Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bevyengine
GitHub Repository: bevyengine/bevy
Path: blob/main/crates/bevy_ui_render/src/gradient.wgsl
9353 views
#import bevy_render::view::View
#import bevy_ui::ui_node::{
    draw_uinode_background,
    draw_uinode_border,
}

#import bevy_ui_render::color_space::{
    convert_to_linear_rgba,
    mix_oklch,
    mix_oklch_long,
    mix_hsv,
    mix_hsv_long,
    mix_hsl,
    mix_hsl_long,
    oklch_to_linear_rgb,
    hsv_to_linear_rgb,
    hsl_to_linear_rgb,
    oklab_to_linear_rgb,
}

#import bevy_render::maths::PI

const TAU: f32 = 2. * PI;

const RIGHT_VERTEX = 2u;
const BOTTOM_VERTEX = 4u;
// must align with BORDER_* shader_flags from bevy_ui/render/mod.rs
const RADIAL: u32 = 16u;
const FILL_START: u32 = 32u;
const FILL_END: u32 = 64u;
const CONIC: u32 = 128u;
const BORDER_LEFT: u32 = 256u;
const BORDER_TOP: u32 = 512u;
const BORDER_RIGHT: u32 = 1024u;
const BORDER_BOTTOM: u32 = 2048u;
const BORDER_ANY: u32 = BORDER_LEFT + BORDER_TOP + BORDER_RIGHT + BORDER_BOTTOM;

fn enabled(flags: u32, mask: u32) -> bool {
    return (flags & mask) != 0u;
}

@group(0) @binding(0) var<uniform> view: View;

struct GradientVertexOutput {
    @location(0) uv: vec2<f32>,
    @location(1) @interpolate(flat) size: vec2<f32>,
    @location(2) @interpolate(flat) flags: u32,
    @location(3) @interpolate(flat) radius: vec4<f32>,
    @location(4) @interpolate(flat) border: vec4<f32>,    

    // Position relative to the center of the rectangle.
    @location(5) point: vec2<f32>,
    @location(6) @interpolate(flat) g_start: vec2<f32>,
    @location(7) @interpolate(flat) dir: vec2<f32>,
    @location(8) @interpolate(flat) start_color: vec4<f32>,
    @location(9) @interpolate(flat) start_len: f32,
    @location(10) @interpolate(flat) end_len: f32,
    @location(11) @interpolate(flat) end_color: vec4<f32>,
    @location(12) @interpolate(flat) hint: f32,
    @builtin(position) position: vec4<f32>,
};

@vertex
fn vertex(
    @location(0) vertex_position: vec3<f32>,
    @location(1) vertex_uv: vec2<f32>,
    @location(2) flags: u32,

    // x: top left, y: top right, z: bottom right, w: bottom left.
    @location(3) radius: vec4<f32>,

    // x: left, y: top, z: right, w: bottom.
    @location(4) border: vec4<f32>,
    @location(5) size: vec2<f32>,
    @location(6) point: vec2<f32>,
    @location(7) @interpolate(flat) g_start: vec2<f32>,
    @location(8) @interpolate(flat) dir: vec2<f32>,
    @location(9) @interpolate(flat) start_color: vec4<f32>,
    @location(10) @interpolate(flat) start_len: f32,
    @location(11) @interpolate(flat) end_len: f32,
    @location(12) @interpolate(flat) end_color: vec4<f32>,
    @location(13) @interpolate(flat) hint: f32
) -> GradientVertexOutput {
    var out: GradientVertexOutput;
    out.position = view.clip_from_world * vec4(vertex_position, 1.0);
    out.uv = vertex_uv;
    out.size = size;
    out.flags = flags;
    out.radius = radius;
    out.border = border;
    out.point = point;
    out.dir = dir;
    out.start_color = start_color;
    out.start_len = start_len;
    out.end_len = end_len;
    out.end_color = end_color;
    out.g_start = g_start;
    out.hint = hint;

    return out;
}

@fragment
fn fragment(in: GradientVertexOutput) -> @location(0) vec4<f32> {
    var g_distance: f32;
    if enabled(in.flags, RADIAL) {
        g_distance = radial_distance(in.point, in.g_start, in.dir.x);
    } else if enabled(in.flags, CONIC) {
        g_distance = conic_distance(in.dir.x, in.point, in.g_start);
    } else {
        g_distance = linear_distance(in.point, in.g_start, in.dir);
    }

    let gradient_color = interpolate_gradient(
        g_distance,
        in.start_color,
        in.start_len,
        in.end_color,
        in.end_len,
        in.hint,
        in.flags
    );

    if enabled(in.flags, BORDER_ANY) {
        return draw_uinode_border(gradient_color, in.point, in.size, in.radius, in.border, in.flags);
    } else {
        return draw_uinode_background(gradient_color, in.point, in.size, in.radius, in.border);
    }
}

fn rem_euclid(a: f32, b: f32) -> f32 {
    return ((a % b) + b) % b;
}

// These functions are used to calculate the distance in gradient space from the start of the gradient to the point.
// The distance in gradient space is then used to interpolate between the start and end colors.

fn linear_distance(
    point: vec2<f32>,
    g_start: vec2<f32>,
    g_dir: vec2<f32>,
) -> f32 {
    return dot(point - g_start, g_dir);
}

fn radial_distance(
    point: vec2<f32>,
    center: vec2<f32>,
    ratio: f32,
) -> f32 {
    let d = point - center;
    return length(vec2(d.x, d.y * ratio));
}

fn conic_distance(
    start: f32,
    point: vec2<f32>,
    center: vec2<f32>,
) -> f32 {
    let d = point - center;
    let angle = atan2(-d.x, d.y) + PI;
    return (((angle - start) % TAU) + TAU) % TAU;
}

// Mix the colors, choosing the appropriate interpolation method for the given color space
fn mix_colors(
    start_color: vec3<f32>,
    end_color: vec3<f32>,
    t: f32,
) -> vec3<f32> {
#ifdef IN_OKLCH
    return mix_oklch(start_color, end_color, t);
#else ifdef IN_OKLCH_LONG
    return mix_oklch_long(start_color, end_color, t);
#else ifdef IN_HSV
    return mix_hsv(start_color, end_color, t);
#else ifdef IN_HSV_LONG
    return mix_hsv_long(start_color, end_color, t);
#else ifdef IN_HSL
    return mix_hsl(start_color, end_color, t);
#else ifdef IN_HSL_LONG
    return mix_hsl_long(start_color, end_color, t);
#else
    // Just lerp in linear RGBA, OkLab and SRGBA spaces
    return mix(start_color, end_color, t);
#endif
}

// Convert a color from the interpolation color space to linear rgba
fn convert_to_linear_rgba(
    color: vec4<f32>,
) -> vec4<f32> {
#ifdef IN_OKLCH
    let rgb = oklch_to_linear_rgb(color.xyz);
#else ifdef IN_OKLCH_LONG
    let rgb = oklch_to_linear_rgb(color.xyz);
#else ifdef IN_HSV
    let rgb = hsv_to_linear_rgb(color.xyz);
#else ifdef IN_HSV_LONG
    let rgb = hsv_to_linear_rgb(color.xyz);
#else ifdef IN_HSL
    let rgb = hsl_to_linear_rgb(color.xyz);
#else ifdef IN_HSL_LONG
    let rgb = hsl_to_linear_rgb(color.xyz);
#else ifdef IN_OKLAB
    let rgb = oklab_to_linear_rgb(color.xyz);
#else ifdef IN_SRGB
    let rgb = pow(color.xyz, vec3(2.2));
#else
    // Color is already in linear rgba space
    let rgb = color.rgb;
#endif
    return vec4(rgb, color.a);
}

fn interpolate_gradient(
    distance: f32,
    start_color: vec4<f32>,
    start_distance: f32,
    end_color: vec4<f32>,
    end_distance: f32,
    hint: f32,
    flags: u32,
) -> vec4<f32> {
    if start_distance == end_distance {
        if distance <= start_distance && enabled(flags, FILL_START) {
            return convert_to_linear_rgba(start_color);
        }
        if start_distance <= distance && enabled(flags, FILL_END) {
            return convert_to_linear_rgba(end_color);
        }
        return vec4(0.);
    }

    var t = (distance - start_distance) / (end_distance - start_distance);

    if t < 0.0 {
        if enabled(flags, FILL_START) {
            return convert_to_linear_rgba(start_color);
        }
        return vec4(0.0);
    }

    if 1. < t {
        if enabled(flags, FILL_END) {
            return convert_to_linear_rgba(end_color);
        }
        return vec4(0.0);
    }

    if t < hint {
        t = 0.5 * t / hint;
    } else {
        t = 0.5 * (1 + (t - hint) / (1.0 - hint));
    }

    return convert_to_linear_rgba(vec4(mix_colors(start_color.xyz, end_color.xyz, t), mix(start_color.a, end_color.a, t)));
}