Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bevyengine
GitHub Repository: bevyengine/bevy
Path: blob/main/examples/asset/alter_mesh.rs
6592 views
1
//! Shows how to modify mesh assets after spawning.
2
3
use bevy::{
4
asset::RenderAssetUsages, gltf::GltfLoaderSettings,
5
input::common_conditions::input_just_pressed, mesh::VertexAttributeValues, prelude::*,
6
};
7
8
fn main() {
9
App::new()
10
.add_plugins(DefaultPlugins)
11
.add_systems(Startup, (setup, spawn_text))
12
.add_systems(
13
Update,
14
alter_handle.run_if(input_just_pressed(KeyCode::Space)),
15
)
16
.add_systems(
17
Update,
18
alter_mesh.run_if(input_just_pressed(KeyCode::Enter)),
19
)
20
.run();
21
}
22
23
#[derive(Component, Debug)]
24
enum Shape {
25
Cube,
26
Sphere,
27
}
28
29
impl Shape {
30
fn get_model_path(&self) -> String {
31
match self {
32
Shape::Cube => "models/cube/cube.gltf".into(),
33
Shape::Sphere => "models/sphere/sphere.gltf".into(),
34
}
35
}
36
37
fn set_next_variant(&mut self) {
38
*self = match self {
39
Shape::Cube => Shape::Sphere,
40
Shape::Sphere => Shape::Cube,
41
}
42
}
43
}
44
45
#[derive(Component, Debug)]
46
struct Left;
47
48
fn setup(
49
mut commands: Commands,
50
asset_server: Res<AssetServer>,
51
mut materials: ResMut<Assets<StandardMaterial>>,
52
) {
53
let left_shape = Shape::Cube;
54
let right_shape = Shape::Cube;
55
56
// In normal use, you can call `asset_server.load`, however see below for an explanation of
57
// `RenderAssetUsages`.
58
let left_shape_model = asset_server.load_with_settings(
59
GltfAssetLabel::Primitive {
60
mesh: 0,
61
// This field stores an index to this primitive in its parent mesh. In this case, we
62
// want the first one. You might also have seen the syntax:
63
//
64
// models/cube/cube.gltf#Scene0
65
//
66
// which accomplishes the same thing.
67
primitive: 0,
68
}
69
.from_asset(left_shape.get_model_path()),
70
// `RenderAssetUsages::all()` is already the default, so the line below could be omitted.
71
// It's helpful to know it exists, however.
72
//
73
// `RenderAssetUsages` tell Bevy whether to keep the data around:
74
// - for the GPU (`RenderAssetUsages::RENDER_WORLD`),
75
// - for the CPU (`RenderAssetUsages::MAIN_WORLD`),
76
// - or both.
77
// `RENDER_WORLD` is necessary to render the mesh, `MAIN_WORLD` is necessary to inspect
78
// and modify the mesh (via `ResMut<Assets<Mesh>>`).
79
//
80
// Since most games will not need to modify meshes at runtime, many developers opt to pass
81
// only `RENDER_WORLD`. This is more memory efficient, as we don't need to keep the mesh in
82
// RAM. For this example however, this would not work, as we need to inspect and modify the
83
// mesh at runtime.
84
|settings: &mut GltfLoaderSettings| settings.load_meshes = RenderAssetUsages::all(),
85
);
86
87
// Here, we rely on the default loader settings to achieve a similar result to the above.
88
let right_shape_model = asset_server.load(
89
GltfAssetLabel::Primitive {
90
mesh: 0,
91
primitive: 0,
92
}
93
.from_asset(right_shape.get_model_path()),
94
);
95
96
// Add a material asset directly to the materials storage
97
let material_handle = materials.add(StandardMaterial {
98
base_color: Color::srgb(0.6, 0.8, 0.6),
99
..default()
100
});
101
102
commands.spawn((
103
Left,
104
Name::new("Left Shape"),
105
Mesh3d(left_shape_model),
106
MeshMaterial3d(material_handle.clone()),
107
Transform::from_xyz(-3.0, 0.0, 0.0),
108
left_shape,
109
));
110
111
commands.spawn((
112
Name::new("Right Shape"),
113
Mesh3d(right_shape_model),
114
MeshMaterial3d(material_handle),
115
Transform::from_xyz(3.0, 0.0, 0.0),
116
right_shape,
117
));
118
119
commands.spawn((
120
Name::new("Point Light"),
121
PointLight::default(),
122
Transform::from_xyz(4.0, 5.0, 4.0),
123
));
124
125
commands.spawn((
126
Name::new("Camera"),
127
Camera3d::default(),
128
Transform::from_xyz(0.0, 3.0, 20.0).looking_at(Vec3::ZERO, Vec3::Y),
129
));
130
}
131
132
fn spawn_text(mut commands: Commands) {
133
commands.spawn((
134
Name::new("Instructions"),
135
Text::new(
136
"Space: swap meshes by mutating a Handle<Mesh>\n\
137
Return: mutate the mesh itself, changing all copies of it",
138
),
139
Node {
140
position_type: PositionType::Absolute,
141
top: px(12),
142
left: px(12),
143
..default()
144
},
145
));
146
}
147
148
fn alter_handle(
149
asset_server: Res<AssetServer>,
150
right_shape: Single<(&mut Mesh3d, &mut Shape), Without<Left>>,
151
) {
152
// Mesh handles, like other parts of the ECS, can be queried as mutable and modified at
153
// runtime. We only spawned one shape without the `Left` marker component.
154
let (mut mesh, mut shape) = right_shape.into_inner();
155
156
// Switch to a new Shape variant
157
shape.set_next_variant();
158
159
// Modify the handle associated with the Shape on the right side. Note that we will only
160
// have to load the same path from storage media once: repeated attempts will re-use the
161
// asset.
162
mesh.0 = asset_server.load(
163
GltfAssetLabel::Primitive {
164
mesh: 0,
165
primitive: 0,
166
}
167
.from_asset(shape.get_model_path()),
168
);
169
}
170
171
fn alter_mesh(
172
mut is_mesh_scaled: Local<bool>,
173
left_shape: Single<&Mesh3d, With<Left>>,
174
mut meshes: ResMut<Assets<Mesh>>,
175
) {
176
// Obtain a mutable reference to the Mesh asset.
177
let Some(mesh) = meshes.get_mut(*left_shape) else {
178
return;
179
};
180
181
// Now we can directly manipulate vertices on the mesh. Here, we're just scaling in and out
182
// for demonstration purposes. This will affect all entities currently using the asset.
183
//
184
// To do this, we need to grab the stored attributes of each vertex. `Float32x3` just describes
185
// the format in which the attributes will be read: each position consists of an array of three
186
// f32 corresponding to x, y, and z.
187
//
188
// `ATTRIBUTE_POSITION` is a constant indicating that we want to know where the vertex is
189
// located in space (as opposed to which way its normal is facing, vertex color, or other
190
// details).
191
if let Some(VertexAttributeValues::Float32x3(positions)) =
192
mesh.attribute_mut(Mesh::ATTRIBUTE_POSITION)
193
{
194
// Check a Local value (which only this system can make use of) to determine if we're
195
// currently scaled up or not.
196
let scale_factor = if *is_mesh_scaled { 0.5 } else { 2.0 };
197
198
for position in positions.iter_mut() {
199
// Apply the scale factor to each of x, y, and z.
200
position[0] *= scale_factor;
201
position[1] *= scale_factor;
202
position[2] *= scale_factor;
203
}
204
205
// Flip the local value to reverse the behavior next time the key is pressed.
206
*is_mesh_scaled = !*is_mesh_scaled;
207
}
208
}
209
210