library(PortfolioAnalytics)
data(edhec)
R <- edhec[,1:6]
colnames(R) <- c("CA", "CTAG", "DS", "EM", "EMN", "ED")
funds <- colnames(R)
set.seed(123)
regime <- xts(sample(1:2, nrow(R), replace=TRUE, prob=c(0.3, 0.7)), index(R))
port1 <- portfolio.spec(funds)
port1 <- add.constraint(port1, "weight_sum", min_sum=0.99, max_sum=1.01)
port1 <- add.constraint(port1, "box", min=0.1, max=0.5)
port1 <- add.objective(port1, type="risk", name="ES", arguments=list(p=0.9))
port1 <- add.objective(port1, type="risk_budget", name="ES",
arguments=list(p=0.9), max_prisk=0.5)
port2 <- portfolio.spec(funds)
port2 <- add.constraint(port2, "weight_sum", min_sum=0.99, max_sum=1.01)
port2 <- add.constraint(port2, "box", min=0, max=0.6)
port2 <- add.objective(port2, type="risk", name="StdDev")
port2 <- add.objective(port2, type="risk_budget", name="StdDev", max_prisk=0.5)
portfolios <- combine.portfolios(list(port1, port2))
regime.port <- regime.portfolios(regime, portfolios)
regime.port
opt1 <- optimize.portfolio(R, regime.port,
optimize_method="random",
search_size=2000,
trace=TRUE)
opt1
opt1$regime
opt2 <- optimize.portfolio(R[1:(nrow(R)-1)], regime.port,
optimize_method="DEoptim",
search_size=2000,
trace=TRUE)
opt2
opt2$regime
opt.rebal <- optimize.portfolio.rebalancing(R, regime.port,
optimize_method="random",
rebalance_on="quarters",
training_period=130,
search_size=2000,
trace=TRUE)
opt.rebal
summary(opt.rebal)
lapply(opt.rebal$opt_rebalancing, function(x) x$regime)
wt <- extractWeights(opt.rebal)
wt
obj <- extractObjectiveMeasures(opt.rebal)
str(obj)
obj
xt <- extractStats(opt.rebal)
str(xt)
chart.Weights(opt.rebal, colorset=bluemono)
chart.RiskBudget(opt.rebal, match.col="ES", risk.type="percentage",
regime=1, colorset=bluemono)
chart.RiskBudget(opt.rebal, match.col="StdDev", risk.type="percentage",
regime=2, colorset=bluemono)