Path: blob/master/sandbox/riskbudgetpaper(superseded)/R_interpretation/stackedweightriskcontributionplot.R
1717 views
#################################################################################1# Create stacked weights and risk contributions plot2#################################################################################34# ! Set your working directory (folder containing the subfolders R_allocation, R_interpretation, data, weights, etc)56setwd("c:/Documents and Settings/Administrator/Desktop/risk budget programs")789# Options:10################1112# specify the number of years used for the estimation13estyears = 8;1415# Load programs1617source("R_interpretation/chart.StackedBar.R");18library(zoo); library(PerformanceAnalytics)1920# number of risky assets21firstyear = 1976 ; firstquarter = 1; lastyear = 2010; lastquarter = 2;22cAssets = 42324# "MinRisk_ReturnTarget" "EqualRisk"25# "MinRiskConc_ReturnTarget"2627names = c( "EqualWeight" , "MinRisk" , "MinRisk_PositionLimit" , "MinRisk_RiskLimit" ,28"MinRiskConc" , "MinRiskConc_PositionLimit", "EqualRisk" ,29"MinRisk_ReturnTarget", "MinRiskConc_ReturnTarget" )3031namelabels = c( "Equal-Weight" , "Min CVaR" , "Min CVaR + 40% Position Limit" , "Min CVaR + 40% CVaR Alloc Limit" ,32"Min CVaR Concentration" , "Min CVaR Concentration + 40% Position Limit", "Min CVaR + ERC constraint" , "Min CVaR + Return Target" , "Min CVaR Conc + Return Target" )3334# frequency of rebalancing: yearly of quarterly35frequency = "quarterly"36# Load portfolio weights:37weightsS1 = read.csv( file = paste("weights/", names[1], ".csv" , sep="") );38weightsS2 = read.csv( file = paste("weights/", names[2], ".csv" , sep="") );39weightsS3 = read.csv( file = paste("weights/", names[3], ".csv" , sep="") );40weightsS4 = read.csv( file = paste("weights/", names[4], ".csv" , sep="") );41weightsS5 = read.csv( file = paste("weights/", names[5], ".csv" , sep="") );42weightsS6 = read.csv( file = paste("weights/", names[6], ".csv" , sep="") );43weightsS7 = read.csv( file = paste("weights/", names[7], ".csv" , sep="") );444546# Load percentage risk contributions:47riskcontS1 = read.csv( file = paste("riskcont/", names[1], ".csv" , sep="") );48riskcontS2 = read.csv( file = paste("riskcont/", names[2], ".csv" , sep="") );49riskcontS3 = read.csv( file = paste("riskcont/", names[3], ".csv" , sep="") );50riskcontS4 = read.csv( file = paste("riskcont/", names[4], ".csv" , sep="") );51riskcontS5 = read.csv( file = paste("riskcont/", names[5], ".csv" , sep="") );52riskcontS6 = read.csv( file = paste("riskcont/", names[6], ".csv" , sep="") );53riskcontS7 = read.csv( file = paste("riskcont/", names[7], ".csv" , sep="") );5455if(frequency=="yearly"){56rebal.names = seq( (firstyear+estyears),lastyear+1,1)57}else{5859# Name labels using quarters:60rebal.names = paste(rep( seq( (firstyear+estyears),lastyear,1) , each=4),c("Q1","Q2","Q3","Q4"),sep="")61rebal.names = c( rebal.names , paste( lastyear+1, "Q1" , sep="" ) )62rebal.names = rebal.names[firstquarter:(length(rebal.names)-4+lastquarter)]6364# Name labels using months:65nominalreturns = TRUE;66if(nominalreturns){ load(file="monthlyR.RData") }else{ load(file="monthlyR_real.RData") }67ep = endpoints(monthlyR,on='quarters')68# select those for estimation period69ep.start = ep[1:(length(ep)-estyears*4)]+170from = time(monthlyR)[ep.start]71from = seq( as.Date(paste(firstyear,"-01-01",sep="")), as.Date(paste(lastyear-estyears,"-07-01",sep="")), by="3 month")72ep.end = ep[(1+estyears*4):length(ep)]73to = time(monthlyR)[ep.end]74rebal.names = as.yearmon(to+1)757677}787980rownames(weightsS1) = rownames(weightsS2) = rownames(weightsS3) = rownames(weightsS4) = rebal.names;81rownames(weightsS5) = rownames(weightsS6) = rownames(weightsS7) = rebal.names;8283rownames(riskcontS1) = rownames(riskcontS2) = rownames(riskcontS3) = rownames(riskcontS4) = rebal.names;84rownames(riskcontS5) = rownames(riskcontS6) = rownames(riskcontS7) = rebal.names;858687colorset = gray( seq(0,(cAssets-1),1)/cAssets ) ;88#due to rounding, the sum of the risk contributions is sometimes 1 + epsilon: avoid this in plot8990riskcontS1 = riskcontS1/rowSums(riskcontS1); riskcontS2 = riskcontS2/rowSums(riskcontS2);91riskcontS3 = riskcontS3/rowSums(riskcontS3); riskcontS4 = riskcontS4/rowSums(riskcontS4);92riskcontS5 = riskcontS5/rowSums(riskcontS5); riskcontS6 = riskcontS6/rowSums(riskcontS6);93riskcontS7 = riskcontS7/rowSums(riskcontS7);9495w.names = c( "US bond" , "S&P 500", "EAFE" , "GSCI" )96l = 297mar1 =c(2,l,2,1.1)98mar2 =c(0,l,2,1)99mar3 = c(3,l+1,3,0.1)100mar4 = c(2,l+1,2,0.1)101102# Stacked weights plot:103postscript('stackedweightsriskcont_benchmark.eps')104layout( matrix( c(1,2,3,4,5,6,7,4), ncol = 2 ) , height= c(1.5,1.5,1.5,0.7), width=1)105106par(mar=mar3 , cex.main=1)107chart.StackedBar2(weightsS2,col=colorset,space=0, main = namelabels[2], ylab="Weight allocation", las=1, l=3.9, r=0, cex.axis=1, cex.lab=1, cex.main=1, axisnames=T,legend.loc = NULL,ylim=c(0,1),border = F )108chart.StackedBar2(weightsS5,col=colorset,space=0, main = namelabels[5], ylab="Weight allocation", las=1, l=3.9, r=0, cex.axis=1, cex.lab=1, cex.main=1, axisnames=T,legend.loc = NULL,ylim=c(0,1),border = F )109chart.StackedBar2(weightsS7,col=colorset,space=0, main = namelabels[7], ylab="Weight allocation", las=1, l=3.9, r=0, cex.axis=1, cex.lab=1, cex.main=1, axisnames=T, legend.loc = NULL,ylim=c(0,1),border = F )110111par(mar=mar1 , cex.main=1)112plot.new()113legend("center",legend=w.names,col=colorset,lwd=6,ncol=4)114115116117par(mar=mar3 , cex.main=1)118chart.StackedBar2(riskcontS2,col=colorset,space=0, main = namelabels[2], ylab="CVaR allocation", las=1, l=3.9, r=0, cex.axis=1, cex.lab=1, cex.main=1, axisnames=T,legend.loc = NULL,ylim=c(0,1),border = F )119chart.StackedBar2(riskcontS5,col=colorset,space=0, main = namelabels[5], ylab="CVaR allocation", las=1, l=3.9, r=0, cex.axis=1, cex.lab=1, cex.main=1, axisnames=T,legend.loc = NULL,ylim=c(0,1),border = F )120chart.StackedBar2(riskcontS1,col=colorset,space=0, main = namelabels[1], ylab="CVaR allocation", las=1, l=3.9, r=0, cex.axis=1, cex.lab=1, cex.main=1, axisnames=T,legend.loc = NULL,ylim=c(0,1),border = F )121122dev.off()123124postscript('MinCVaR_alternatives.eps')125layout( matrix( c(1,2,3,4,5,6,7,4), ncol = 2 ) , height= c(1.5,1.5,1.5,0.7), width=1)126127par(mar=mar3 , cex.main=1)128chart.StackedBar2(weightsS3,col=colorset,space=0, main = namelabels[3], ylab="Weight allocation", las=1, l=3.9, r=0, cex.axis=1, cex.lab=1, cex.main=1, axisnames=T, legend.loc = NULL,ylim=c(0,1),border = F )129chart.StackedBar2(weightsS4,col=colorset,space=0, main = namelabels[4], ylab="Weight allocation", las=1, l=3.9, r=0, cex.axis=1, cex.lab=1, cex.main=1, axisnames=T,legend.loc = NULL,ylim=c(0,1),border = F )130chart.StackedBar2(weightsS6,col=colorset,space=0, main = namelabels[6], ylab="Weight allocation", las=1, l=3.9, r=0, cex.axis=1, cex.lab=1, cex.main=1, axisnames=T,legend.loc = NULL,ylim=c(0,1),border = F )131132par(mar=mar1 , cex.main=1)133plot.new()134legend("center",legend=w.names,col=colorset,lwd=6,ncol=4)135par(mar=mar3 , cex.main=1)136137chart.StackedBar2(riskcontS3,col=colorset,space=0, main = namelabels[3], ylab="CVaR allocation", las=1, l=3.9, r=0, cex.axis=1, cex.lab=1, cex.main=1, axisnames=T,legend.loc = NULL,ylim=c(0,1),border = F )138chart.StackedBar2(riskcontS4,col=colorset,space=0, main = namelabels[4], ylab="CVaR allocation", las=1, l=3.9, r=0, cex.axis=1, cex.lab=1, cex.main=1, axisnames=T,legend.loc = NULL,ylim=c(0,1),border = F )139chart.StackedBar2(riskcontS6,col=colorset,space=0, main = namelabels[6], ylab="CVaR allocation", las=1, l=3.9, r=0, cex.axis=1, cex.lab=1, cex.main=1, axisnames=T,legend.loc = NULL,ylim=c(0,1),border = F )140141dev.off()142143144#############################################################################################145# Plot the CVaR of the portfolios for each period, relatively to CVaR minimum CVaR portfolio146147148source("R_Allocation/Risk_budget_functions.R");149library(zoo); library(fGarch); library("PerformanceAnalytics");150151# downside risk152alpha = alphariskbudget = 0.05;153154# Load the data155156nominalreturns = T;157if(nominalreturns){ load(file="monthlyR.RData") }else{ load(file="monthlyR_real.RData") }158R = monthlyR159160# Define rebalancing periods:161162ep = endpoints(monthlyR,on='quarters')163# select those for estimation period164ep.start = ep[1:(length(ep)-estyears*4)]+1165from = time(monthlyR)[ep.start]; from = seq( as.Date(paste(firstyear,"-01-01",sep="")), as.Date(paste(lastyear-estyears,"-07-01",sep="")), by="3 month")166ep.end = ep[(1+estyears*4):length(ep)]167to = time(monthlyR)[ep.end]168cPeriods = length(from);169170# Loop where for each rebalancing period:171# - Compute total CVaR of portfolio172173mCVaR = mMU = c()174175for( per in c(1:cPeriods) ){176177# At the end of each month, we compute the CVaR178enddates = na.omit(time(window( monthlyR , start = as.Date(to[per]) , end = as.Date(to[per]+90) ),on='months')[1:3])179180for( enddate in enddates ){181182# add a loop over the next months except when per = cPeriods or -1,-2183184# Estimate GARCH model with data from inception185186inception.R = window(R, start = as.Date(from[1]) , end = enddate );187188# Estimate comoments of innovations with rolling estimation windows189in.sample.R = window(R, start = as.Date(from[per]) , end = as.Date(to[per]) );190in.sample.R = checkData(in.sample.R, method="matrix");191192# Estimation of mean return193M = c();194library(TTR)195Tmean = 47 # monthly returns: 4 year exponentially weighted moving average196for( i in 1:cAssets ){197M = cbind( M , as.vector( EMA(x=inception.R[,i],n=Tmean) ) ) #2/(n+1)198}199M = zoo( M , order.by=time(inception.R) )200201# Center returns (shift by one observations since M[t,] is rolling mean t-Tmean+1,...,t; otherwise lookahead bias)202inception.R.cent = inception.R;203ZZ = matrix( rep(as.vector( apply( inception.R[1:Tmean, ] , 2 , 'mean' )),Tmean),byrow=T,nrow=Tmean);204inception.R.cent[1:Tmean,] = inception.R[1:Tmean, ] - ZZ;205if( nrow(inception.R)>(Tmean+1) ){206A = M[Tmean:(nrow(inception.R)-1),];207A = zoo( A , order.by = time(inception.R[(Tmean+1):nrow(inception.R), ])) ; #shift dates; otherwise zoo poses problem208inception.R.cent[(Tmean+1):nrow(inception.R), ] = inception.R[(Tmean+1):nrow(inception.R), ] - A}209210# Garch estimation211S = c();212for( i in 1:cAssets ){213gout = garchFit(formula ~ garch(1,1), data = inception.R.cent[,i],include.mean = F, cond.dist="QMLE", trace = FALSE )214if( as.vector(gout@fit$coef["alpha1"]) < 0.01 ){215sigmat = rep( sd( as.vector(inception.R.cent[,i])), length(inception.R.cent[,i]) );216}else{217sigmat = gout@sigma.t218}219S = cbind( S , sigmat)220}221S = zoo( S , order.by=time(inception.R.cent) )222223# Estimate correlation, coskewness and cokurtosis matrix locally using cleaned innovation series in three year estimation window224selectU = window(inception.R.cent, start = as.Date(from[per]) , end = as.Date(to[per]) )225selectU = selectU/window(S, start = as.Date(from[per]) , end = as.Date(to[per]) );226selectU = clean.boudt2(selectU , alpha = 0.05 )[[1]];227Rcor = cor(selectU)228D = diag( as.vector(tail(S,n=1) ),ncol=cAssets )229sigma = D%*%Rcor%*%D230231# we only need mean and conditional covariance matrix of last observation232mu = matrix(tail(M,n=1),ncol=1 ) ;233D = diag( as.vector(as.vector(tail(S,n=1) ) ),ncol=cAssets )234sigma = D%*%Rcor%*%D235in.sample.T = nrow(selectU);236# set volatility of all U to last observation, such that cov(rescaled U)=sigma237selectU = selectU*matrix( rep(as.vector(tail(S,n=1)),in.sample.T ) , ncol = cAssets , byrow = T )238M3 = PerformanceAnalytics:::M3.MM(selectU)239M4 = PerformanceAnalytics:::M4.MM(selectU)240241CVaR_period = c( operPortMES(as.numeric(weightsS1[per,]),mu=mu,alpha=alphariskbudget,sigma=sigma,M3=M3,M4=M4)[[1]] ,242operPortMES(as.numeric(weightsS2[per,]),mu=mu,alpha=alphariskbudget,sigma=sigma,M3=M3,M4=M4)[[1]] ,243operPortMES(as.numeric(weightsS3[per,]),mu=mu,alpha=alphariskbudget,sigma=sigma,M3=M3,M4=M4)[[1]] ,244operPortMES(as.numeric(weightsS4[per,]),mu=mu,alpha=alphariskbudget,sigma=sigma,M3=M3,M4=M4)[[1]] ,245operPortMES(as.numeric(weightsS5[per,]),mu=mu,alpha=alphariskbudget,sigma=sigma,M3=M3,M4=M4)[[1]] ,246operPortMES(as.numeric(weightsS6[per,]),mu=mu,alpha=alphariskbudget,sigma=sigma,M3=M3,M4=M4)[[1]] ,247operPortMES(as.numeric(weightsS7[per,]),mu=mu,alpha=alphariskbudget,sigma=sigma,M3=M3,M4=M4)[[1]] )248249mu_period = c( sum(as.numeric(weightsS1[per,])*mu) , sum(as.numeric(weightsS2[per,])*mu) ,250sum(as.numeric(weightsS3[per,])*mu) , sum(as.numeric(weightsS4[per,])*mu) ,251sum(as.numeric(weightsS5[per,])*mu) , sum(as.numeric(weightsS6[per,])*mu) ,252sum(as.numeric(weightsS7[per,])*mu) )253254mCVaR = rbind( mCVaR , CVaR_period )255mMU = rbind( mMU , mu_period )256}257}258259colnames(mCVaR) = colnames(mMU) = names[1:7]260mCVaR = xts( mCVaR ,261order.by = as.Date(time( window( monthlyR , start = as.Date(to[1]) , end = as.Date(to[cPeriods]) ))+1))262mMU = xts( mMU ,263order.by = as.Date(time( window( monthlyR , start = as.Date(to[1]) , end = as.Date(to[cPeriods]) ))+1))264265head(mCVaR[,1:7],2)266#> head(mCVaR[,1:7],2)267# EqualWeight MinRisk MinRisk_PositionLimit MinRisk_RiskLimit MinRiskConc MinRiskConc_PositionLimit EqualRisk268#1984-01-01 0.0492 0.0320 0.0380 0.0333 0.0352 0.0388 0.0352269#1984-02-01 0.0490 0.0304 0.0374 0.0322 0.0344 0.0383 0.0344270save(mCVaR, file="mCVaR.Rdata")271272273head(mMU[,1:7],2)274#> head(mMU[,1:7],2)275# EqualWeight MinRisk MinRisk_PositionLimit MinRisk_RiskLimit MinRiskConc MinRiskConc_PositionLimit EqualRisk276#1984-01-01 0.009865862 0.00959764 0.01084905 0.009814883 0.009944563 0.01012198 0.009945766277#1984-02-01 0.010176409 0.01003861 0.01105078 0.010193260 0.010297694 0.01042968 0.010299787278save(mMU, file="mMU.Rdata")279280###################################################281282load(file="mCVaR.Rdata")283load(file="mMU.Rdata")284285postscript(file="portfolioMeanCVaR.eps")286par(mfrow=c(2,1),mar=c(3,2,3,2))287288289290plot( mMU[,1]*12 , type = "l" , ylim=c(min(mMU),max(mMU))*12,col="darkgray", lwd=1.5 ,291main = "Expected annualized portfolio return" )292lines( mMU[,2]*12 , type = "l", col="black",lwd=2 , lty=3)293lines( mMU[,7]*12 , type = "l", col="darkgray",lwd=4)294lines( mMU[,5]*12 , type = "l", col="black", lwd=1.5)295296legend("bottomleft", legend = c("Equal-Weight","Min CVaR Concentration","Min CVaR+ERC constraint","Min CVaR" ),297col=c("darkgray","black","darkgray","black"), lty=c("solid","solid","solid","dashed"), lwd=c(2,2,4,2) ,cex=0.7)298299plot( mCVaR[,1] , type = "l" , ylim=c(0,max(mCVaR)),col="darkgray", lwd=1.5 , main = "Portfolio CVaR" )300lines( mCVaR[,2] , type = "l", col="black",lwd=1.5 , lty=3)301lines( mCVaR[,7] , type = "l", col="darkgray",lwd=4)302lines( mCVaR[,5] , type = "l", col="black", lwd=1.5)303dev.off()304305# do not plot the last month such that it is fully comparable with out-of-sample plots306307sel = c( 1 : (nrow(mCVaR)-1) );308309310# Bear periods311sp500 = window (monthlyR , start = from[1] , end = to[ length(to) ] )[,2]312bear = c(1:length(sp500))[sp500<mean(sp500)]313bear = c(1:length(sp500))[sp500<(-0.12)]314m.bear.dates = list();315i=1;316for( b in bear){317m.bear.dates[[i]] = c( b-0.5, b+0.5)318i = i + 1;319}320321out = table.Drawdowns(sp500,top=10)322start.bear = out$From[out$Depth<(-0.12)]323end.bear = out$Trough[out$Depth<(-0.12)]324start.bear.index = c(1:length(sp500))[ time(sp500) ]325m.bear.dates = list()326v.bear.dates = c()327for( i in 1:length(start.bear) ){328m.bear.dates[[i]] = c( as.yearmon(start.bear[i]) , as.yearmon(end.bear[i]) )329v.bear.dates = c( v.bear.dates , seq(start.bear[i],end.bear[i],"days") )330}331v.bear.dates = as.Date( v.bear.dates )332333334postscript(file="portfolioCVaR.eps")335par(mfrow=c(2,1),mar=c(3,4,1,2))336337chart.TimeSeries( mCVaR[sel,c(1,5,2)] , ylim=c(0,max(mCVaR)), ylab = "Portfolio CVaR" , main = "",338col=c("black","black","darkgray"), lty=c("dashed","solid","solid"), lwd=c(2,2,2,2) ,339auto.grid = TRUE, minor.ticks = FALSE ,340period.areas = m.bear.dates , period.color="lightgray",341date.format.in = "%Y-%m-%d",date.format = "%b %Y")342343legend("topleft", legend = namelabels[c(1,5,2)],344col=c("black","black","darkgray"), lty=c("dashed","solid","solid"), lwd=c(2,2,2) ,cex=0.7)345346chart.TimeSeries( mCVaR[sel,c(4,3,6)] , type = "l" , ylim=c(0,max(mCVaR)), ylab = "Portfolio CVaR" , main = "",347col=c("black","black","darkgray"), lty=c("dashed","solid","solid"), lwd=c(2,2,2,2) ,348auto.grid = TRUE, minor.ticks = FALSE ,349period.areas = m.bear.dates , period.color="lightgray",350date.format.in = "%Y-%m-%d",date.format = "%b %Y")351352legend("topleft", legend = namelabels[c(4,3,6)],353col=c("black","black","darkgray"), lty=c("dashed","solid","solid"), lwd=c(2,2,2) ,cex=0.7)354355356dev.off()357358359360361362363