Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bevyengine
GitHub Repository: bevyengine/bevy
Path: blob/main/examples/animation/custom_skinned_mesh.rs
9353 views
1
//! Skinned mesh example with mesh and joints data defined in code.
2
//! Example taken from <https://github.com/KhronosGroup/glTF-Tutorials/blob/master/gltfTutorial/gltfTutorial_019_SimpleSkin.md>
3
4
use std::f32::consts::*;
5
6
use bevy::{
7
asset::RenderAssetUsages,
8
camera::visibility::DynamicSkinnedMeshBounds,
9
math::ops,
10
mesh::{
11
skinning::{SkinnedMesh, SkinnedMeshInverseBindposes},
12
Indices, PrimitiveTopology, VertexAttributeValues,
13
},
14
prelude::*,
15
};
16
use rand::{Rng, SeedableRng};
17
use rand_chacha::ChaCha8Rng;
18
19
fn main() {
20
App::new()
21
.add_plugins(DefaultPlugins)
22
.insert_resource(GlobalAmbientLight {
23
brightness: 3000.0,
24
..default()
25
})
26
.add_systems(Startup, setup)
27
.add_systems(Update, joint_animation)
28
.run();
29
}
30
31
/// Used to mark a joint to be animated in the [`joint_animation`] system.
32
#[derive(Component)]
33
struct AnimatedJoint(isize);
34
35
/// Construct a mesh and a skeleton with 2 joints for that mesh,
36
/// and mark the second joint to be animated.
37
/// It is similar to the scene defined in `models/SimpleSkin/SimpleSkin.gltf`
38
fn setup(
39
mut commands: Commands,
40
asset_server: Res<AssetServer>,
41
mut meshes: ResMut<Assets<Mesh>>,
42
mut materials: ResMut<Assets<StandardMaterial>>,
43
mut skinned_mesh_inverse_bindposes_assets: ResMut<Assets<SkinnedMeshInverseBindposes>>,
44
) {
45
// Create a camera
46
commands.spawn((
47
Camera3d::default(),
48
Transform::from_xyz(2.5, 2.5, 9.0).looking_at(Vec3::ZERO, Vec3::Y),
49
));
50
51
// Create inverse bindpose matrices for a skeleton consists of 2 joints
52
let inverse_bindposes = skinned_mesh_inverse_bindposes_assets.add(vec![
53
Mat4::from_translation(Vec3::new(-0.5, -1.0, 0.0)),
54
Mat4::from_translation(Vec3::new(-0.5, -1.0, 0.0)),
55
]);
56
57
// Create a mesh
58
let mesh = Mesh::new(
59
PrimitiveTopology::TriangleList,
60
RenderAssetUsages::RENDER_WORLD,
61
)
62
// Set mesh vertex positions
63
.with_inserted_attribute(
64
Mesh::ATTRIBUTE_POSITION,
65
vec![
66
[0.0, 0.0, 0.0],
67
[1.0, 0.0, 0.0],
68
[0.0, 0.5, 0.0],
69
[1.0, 0.5, 0.0],
70
[0.0, 1.0, 0.0],
71
[1.0, 1.0, 0.0],
72
[0.0, 1.5, 0.0],
73
[1.0, 1.5, 0.0],
74
[0.0, 2.0, 0.0],
75
[1.0, 2.0, 0.0],
76
],
77
)
78
// Add UV coordinates that map the left half of the texture since its a 1 x
79
// 2 rectangle.
80
.with_inserted_attribute(
81
Mesh::ATTRIBUTE_UV_0,
82
vec![
83
[0.0, 0.00],
84
[0.5, 0.00],
85
[0.0, 0.25],
86
[0.5, 0.25],
87
[0.0, 0.50],
88
[0.5, 0.50],
89
[0.0, 0.75],
90
[0.5, 0.75],
91
[0.0, 1.00],
92
[0.5, 1.00],
93
],
94
)
95
// Set mesh vertex normals
96
.with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, vec![[0.0, 0.0, 1.0]; 10])
97
// Set mesh vertex joint indices for mesh skinning.
98
// Each vertex gets 4 indices used to address the `JointTransforms` array in the vertex shader
99
// as well as `SkinnedMeshJoint` array in the `SkinnedMesh` component.
100
// This means that a maximum of 4 joints can affect a single vertex.
101
.with_inserted_attribute(
102
Mesh::ATTRIBUTE_JOINT_INDEX,
103
// Need to be explicit here as [u16; 4] could be either Uint16x4 or Unorm16x4.
104
VertexAttributeValues::Uint16x4(vec![
105
[0, 0, 0, 0],
106
[0, 0, 0, 0],
107
[0, 1, 0, 0],
108
[0, 1, 0, 0],
109
[0, 1, 0, 0],
110
[0, 1, 0, 0],
111
[0, 1, 0, 0],
112
[0, 1, 0, 0],
113
[0, 1, 0, 0],
114
[0, 1, 0, 0],
115
]),
116
)
117
// Set mesh vertex joint weights for mesh skinning.
118
// Each vertex gets 4 joint weights corresponding to the 4 joint indices assigned to it.
119
// The sum of these weights should equal to 1.
120
.with_inserted_attribute(
121
Mesh::ATTRIBUTE_JOINT_WEIGHT,
122
vec![
123
[1.00, 0.00, 0.0, 0.0],
124
[1.00, 0.00, 0.0, 0.0],
125
[0.75, 0.25, 0.0, 0.0],
126
[0.75, 0.25, 0.0, 0.0],
127
[0.50, 0.50, 0.0, 0.0],
128
[0.50, 0.50, 0.0, 0.0],
129
[0.25, 0.75, 0.0, 0.0],
130
[0.25, 0.75, 0.0, 0.0],
131
[0.00, 1.00, 0.0, 0.0],
132
[0.00, 1.00, 0.0, 0.0],
133
],
134
)
135
// Tell bevy to construct triangles from a list of vertex indices,
136
// where each 3 vertex indices form a triangle.
137
.with_inserted_indices(Indices::U16(vec![
138
0, 1, 3, 0, 3, 2, 2, 3, 5, 2, 5, 4, 4, 5, 7, 4, 7, 6, 6, 7, 9, 6, 9, 8,
139
]))
140
// Create skinned mesh bounds. Together with the `DynamicSkinnedMeshBounds`
141
// component, this will ensure the mesh is correctly frustum culled.
142
.with_generated_skinned_mesh_bounds()
143
.unwrap();
144
145
let mesh = meshes.add(mesh);
146
147
// We're seeding the PRNG here to make this example deterministic for testing purposes.
148
// This isn't strictly required in practical use unless you need your app to be deterministic.
149
let mut rng = ChaCha8Rng::seed_from_u64(42);
150
151
for i in -5..5 {
152
// Create joint entities
153
let joint_0 = commands
154
.spawn(Transform::from_xyz(
155
i as f32 * 1.5,
156
0.0,
157
// Move quads back a small amount to avoid Z-fighting and not
158
// obscure the transform gizmos.
159
-(i as f32 * 0.01).abs(),
160
))
161
.id();
162
let joint_1 = commands.spawn((AnimatedJoint(i), Transform::IDENTITY)).id();
163
164
// Set joint_1 as a child of joint_0.
165
commands.entity(joint_0).add_children(&[joint_1]);
166
167
// Each joint in this vector corresponds to each inverse bindpose matrix in `SkinnedMeshInverseBindposes`.
168
let joint_entities = vec![joint_0, joint_1];
169
170
// Create skinned mesh renderer. Note that its transform doesn't affect the position of the mesh.
171
commands.spawn((
172
Mesh3d(mesh.clone()),
173
MeshMaterial3d(materials.add(StandardMaterial {
174
base_color: Color::srgb(
175
rng.random_range(0.0..1.0),
176
rng.random_range(0.0..1.0),
177
rng.random_range(0.0..1.0),
178
),
179
base_color_texture: Some(asset_server.load("textures/uv_checker_bw.png")),
180
..default()
181
})),
182
SkinnedMesh {
183
inverse_bindposes: inverse_bindposes.clone(),
184
joints: joint_entities,
185
},
186
DynamicSkinnedMeshBounds,
187
));
188
}
189
}
190
191
/// Animate the joint marked with [`AnimatedJoint`] component.
192
fn joint_animation(
193
time: Res<Time>,
194
mut query: Query<(&mut Transform, &AnimatedJoint)>,
195
mut gizmos: Gizmos,
196
) {
197
for (mut transform, animated_joint) in &mut query {
198
match animated_joint.0 {
199
-5 => {
200
transform.rotation =
201
Quat::from_rotation_x(FRAC_PI_2 * ops::sin(time.elapsed_secs()));
202
}
203
-4 => {
204
transform.rotation =
205
Quat::from_rotation_y(FRAC_PI_2 * ops::sin(time.elapsed_secs()));
206
}
207
-3 => {
208
transform.rotation =
209
Quat::from_rotation_z(FRAC_PI_2 * ops::sin(time.elapsed_secs()));
210
}
211
-2 => {
212
transform.scale.x = ops::sin(time.elapsed_secs()) + 1.0;
213
}
214
-1 => {
215
transform.scale.y = ops::sin(time.elapsed_secs()) + 1.0;
216
}
217
0 => {
218
transform.translation.x = 0.5 * ops::sin(time.elapsed_secs());
219
transform.translation.y = ops::cos(time.elapsed_secs());
220
}
221
1 => {
222
transform.translation.y = ops::sin(time.elapsed_secs());
223
transform.translation.z = ops::cos(time.elapsed_secs());
224
}
225
2 => {
226
transform.translation.x = ops::sin(time.elapsed_secs());
227
}
228
3 => {
229
transform.translation.y = ops::sin(time.elapsed_secs());
230
transform.scale.x = ops::sin(time.elapsed_secs()) + 1.0;
231
}
232
_ => (),
233
}
234
// Show transform
235
let mut axis = *transform;
236
axis.translation.x += animated_joint.0 as f32 * 1.5;
237
gizmos.axes(axis, 1.0);
238
}
239
}
240
241