#define_import_path bevy_ui::ui_node #import bevy_render::view::View const TEXTURED = 1u; const RIGHT_VERTEX = 2u; const BOTTOM_VERTEX = 4u; // must align with BORDER_* shader_flags from bevy_ui/render/mod.rs const BORDER_LEFT: u32 = 256u; const BORDER_TOP: u32 = 512u; const BORDER_RIGHT: u32 = 1024u; const BORDER_BOTTOM: u32 = 2048u; const BORDER_ANY: u32 = BORDER_LEFT + BORDER_TOP + BORDER_RIGHT + BORDER_BOTTOM; fn enabled(flags: u32, mask: u32) -> bool { return (flags & mask) != 0u; } @group(0) @binding(0) var<uniform> view: View; struct VertexOutput { @location(0) uv: vec2<f32>, @location(1) color: vec4<f32>, @location(2) @interpolate(flat) size: vec2<f32>, @location(3) @interpolate(flat) flags: u32, @location(4) @interpolate(flat) radius: vec4<f32>, @location(5) @interpolate(flat) border: vec4<f32>, // Position relative to the center of the rectangle. @location(6) point: vec2<f32>, @builtin(position) position: vec4<f32>, }; @vertex fn vertex( @location(0) vertex_position: vec3<f32>, @location(1) vertex_uv: vec2<f32>, @location(2) vertex_color: vec4<f32>, @location(3) flags: u32, // x: top left, y: top right, z: bottom right, w: bottom left. @location(4) radius: vec4<f32>, // x: left, y: top, z: right, w: bottom. @location(5) border: vec4<f32>, @location(6) size: vec2<f32>, @location(7) point: vec2<f32>, ) -> VertexOutput { var out: VertexOutput; out.uv = vertex_uv; out.position = view.clip_from_world * vec4(vertex_position, 1.0); out.color = vertex_color; out.flags = flags; out.radius = radius; out.size = size; out.border = border; out.point = point; return out; } @group(1) @binding(0) var sprite_texture: texture_2d<f32>; @group(1) @binding(1) var sprite_sampler: sampler; // The returned value is the shortest distance from the given point to the boundary of the rounded // box. // // Negative values indicate that the point is inside the rounded box, positive values that the point // is outside, and zero is exactly on the boundary. // // Arguments: // - `point` -> The function will return the distance from this point to the closest point on // the boundary. // - `size` -> The maximum width and height of the box. // - `corner_radii` -> The radius of each rounded corner. Ordered counter clockwise starting // top left: // x: top left, y: top right, z: bottom right, w: bottom left. fn sd_rounded_box(point: vec2<f32>, size: vec2<f32>, corner_radii: vec4<f32>) -> f32 { // If 0.0 < y then select bottom left (w) and bottom right corner radius (z). // Else select top left (x) and top right corner radius (y). let rs = select(corner_radii.xy, corner_radii.wz, 0.0 < point.y); // w and z are swapped above so that both pairs are in left to right order, otherwise this second // select statement would return the incorrect value for the bottom pair. let radius = select(rs.x, rs.y, 0.0 < point.x); // Vector from the corner closest to the point, to the point. let corner_to_point = abs(point) - 0.5 * size; // Vector from the center of the radius circle to the point. let q = corner_to_point + radius; // Length from center of the radius circle to the point, zeros a component if the point is not // within the quadrant of the radius circle that is part of the curved corner. let l = length(max(q, vec2(0.0))); let m = min(max(q.x, q.y), 0.0); return l + m - radius; } fn sd_inset_rounded_box(point: vec2<f32>, size: vec2<f32>, radius: vec4<f32>, inset: vec4<f32>) -> f32 { let inner_size = size - inset.xy - inset.zw; let inner_center = inset.xy + 0.5 * inner_size - 0.5 * size; let inner_point = point - inner_center; var r = radius; // Top left corner. r.x = r.x - max(inset.x, inset.y); // Top right corner. r.y = r.y - max(inset.z, inset.y); // Bottom right corner. r.z = r.z - max(inset.z, inset.w); // Bottom left corner. r.w = r.w - max(inset.x, inset.w); let half_size = inner_size * 0.5; let min_size = min(half_size.x, half_size.y); r = min(max(r, vec4(0.0)), vec4<f32>(min_size)); return sd_rounded_box(inner_point, inner_size, r); } fn nearest_border_active(point_vs_mid: vec2<f32>, size: vec2<f32>, width: vec4<f32>, flags: u32) -> bool { if (flags & BORDER_ANY) == BORDER_ANY { return true; } // get point vs top left let point = clamp(point_vs_mid + size * 0.49999, vec2(0.0), size); let left = point.x / width.x; let top = point.y / width.y; let right = (size.x - point.x) / width.z; let bottom = (size.y - point.y) / width.w; let min_dist = min(min(left, top), min(right, bottom)); return (enabled(flags, BORDER_LEFT) && min_dist == left) || (enabled(flags, BORDER_TOP) && min_dist == top) || (enabled(flags, BORDER_RIGHT) && min_dist == right) || (enabled(flags, BORDER_BOTTOM) && min_dist == bottom); } // get alpha for antialiasing for sdf fn antialias(distance: f32) -> f32 { // Using the fwidth(distance) was causing artifacts, so just use the distance. return saturate(0.5 - distance); } fn draw_uinode_border( color: vec4<f32>, point: vec2<f32>, size: vec2<f32>, radius: vec4<f32>, border: vec4<f32>, flags: u32, ) -> vec4<f32> { // Signed distances. The magnitude is the distance of the point from the edge of the shape. // * Negative values indicate that the point is inside the shape. // * Zero values indicate the point is on the edge of the shape. // * Positive values indicate the point is outside the shape. // Signed distance from the exterior boundary. let external_distance = sd_rounded_box(point, size, radius); // Signed distance from the border's internal edge (the signed distance is negative if the point // is inside the rect but not on the border). // If the border size is set to zero, this is the same as the external distance. let internal_distance = sd_inset_rounded_box(point, size, radius, border); // Signed distance from the border (the intersection of the rect with its border). // Points inside the border have negative signed distance. Any point outside the border, whether // outside the outside edge, or inside the inner edge have positive signed distance. let border_distance = max(external_distance, -internal_distance); // check if this node should apply color for the nearest border let nearest_border = select(0.0, 1.0, nearest_border_active(point, size, border, flags)); #ifdef ANTI_ALIAS // At external edges with no border, `border_distance` is equal to zero. // This select statement ensures we only perform anti-aliasing where a non-zero width border // is present, otherwise an outline about the external boundary would be drawn even without // a border. let t = select(1.0 - step(0.0, border_distance), antialias(border_distance), external_distance < internal_distance); #else let t = 1.0 - step(0.0, border_distance); #endif // Blend mode ALPHA_BLENDING is used for UI elements, so we don't premultiply alpha here. return vec4(color.rgb, saturate(color.a * t * nearest_border)); } fn draw_uinode_background( color: vec4<f32>, point: vec2<f32>, size: vec2<f32>, radius: vec4<f32>, border: vec4<f32>, ) -> vec4<f32> { // When drawing the background only draw the internal area and not the border. let internal_distance = sd_inset_rounded_box(point, size, radius, border); #ifdef ANTI_ALIAS let t = antialias(internal_distance); #else let t = 1.0 - step(0.0, internal_distance); #endif return vec4(color.rgb, saturate(color.a * t)); } @fragment fn fragment(in: VertexOutput) -> @location(0) vec4<f32> { let texture_color = textureSample(sprite_texture, sprite_sampler, in.uv); // Only use the color sampled from the texture if the `TEXTURED` flag is enabled. // This allows us to draw both textured and untextured shapes together in the same batch. let color = select(in.color, in.color * texture_color, enabled(in.flags, TEXTURED)); if enabled(in.flags, BORDER_ANY) { return draw_uinode_border(color, in.point, in.size, in.radius, in.border, in.flags); } else { return draw_uinode_background(color, in.point, in.size, in.radius, in.border); } }