Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bytecodealliance
GitHub Repository: bytecodealliance/wasmtime
Path: blob/main/cranelift/assembler-x64/src/fuzz.rs
1693 views
1
//! A fuzz testing oracle for roundtrip assembly-disassembly.
2
//!
3
//! This contains manual implementations of the `Arbitrary` trait for types
4
//! throughout this crate to avoid depending on the `arbitrary` crate
5
//! unconditionally (use the `fuzz` feature instead).
6
7
use crate::{
8
AmodeOffset, AmodeOffsetPlusKnownOffset, AsReg, CodeSink, DeferredTarget, Fixed, Gpr, Inst,
9
KnownOffset, NonRspGpr, Registers, TrapCode, Xmm,
10
};
11
use arbitrary::{Arbitrary, Result, Unstructured};
12
use capstone::{Capstone, arch::BuildsCapstone, arch::BuildsCapstoneSyntax, arch::x86};
13
14
/// Take a random assembly instruction and check its encoding and
15
/// pretty-printing against a known-good disassembler.
16
///
17
/// # Panics
18
///
19
/// This function panics to express failure as expected by the `arbitrary`
20
/// fuzzer infrastructure. It may fail during assembly, disassembly, or when
21
/// comparing the disassembled strings.
22
pub fn roundtrip(inst: &Inst<FuzzRegs>) {
23
// Check that we can actually assemble this instruction.
24
let assembled = assemble(inst);
25
let expected = disassemble(&assembled, inst);
26
27
// Check that our pretty-printed output matches the known-good output. Trim
28
// off the instruction offset first.
29
let expected = expected.split_once(' ').unwrap().1;
30
let actual = inst.to_string();
31
if expected != actual && expected.trim() != fix_up(&actual) {
32
println!("> {inst}");
33
println!(" debug: {inst:x?}");
34
println!(" assembled: {}", pretty_print_hexadecimal(&assembled));
35
println!(" expected (capstone): {expected}");
36
println!(" actual (to_string): {actual}");
37
assert_eq!(expected, &actual);
38
}
39
}
40
41
/// Use this assembler to emit machine code into a byte buffer.
42
///
43
/// This will skip any traps or label registrations, but this is fine for the
44
/// single-instruction disassembly we're doing here.
45
fn assemble(inst: &Inst<FuzzRegs>) -> Vec<u8> {
46
let mut sink = TestCodeSink::default();
47
inst.encode(&mut sink);
48
sink.patch_labels_as_if_they_referred_to_end();
49
sink.buf
50
}
51
52
#[derive(Default)]
53
struct TestCodeSink {
54
buf: Vec<u8>,
55
offsets_using_label: Vec<usize>,
56
}
57
58
impl TestCodeSink {
59
/// References to labels, e.g. RIP-relative addressing, is stored with an
60
/// adjustment that takes into account the distance from the relative offset
61
/// to the end of the instruction, where the offset is relative to. That
62
/// means that to indeed make the offset relative to the end of the
63
/// instruction, which is what we pretend all labels are bound to, it's
64
/// required that this adjustment is taken into account.
65
///
66
/// This function will iterate over all labels bound to this code sink and
67
/// pretend the label is found at the end of the `buf`. That means that the
68
/// distance from the label to the end of `buf` minus 4, which is the width
69
/// of the offset, is added to what's already present in the encoding buffer.
70
///
71
/// This is effectively undoing the `bytes_at_end` adjustment that's part of
72
/// `Amode::RipRelative` addressing.
73
fn patch_labels_as_if_they_referred_to_end(&mut self) {
74
let len = i32::try_from(self.buf.len()).unwrap();
75
for offset in self.offsets_using_label.iter() {
76
let range = self.buf[*offset..].first_chunk_mut::<4>().unwrap();
77
let offset = i32::try_from(*offset).unwrap() + 4;
78
let rel_distance = len - offset;
79
*range = (i32::from_le_bytes(*range) + rel_distance).to_le_bytes();
80
}
81
}
82
}
83
84
impl CodeSink for TestCodeSink {
85
fn put1(&mut self, v: u8) {
86
self.buf.extend_from_slice(&[v]);
87
}
88
89
fn put2(&mut self, v: u16) {
90
self.buf.extend_from_slice(&v.to_le_bytes());
91
}
92
93
fn put4(&mut self, v: u32) {
94
self.buf.extend_from_slice(&v.to_le_bytes());
95
}
96
97
fn put8(&mut self, v: u64) {
98
self.buf.extend_from_slice(&v.to_le_bytes());
99
}
100
101
fn add_trap(&mut self, _: TrapCode) {}
102
103
fn use_target(&mut self, _: DeferredTarget) {
104
let offset = self.buf.len();
105
self.offsets_using_label.push(offset);
106
}
107
108
fn known_offset(&self, target: KnownOffset) -> i32 {
109
panic!("unsupported known target {target:?}")
110
}
111
}
112
113
/// Building a new `Capstone` each time is suboptimal (TODO).
114
fn disassemble(assembled: &[u8], original: &Inst<FuzzRegs>) -> String {
115
let cs = Capstone::new()
116
.x86()
117
.mode(x86::ArchMode::Mode64)
118
.syntax(x86::ArchSyntax::Att)
119
.detail(true)
120
.build()
121
.expect("failed to create Capstone object");
122
let insts = cs
123
.disasm_all(assembled, 0x0)
124
.expect("failed to disassemble");
125
126
if insts.len() != 1 {
127
println!("> {original}");
128
println!(" debug: {original:x?}");
129
println!(" assembled: {}", pretty_print_hexadecimal(&assembled));
130
assert_eq!(insts.len(), 1, "not a single instruction");
131
}
132
133
let inst = insts.first().expect("at least one instruction");
134
if assembled.len() != inst.len() {
135
println!("> {original}");
136
println!(" debug: {original:x?}");
137
println!(" assembled: {}", pretty_print_hexadecimal(&assembled));
138
println!(
139
" capstone-assembled: {}",
140
pretty_print_hexadecimal(inst.bytes())
141
);
142
assert_eq!(assembled.len(), inst.len(), "extra bytes not disassembled");
143
}
144
145
inst.to_string()
146
}
147
148
fn pretty_print_hexadecimal(hex: &[u8]) -> String {
149
use std::fmt::Write;
150
let mut s = String::with_capacity(hex.len() * 2);
151
for b in hex {
152
write!(&mut s, "{b:02X}").unwrap();
153
}
154
s
155
}
156
157
/// See `replace_signed_immediates`.
158
macro_rules! hex_print_signed_imm {
159
($hex:expr, $from:ty => $to:ty) => {{
160
let imm = <$from>::from_str_radix($hex, 16).unwrap() as $to;
161
let mut simm = String::new();
162
if imm < 0 {
163
simm.push_str("-");
164
}
165
let abs = match imm.checked_abs() {
166
Some(i) => i,
167
None => <$to>::MIN,
168
};
169
if imm > -10 && imm < 10 {
170
simm.push_str(&format!("{:x}", abs));
171
} else {
172
simm.push_str(&format!("0x{:x}", abs));
173
}
174
simm
175
}};
176
}
177
178
/// Replace signed immediates in the disassembly with their unsigned hexadecimal
179
/// equivalent. This is only necessary to match `capstone`'s complex
180
/// pretty-printing rules; e.g. `capstone` will:
181
/// - omit the `0x` prefix when printing `0x0` as `0`.
182
/// - omit the `0x` prefix when print small values (less than 10)
183
/// - print negative values as `-0x...` (signed hex) instead of `0xff...`
184
/// (normal hex)
185
/// - print `mov` immediates as base-10 instead of base-16 (?!).
186
fn replace_signed_immediates(dis: &str) -> std::borrow::Cow<'_, str> {
187
match dis.find('$') {
188
None => dis.into(),
189
Some(idx) => {
190
let (prefix, rest) = dis.split_at(idx + 1); // Skip the '$'.
191
let (_, rest) = chomp("-", rest); // Skip the '-' if it's there.
192
let (_, rest) = chomp("0x", rest); // Skip the '0x' if it's there.
193
let n = rest.chars().take_while(char::is_ascii_hexdigit).count();
194
let (hex, rest) = rest.split_at(n); // Split at next non-hex character.
195
let simm = if dis.starts_with("mov") {
196
u64::from_str_radix(hex, 16).unwrap().to_string()
197
} else {
198
match hex.len() {
199
1 | 2 => hex_print_signed_imm!(hex, u8 => i8),
200
4 => hex_print_signed_imm!(hex, u16 => i16),
201
8 => hex_print_signed_imm!(hex, u32 => i32),
202
16 => hex_print_signed_imm!(hex, u64 => i64),
203
_ => panic!("unexpected length for hex: {hex}"),
204
}
205
};
206
format!("{prefix}{simm}{rest}").into()
207
}
208
}
209
}
210
211
// See `replace_signed_immediates`.
212
fn chomp<'a>(pat: &str, s: &'a str) -> (&'a str, &'a str) {
213
if s.starts_with(pat) {
214
s.split_at(pat.len())
215
} else {
216
("", s)
217
}
218
}
219
220
#[test]
221
fn replace() {
222
assert_eq!(
223
replace_signed_immediates("andl $0xffffff9a, %r11d"),
224
"andl $-0x66, %r11d"
225
);
226
assert_eq!(
227
replace_signed_immediates("xorq $0xffffffffffffffbc, 0x7f139ecc(%r9)"),
228
"xorq $-0x44, 0x7f139ecc(%r9)"
229
);
230
assert_eq!(
231
replace_signed_immediates("subl $0x3ca77a19, -0x1a030f40(%r14)"),
232
"subl $0x3ca77a19, -0x1a030f40(%r14)"
233
);
234
assert_eq!(
235
replace_signed_immediates("movq $0xffffffff864ae103, %rsi"),
236
"movq $18446744071667638531, %rsi"
237
);
238
}
239
240
/// Remove everything after the first semicolon in the disassembly and trim any
241
/// trailing spaces. This is necessary to remove the implicit operands we end up
242
/// printing for Cranelift's sake.
243
fn remove_after_semicolon(dis: &str) -> &str {
244
match dis.find(';') {
245
None => dis,
246
Some(idx) => {
247
let (prefix, _) = dis.split_at(idx);
248
prefix.trim()
249
}
250
}
251
}
252
253
#[test]
254
fn remove_after_parenthesis_test() {
255
assert_eq!(
256
remove_after_semicolon("imulb 0x7658eddd(%rcx) ;; implicit: %ax"),
257
"imulb 0x7658eddd(%rcx)"
258
);
259
}
260
261
/// Run some post-processing on the disassembly to make it match Capstone.
262
fn fix_up(dis: &str) -> std::borrow::Cow<'_, str> {
263
let dis = remove_after_semicolon(dis);
264
replace_signed_immediates(&dis)
265
}
266
267
/// Fuzz-specific registers.
268
///
269
/// For the fuzzer, we do not need any fancy register types; see [`FuzzReg`].
270
#[derive(Clone, Arbitrary, Debug)]
271
pub struct FuzzRegs;
272
273
impl Registers for FuzzRegs {
274
type ReadGpr = FuzzReg;
275
type ReadWriteGpr = FuzzReg;
276
type WriteGpr = FuzzReg;
277
type ReadXmm = FuzzReg;
278
type ReadWriteXmm = FuzzReg;
279
type WriteXmm = FuzzReg;
280
}
281
282
/// A simple `u8` register type for fuzzing only.
283
#[derive(Clone, Copy, Debug, PartialEq)]
284
pub struct FuzzReg(u8);
285
286
impl<'a> Arbitrary<'a> for FuzzReg {
287
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
288
Ok(Self(u.int_in_range(0..=15)?))
289
}
290
}
291
292
impl AsReg for FuzzReg {
293
fn new(enc: u8) -> Self {
294
Self(enc)
295
}
296
fn enc(&self) -> u8 {
297
self.0
298
}
299
}
300
301
impl Arbitrary<'_> for AmodeOffset {
302
fn arbitrary(u: &mut Unstructured<'_>) -> Result<Self> {
303
// Custom implementation to try to generate some "interesting" offsets.
304
// For example choose either an arbitrary 8-bit or 32-bit number as the
305
// base, and then optionally shift that number to the left to create
306
// multiples of constants. This can help stress some of the more
307
// interesting encodings in EVEX instructions for example.
308
let base = if u.arbitrary()? {
309
i32::from(u.arbitrary::<i8>()?)
310
} else {
311
u.arbitrary::<i32>()?
312
};
313
Ok(match u.int_in_range(0..=5)? {
314
0 => AmodeOffset::ZERO,
315
n => AmodeOffset::new(base << (n - 1)),
316
})
317
}
318
}
319
320
impl Arbitrary<'_> for AmodeOffsetPlusKnownOffset {
321
fn arbitrary(u: &mut Unstructured<'_>) -> Result<Self> {
322
// For now, we don't generate offsets (TODO).
323
Ok(Self {
324
simm32: AmodeOffset::arbitrary(u)?,
325
offset: None,
326
})
327
}
328
}
329
330
impl<R: AsReg, const E: u8> Arbitrary<'_> for Fixed<R, E> {
331
fn arbitrary(_: &mut Unstructured<'_>) -> Result<Self> {
332
Ok(Self::new(E))
333
}
334
}
335
336
impl<R: AsReg> Arbitrary<'_> for NonRspGpr<R> {
337
fn arbitrary(u: &mut Unstructured<'_>) -> Result<Self> {
338
use crate::gpr::enc::*;
339
let gpr = u.choose(&[
340
RAX, RCX, RDX, RBX, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15,
341
])?;
342
Ok(Self::new(R::new(*gpr)))
343
}
344
}
345
impl<'a, R: AsReg> Arbitrary<'a> for Gpr<R> {
346
fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
347
Ok(Self(R::new(u.int_in_range(0..=15)?)))
348
}
349
}
350
impl<'a, R: AsReg> Arbitrary<'a> for Xmm<R> {
351
fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
352
Ok(Self(R::new(u.int_in_range(0..=15)?)))
353
}
354
}
355
356
/// Helper trait that's used to be the same as `Registers` except with an extra
357
/// `for<'a> Arbitrary<'a>` bound on all of the associated types.
358
pub trait RegistersArbitrary:
359
Registers<
360
ReadGpr: for<'a> Arbitrary<'a>,
361
ReadWriteGpr: for<'a> Arbitrary<'a>,
362
WriteGpr: for<'a> Arbitrary<'a>,
363
ReadXmm: for<'a> Arbitrary<'a>,
364
ReadWriteXmm: for<'a> Arbitrary<'a>,
365
WriteXmm: for<'a> Arbitrary<'a>,
366
>
367
{
368
}
369
370
impl<R> RegistersArbitrary for R
371
where
372
R: Registers,
373
R::ReadGpr: for<'a> Arbitrary<'a>,
374
R::ReadWriteGpr: for<'a> Arbitrary<'a>,
375
R::WriteGpr: for<'a> Arbitrary<'a>,
376
R::ReadXmm: for<'a> Arbitrary<'a>,
377
R::ReadWriteXmm: for<'a> Arbitrary<'a>,
378
R::WriteXmm: for<'a> Arbitrary<'a>,
379
{
380
}
381
382
#[cfg(test)]
383
mod test {
384
use super::*;
385
use arbtest::arbtest;
386
use std::sync::atomic::{AtomicUsize, Ordering};
387
388
#[test]
389
fn smoke() {
390
let count = AtomicUsize::new(0);
391
arbtest(|u| {
392
let inst: Inst<FuzzRegs> = u.arbitrary()?;
393
roundtrip(&inst);
394
println!("#{}: {inst}", count.fetch_add(1, Ordering::SeqCst));
395
Ok(())
396
})
397
.budget_ms(1_000);
398
399
// This will run the `roundtrip` fuzzer for one second. To repeatably
400
// test a single input, append `.seed(0x<failing seed>)`.
401
}
402
403
#[test]
404
fn callq() {
405
for i in -500..500 {
406
println!("immediate: {i}");
407
let inst = crate::inst::callq_d::new(i);
408
roundtrip(&inst.into());
409
}
410
}
411
}
412
413