Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bevyengine
GitHub Repository: bevyengine/bevy
Path: blob/main/examples/animation/custom_skinned_mesh.rs
6592 views
1
//! Skinned mesh example with mesh and joints data defined in code.
2
//! Example taken from <https://github.com/KhronosGroup/glTF-Tutorials/blob/master/gltfTutorial/gltfTutorial_019_SimpleSkin.md>
3
4
use std::f32::consts::*;
5
6
use bevy::{
7
asset::RenderAssetUsages,
8
math::ops,
9
mesh::{
10
skinning::{SkinnedMesh, SkinnedMeshInverseBindposes},
11
Indices, PrimitiveTopology, VertexAttributeValues,
12
},
13
prelude::*,
14
};
15
use rand::{Rng, SeedableRng};
16
use rand_chacha::ChaCha8Rng;
17
18
fn main() {
19
App::new()
20
.add_plugins(DefaultPlugins)
21
.insert_resource(AmbientLight {
22
brightness: 3000.0,
23
..default()
24
})
25
.add_systems(Startup, setup)
26
.add_systems(Update, joint_animation)
27
.run();
28
}
29
30
/// Used to mark a joint to be animated in the [`joint_animation`] system.
31
#[derive(Component)]
32
struct AnimatedJoint(isize);
33
34
/// Construct a mesh and a skeleton with 2 joints for that mesh,
35
/// and mark the second joint to be animated.
36
/// It is similar to the scene defined in `models/SimpleSkin/SimpleSkin.gltf`
37
fn setup(
38
mut commands: Commands,
39
asset_server: Res<AssetServer>,
40
mut meshes: ResMut<Assets<Mesh>>,
41
mut materials: ResMut<Assets<StandardMaterial>>,
42
mut skinned_mesh_inverse_bindposes_assets: ResMut<Assets<SkinnedMeshInverseBindposes>>,
43
) {
44
// Create a camera
45
commands.spawn((
46
Camera3d::default(),
47
Transform::from_xyz(2.5, 2.5, 9.0).looking_at(Vec3::ZERO, Vec3::Y),
48
));
49
50
// Create inverse bindpose matrices for a skeleton consists of 2 joints
51
let inverse_bindposes = skinned_mesh_inverse_bindposes_assets.add(vec![
52
Mat4::from_translation(Vec3::new(-0.5, -1.0, 0.0)),
53
Mat4::from_translation(Vec3::new(-0.5, -1.0, 0.0)),
54
]);
55
56
// Create a mesh
57
let mesh = Mesh::new(
58
PrimitiveTopology::TriangleList,
59
RenderAssetUsages::RENDER_WORLD,
60
)
61
// Set mesh vertex positions
62
.with_inserted_attribute(
63
Mesh::ATTRIBUTE_POSITION,
64
vec![
65
[0.0, 0.0, 0.0],
66
[1.0, 0.0, 0.0],
67
[0.0, 0.5, 0.0],
68
[1.0, 0.5, 0.0],
69
[0.0, 1.0, 0.0],
70
[1.0, 1.0, 0.0],
71
[0.0, 1.5, 0.0],
72
[1.0, 1.5, 0.0],
73
[0.0, 2.0, 0.0],
74
[1.0, 2.0, 0.0],
75
],
76
)
77
// Add UV coordinates that map the left half of the texture since its a 1 x
78
// 2 rectangle.
79
.with_inserted_attribute(
80
Mesh::ATTRIBUTE_UV_0,
81
vec![
82
[0.0, 0.00],
83
[0.5, 0.00],
84
[0.0, 0.25],
85
[0.5, 0.25],
86
[0.0, 0.50],
87
[0.5, 0.50],
88
[0.0, 0.75],
89
[0.5, 0.75],
90
[0.0, 1.00],
91
[0.5, 1.00],
92
],
93
)
94
// Set mesh vertex normals
95
.with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, vec![[0.0, 0.0, 1.0]; 10])
96
// Set mesh vertex joint indices for mesh skinning.
97
// Each vertex gets 4 indices used to address the `JointTransforms` array in the vertex shader
98
// as well as `SkinnedMeshJoint` array in the `SkinnedMesh` component.
99
// This means that a maximum of 4 joints can affect a single vertex.
100
.with_inserted_attribute(
101
Mesh::ATTRIBUTE_JOINT_INDEX,
102
// Need to be explicit here as [u16; 4] could be either Uint16x4 or Unorm16x4.
103
VertexAttributeValues::Uint16x4(vec![
104
[0, 0, 0, 0],
105
[0, 0, 0, 0],
106
[0, 1, 0, 0],
107
[0, 1, 0, 0],
108
[0, 1, 0, 0],
109
[0, 1, 0, 0],
110
[0, 1, 0, 0],
111
[0, 1, 0, 0],
112
[0, 1, 0, 0],
113
[0, 1, 0, 0],
114
]),
115
)
116
// Set mesh vertex joint weights for mesh skinning.
117
// Each vertex gets 4 joint weights corresponding to the 4 joint indices assigned to it.
118
// The sum of these weights should equal to 1.
119
.with_inserted_attribute(
120
Mesh::ATTRIBUTE_JOINT_WEIGHT,
121
vec![
122
[1.00, 0.00, 0.0, 0.0],
123
[1.00, 0.00, 0.0, 0.0],
124
[0.75, 0.25, 0.0, 0.0],
125
[0.75, 0.25, 0.0, 0.0],
126
[0.50, 0.50, 0.0, 0.0],
127
[0.50, 0.50, 0.0, 0.0],
128
[0.25, 0.75, 0.0, 0.0],
129
[0.25, 0.75, 0.0, 0.0],
130
[0.00, 1.00, 0.0, 0.0],
131
[0.00, 1.00, 0.0, 0.0],
132
],
133
)
134
// Tell bevy to construct triangles from a list of vertex indices,
135
// where each 3 vertex indices form a triangle.
136
.with_inserted_indices(Indices::U16(vec![
137
0, 1, 3, 0, 3, 2, 2, 3, 5, 2, 5, 4, 4, 5, 7, 4, 7, 6, 6, 7, 9, 6, 9, 8,
138
]));
139
140
let mesh = meshes.add(mesh);
141
142
// We're seeding the PRNG here to make this example deterministic for testing purposes.
143
// This isn't strictly required in practical use unless you need your app to be deterministic.
144
let mut rng = ChaCha8Rng::seed_from_u64(42);
145
146
for i in -5..5 {
147
// Create joint entities
148
let joint_0 = commands
149
.spawn(Transform::from_xyz(
150
i as f32 * 1.5,
151
0.0,
152
// Move quads back a small amount to avoid Z-fighting and not
153
// obscure the transform gizmos.
154
-(i as f32 * 0.01).abs(),
155
))
156
.id();
157
let joint_1 = commands.spawn((AnimatedJoint(i), Transform::IDENTITY)).id();
158
159
// Set joint_1 as a child of joint_0.
160
commands.entity(joint_0).add_children(&[joint_1]);
161
162
// Each joint in this vector corresponds to each inverse bindpose matrix in `SkinnedMeshInverseBindposes`.
163
let joint_entities = vec![joint_0, joint_1];
164
165
// Create skinned mesh renderer. Note that its transform doesn't affect the position of the mesh.
166
commands.spawn((
167
Mesh3d(mesh.clone()),
168
MeshMaterial3d(materials.add(StandardMaterial {
169
base_color: Color::srgb(
170
rng.random_range(0.0..1.0),
171
rng.random_range(0.0..1.0),
172
rng.random_range(0.0..1.0),
173
),
174
base_color_texture: Some(asset_server.load("textures/uv_checker_bw.png")),
175
..default()
176
})),
177
SkinnedMesh {
178
inverse_bindposes: inverse_bindposes.clone(),
179
joints: joint_entities,
180
},
181
));
182
}
183
}
184
185
/// Animate the joint marked with [`AnimatedJoint`] component.
186
fn joint_animation(
187
time: Res<Time>,
188
mut query: Query<(&mut Transform, &AnimatedJoint)>,
189
mut gizmos: Gizmos,
190
) {
191
for (mut transform, animated_joint) in &mut query {
192
match animated_joint.0 {
193
-5 => {
194
transform.rotation =
195
Quat::from_rotation_x(FRAC_PI_2 * ops::sin(time.elapsed_secs()));
196
}
197
-4 => {
198
transform.rotation =
199
Quat::from_rotation_y(FRAC_PI_2 * ops::sin(time.elapsed_secs()));
200
}
201
-3 => {
202
transform.rotation =
203
Quat::from_rotation_z(FRAC_PI_2 * ops::sin(time.elapsed_secs()));
204
}
205
-2 => {
206
transform.scale.x = ops::sin(time.elapsed_secs()) + 1.0;
207
}
208
-1 => {
209
transform.scale.y = ops::sin(time.elapsed_secs()) + 1.0;
210
}
211
0 => {
212
transform.translation.x = 0.5 * ops::sin(time.elapsed_secs());
213
transform.translation.y = ops::cos(time.elapsed_secs());
214
}
215
1 => {
216
transform.translation.y = ops::sin(time.elapsed_secs());
217
transform.translation.z = ops::cos(time.elapsed_secs());
218
}
219
2 => {
220
transform.translation.x = ops::sin(time.elapsed_secs());
221
}
222
3 => {
223
transform.translation.y = ops::sin(time.elapsed_secs());
224
transform.scale.x = ops::sin(time.elapsed_secs()) + 1.0;
225
}
226
_ => (),
227
}
228
// Show transform
229
let mut axis = *transform;
230
axis.translation.x += animated_joint.0 as f32 * 1.5;
231
gizmos.axes(axis, 1.0);
232
}
233
}
234
235