name()
74
}
75
};
76
}
77
78
impl GlobalTransform {
79
/// An identity [`GlobalTransform`] that maps all points in space to themselves.
80
pub const IDENTITY: Self = Self(Affine3A::IDENTITY);
81
82
#[doc(hidden)]
83
#[inline]
84
pub fn from_xyz(x: f32, y: f32, z: f32) -> Self {
85
Self::from_translation(Vec3::new(x, y, z))
86
}
87
88
#[doc(hidden)]
89
#[inline]
90
pub fn from_translation(translation: Vec3) -> Self {
91
GlobalTransform(Affine3A::from_translation(translation))
92
}
93
94
#[doc(hidden)]
95
#[inline]
96
pub fn from_rotation(rotation: Quat) -> Self {
97
GlobalTransform(Affine3A::from_rotation_translation(rotation, Vec3::ZERO))
98
}
99
100
#[doc(hidden)]
101
#[inline]
102
pub fn from_scale(scale: Vec3) -> Self {
103
GlobalTransform(Affine3A::from_scale(scale))
104
}
105
106
#[doc(hidden)]
107
#[inline]
108
pub fn from_isometry(iso: Isometry3d) -> Self {
109
Self(iso.into())
110
}
111
112
/// Returns the 3d affine transformation matrix as a [`Mat4`].
113
#[inline]
114
pub fn to_matrix(&self) -> Mat4 {
115
Mat4::from(self.0)
116
}
117
118
/// Returns the 3d affine transformation matrix as an [`Affine3A`].
119
#[inline]
120
pub fn affine(&self) -> Affine3A {
121
self.0
122
}
123
124
/// Returns the transformation as a [`Transform`].
125
///
126
/// The transform is expected to be non-degenerate and without shearing, or the output
127
/// will be invalid.
128
#[inline]
129
pub fn compute_transform(&self) -> Transform {
130
let (scale, rotation, translation) = self.0.to_scale_rotation_translation();
131
Transform {
132
translation,
133
rotation,
134
scale,
135
}
136
}
137
138
/// Computes a Scale-Rotation-Translation decomposition of the transformation and returns
139
/// the isometric part as an [isometry]. Any scaling done by the transformation will be ignored.
140
/// Note: this is a somewhat costly and lossy conversion.
141
///
142
/// The transform is expected to be non-degenerate and without shearing, or the output
143
/// will be invalid.
144
///
145
/// [isometry]: Isometry3d
146
#[inline]
147
pub fn to_isometry(&self) -> Isometry3d {
148
let (_, rotation, translation) = self.0.to_scale_rotation_translation();
149
Isometry3d::new(translation, rotation)
150
}
151
152
/// Returns the [`Transform`] `self` would have if it was a child of an entity
153
/// with the `parent` [`GlobalTransform`].
154
///
155
/// This is useful if you want to "reparent" an [`Entity`](bevy_ecs::entity::Entity).
156
/// Say you have an entity `e1` that you want to turn into a child of `e2`,
157
/// but you want `e1` to keep the same global transform, even after re-parenting. You would use:
158
///
159
/// ```
160
/// # use bevy_transform::prelude::{GlobalTransform, Transform};
161
/// # use bevy_ecs::prelude::{Entity, Query, Component, Commands, ChildOf};
162
/// #[derive(Component)]
163
/// struct ToReparent {
164
/// new_parent: Entity,
165
/// }
166
/// fn reparent_system(
167
/// mut commands: Commands,
168
/// mut targets: Query<(&mut Transform, Entity, &GlobalTransform, &ToReparent)>,
169
/// transforms: Query<&GlobalTransform>,
170
/// ) {
171
/// for (mut transform, entity, initial, to_reparent) in targets.iter_mut() {
172
/// if let Ok(parent_transform) = transforms.get(to_reparent.new_parent) {
173
/// *transform = initial.reparented_to(parent_transform);
174
/// commands.entity(entity)
175
/// .remove::<ToReparent>()
176
/// .insert(ChildOf(to_reparent.new_parent));
177
/// }
178
/// }
179
/// }
180
/// ```
181
///
182
/// The transform is expected to be non-degenerate and without shearing, or the output
183
/// will be invalid.
184
#[inline]
185
pub fn reparented_to(&self, parent: &GlobalTransform) -> Transform {
186
let relative_affine = parent.affine().inverse() * self.affine();
187
let (scale, rotation, translation) = relative_affine.to_scale_rotation_translation();
188
Transform {
189
translation,
190
rotation,
191
scale,
192
}
193
}
194
195
/// Extracts `scale`, `rotation` and `translation` from `self`.
196
///
197
/// The transform is expected to be non-degenerate and without shearing, or the output
198
/// will be invalid.
199
#[inline]
200
pub fn to_scale_rotation_translation(&self) -> (Vec3, Quat, Vec3) {
201
self.0.to_scale_rotation_translation()
202
}
203
204
impl_local_axis!(right, left, X);
205
impl_local_axis!(up, down, Y);
206
impl_local_axis!(back, forward, Z);
207
208
/// Get the translation as a [`Vec3`].
209
#[inline]
210
pub fn translation(&self) -> Vec3 {
211
self.0.translation.into()
212
}
213
214
/// Get the translation as a [`Vec3A`].
215
#[inline]
216
pub fn translation_vec3a(&self) -> Vec3A {
217
self.0.translation
218
}
219
220
/// Get the rotation as a [`Quat`].
221
///
222
/// The transform is expected to be non-degenerate and without shearing, or the output will be invalid.
223
///
224
/// # Warning
225
///
226
/// This is calculated using `to_scale_rotation_translation`, meaning that you
227
/// should probably use it directly if you also need translation or scale.
228
#[inline]
229
pub fn rotation(&self) -> Quat {
230
self.to_scale_rotation_translation().1
231
}
232
233
/// Get the scale as a [`Vec3`].
234
///
235
/// The transform is expected to be non-degenerate and without shearing, or the output will be invalid.
236
///
237
/// Some of the computations overlap with `to_scale_rotation_translation`, which means you should use
238
/// it instead if you also need rotation.
239
#[inline]
240
pub fn scale(&self) -> Vec3 {
241
//Formula based on glam's implementation https://github.com/bitshifter/glam-rs/blob/2e4443e70c709710dfb25958d866d29b11ed3e2b/src/f32/affine3a.rs#L290
242
let det = self.0.matrix3.determinant();
243
Vec3::new(
244
self.0.matrix3.x_axis.length() * ops::copysign(1., det),
245
self.0.matrix3.y_axis.length(),
246
self.0.matrix3.z_axis.length(),
247
)
248
}
249
250
/// Get an upper bound of the radius from the given `extents`.
251
#[inline]
252
pub fn radius_vec3a(&self, extents: Vec3A) -> f32 {
253
(self.0.matrix3 * extents).length()
254
}
255
256
/// Transforms the given point from local space to global space, applying shear, scale, rotation and translation.
257
///
258
/// It can be used like this:
259
///
260
/// ```
261
/// # use bevy_transform::prelude::{GlobalTransform};
262
/// # use bevy_math::prelude::Vec3;
263
/// let global_transform = GlobalTransform::from_xyz(1., 2., 3.);
264
/// let local_point = Vec3::new(1., 2., 3.);
265
/// let global_point = global_transform.transform_point(local_point);
266
/// assert_eq!(global_point, Vec3::new(2., 4., 6.));
267
/// ```
268
///
269
/// ```
270
/// # use bevy_transform::prelude::{GlobalTransform};
271
/// # use bevy_math::Vec3;
272
/// let global_point = Vec3::new(2., 4., 6.);
273
/// let global_transform = GlobalTransform::from_xyz(1., 2., 3.);
274
/// let local_point = global_transform.affine().inverse().transform_point3(global_point);
275
/// assert_eq!(local_point, Vec3::new(1., 2., 3.))
276
/// ```
277
///
278
/// To apply shear, scale, and rotation *without* applying translation, different functions are available:
279
/// ```
280
/// # use bevy_transform::prelude::{GlobalTransform};
281
/// # use bevy_math::prelude::Vec3;
282
/// let global_transform = GlobalTransform::from_xyz(1., 2., 3.);
283
/// let local_direction = Vec3::new(1., 2., 3.);
284
/// let global_direction = global_transform.affine().transform_vector3(local_direction);
285
/// assert_eq!(global_direction, Vec3::new(1., 2., 3.));
286
/// let roundtripped_local_direction = global_transform.affine().inverse().transform_vector3(global_direction);
287
/// assert_eq!(roundtripped_local_direction, local_direction);
288
/// ```
289
#[inline]
290
pub fn transform_point(&self, point: Vec3) -> Vec3 {
291
self.0.transform_point3(point)
292
}
293
294
/// Multiplies `self` with `transform` component by component, returning the
295
/// resulting [`GlobalTransform`]
296
#[inline]
297
pub fn mul_transform(&self, transform: Transform) -> Self {
298
Self(self.0 * transform.compute_affine())
299
}
300
}
301
302
impl Default for GlobalTransform {
303
fn default() -> Self {
304
Self::IDENTITY
305
}
306
}
307
308
impl From<Transform> for GlobalTransform {
309
fn from(transform: Transform) -> Self {
310
Self(transform.compute_affine())
311
}
312
}
313
314
impl From<Mat4> for GlobalTransform {
315
fn from(world_from_local: Mat4) -> Self {
316
Self(Affine3A::from_mat4(world_from_local))
317
}
318
}
319
320
impl Mul<GlobalTransform> for GlobalTransform {
321
type Output = GlobalTransform;
322
323
#[inline]
324
fn mul(self, global_transform: GlobalTransform) -> Self::Output {
325
GlobalTransform(self.0 * global_transform.0)
326
}
327
}
328
329
impl Mul<Transform> for GlobalTransform {
330
type Output = GlobalTransform;
331
332
#[inline]
333
fn mul(self, transform: Transform) -> Self::Output {
334
self.mul_transform(transform)
335
}
336
}
337
338
impl Mul<Vec3> for GlobalTransform {
339
type Output = Vec3;
340
341
#[inline]
342
fn mul(self, value: Vec3) -> Self::Output {
343
self.transform_point(value)
344
}
345
}
346
347
#[cfg(test)]
348
mod test {
349
use super::*;
350
351
use bevy_math::EulerRot::XYZ;
352
353
fn transform_equal(left: GlobalTransform, right: Transform) -> bool {
354
left.0.abs_diff_eq(right.compute_affine(), 0.01)
355
}
356
357
#[test]
358
fn reparented_to_transform_identity() {
359
fn reparent_to_same(t1: GlobalTransform, t2: GlobalTransform) -> Transform {
360
t2.mul_transform(t1.into()).reparented_to(&t2)
361
}
362
let t1 = GlobalTransform::from(Transform {
363
translation: Vec3::new(1034.0, 34.0, -1324.34),
364
rotation: Quat::from_euler(XYZ, 1.0, 0.9, 2.1),
365
scale: Vec3::new(1.0, 1.0, 1.0),
366
});
367
let t2 = GlobalTransform::from(Transform {
368
translation: Vec3::new(0.0, -54.493, 324.34),
369
rotation: Quat::from_euler(XYZ, 1.9, 0.3, 3.0),
370
scale: Vec3::new(1.345, 1.345, 1.345),
371
});
372
let retransformed = reparent_to_same(t1, t2);
373
assert!(
374
transform_equal(t1, retransformed),
375
"t1:{:#?} retransformed:{:#?}",
376
t1.compute_transform(),
377
retransformed,
378
);
379
}
380
#[test]
381
fn reparented_usecase() {
382
let t1 = GlobalTransform::from(Transform {
383
translation: Vec3::new(1034.0, 34.0, -1324.34),
384
rotation: Quat::from_euler(XYZ, 0.8, 1.9, 2.1),
385
scale: Vec3::new(10.9, 10.9, 10.9),
386
});
387
let t2 = GlobalTransform::from(Transform {
388
translation: Vec3::new(28.0, -54.493, 324.34),
389
rotation: Quat::from_euler(XYZ, 0.0, 3.1, 0.1),
390
scale: Vec3::new(0.9, 0.9, 0.9),
391
});
392
// goal: find `X` such as `t2 * X = t1`
393
let reparented = t1.reparented_to(&t2);
394
let t1_prime = t2 * reparented;
395
assert!(
396
transform_equal(t1, t1_prime.into()),
397
"t1:{:#?} t1_prime:{:#?}",
398
t1.compute_transform(),
399
t1_prime.compute_transform(),
400
);
401
}
402
403
#[test]
404
fn scale() {
405
let test_values = [-42.42, 0., 42.42];
406
for x in test_values {
407
for y in test_values {
408
for z in test_values {
409
let scale = Vec3::new(x, y, z);
410
let gt = GlobalTransform::from_scale(scale);
411
assert_eq!(gt.scale(), gt.to_scale_rotation_translation().0);
412
}
413
}
414
}
415
}
416
}
417
418