Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
braverock
GitHub Repository: braverock/portfolioanalytics
Path: blob/master/sandbox/testing_groups.R
1433 views
1
library(PortfolioAnalytics)
2
library(ROI)
3
library(ROI.plugin.quadprog)
4
library(ROI.plugin.glpk)
5
6
7
# data(edhec)
8
# R <- edhec[, 1:4]
9
# colnames(R) <- c("CA", "CTAG", "DS", "EM")
10
# funds <- colnames(R)
11
12
load("~/Desktop/Testing/crsp.short.Rdata")
13
R <- cbind(microcap.ts[, 1:2],
14
smallcap.ts[, 1:2],
15
midcap.ts[, 1:2],
16
largecap.ts[, 1:2])
17
18
funds <- colnames(R)
19
20
cap_labels <- c(rep("MICRO", 2), rep("SMALL", 2),
21
rep("MID", 2), rep("LARGE", 2))
22
23
# Create initial portfolio object with category_labels
24
init <- portfolio.spec(assets=funds, category_labels=cap_labels)
25
# Add some weight constraints
26
init <- add.constraint(portfolio=init, type="full_investment")
27
init <- add.constraint(portfolio=init, type="long_only")
28
# Add objective to minimize variance
29
minvar <- add.objective(portfolio=init, type="risk", name="var")
30
31
# Specify group constraints by passing in category_labels from initial
32
# portfolio object
33
group1 <- add.constraint(portfolio=init, type="group",
34
groups=init$category_labels,
35
group_min=c(0.15, 0.25, 0.15, 0.2),
36
group_max=c(0.4, 0.4, 0.6, 0.6))
37
38
# Alternative way by specifying a list for group constraints
39
group2 <- add.constraint(portfolio=init, type="group",
40
groups=list(MICRO=c(1, 2),
41
SMALL=c(3, 4),
42
MID=c(5, 6),
43
LARGE=c(7, 8)),
44
group_min=c(0.2, 0.1, 0.2, 0.2),
45
group_max=c(0.4, 0.4, 0.4, 0.45))
46
group2$category_labels <- NULL
47
48
all.equal(group1$constraints[[3]]$groups, group2$constraints[[3]]$groups)
49
50
opt_group1 <- optimize.portfolio(R=R, portfolio=group1, optimize_method="ROI")
51
extractGroups(opt_group1)
52
chart.GroupWeights(opt_group1, type="b", col="blue", pch=15, lty=2)
53
54
opt_group2 <- optimize.portfolio(R=R, portfolio=group2, optimize_method="ROI")
55
extractGroups(opt_group2)
56
chart.GroupWeights(opt_group2, type="b", col="black", pch=21, bg="gray")
57
58
59
60