Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bytecodealliance
GitHub Repository: bytecodealliance/wasmtime
Path: blob/main/cranelift/codegen/src/egraph/elaborate.rs
1693 views
1
//! Elaboration phase: lowers EGraph back to sequences of operations
2
//! in CFG nodes.
3
4
use super::Stats;
5
use super::cost::Cost;
6
use crate::ctxhash::NullCtx;
7
use crate::dominator_tree::DominatorTree;
8
use crate::hash_map::Entry as HashEntry;
9
use crate::inst_predicates::is_pure_for_egraph;
10
use crate::ir::{Block, Function, Inst, Value, ValueDef};
11
use crate::loop_analysis::{Loop, LoopAnalysis};
12
use crate::scoped_hash_map::ScopedHashMap;
13
use crate::trace;
14
use alloc::vec::Vec;
15
use cranelift_control::ControlPlane;
16
use cranelift_entity::{SecondaryMap, packed_option::ReservedValue};
17
use rustc_hash::{FxHashMap, FxHashSet};
18
use smallvec::{SmallVec, smallvec};
19
20
pub(crate) struct Elaborator<'a> {
21
func: &'a mut Function,
22
domtree: &'a DominatorTree,
23
loop_analysis: &'a LoopAnalysis,
24
/// Map from Value that is produced by a pure Inst (and was thus
25
/// not in the side-effecting skeleton) to the value produced by
26
/// an elaborated inst (placed in the layout) to whose results we
27
/// refer in the final code.
28
///
29
/// The first time we use some result of an instruction during
30
/// elaboration, we can place it and insert an identity map (inst
31
/// results to that same inst's results) in this scoped
32
/// map. Within that block and its dom-tree children, that mapping
33
/// is visible and we can continue to use it. This allows us to
34
/// avoid cloning the instruction. However, if we pop that scope
35
/// and use it somewhere else as well, we will need to
36
/// duplicate. We detect this case by checking, when a value that
37
/// we want is not present in this map, whether the producing inst
38
/// is already placed in the Layout. If so, we duplicate, and
39
/// insert non-identity mappings from the original inst's results
40
/// to the cloned inst's results.
41
///
42
/// Note that as values may refer to unions that represent a subset
43
/// of a larger eclass, it's not valid to walk towards the root of a
44
/// union tree: doing so would potentially equate values that fall
45
/// on different branches of the dominator tree.
46
value_to_elaborated_value: ScopedHashMap<Value, ElaboratedValue>,
47
/// Map from Value to the best (lowest-cost) Value in its eclass
48
/// (tree of union value-nodes).
49
value_to_best_value: SecondaryMap<Value, BestEntry>,
50
/// Stack of blocks and loops in current elaboration path.
51
loop_stack: SmallVec<[LoopStackEntry; 8]>,
52
/// The current block into which we are elaborating.
53
cur_block: Block,
54
/// Values that opt rules have indicated should be rematerialized
55
/// in every block they are used (e.g., immediates or other
56
/// "cheap-to-compute" ops).
57
remat_values: &'a FxHashSet<Value>,
58
/// Explicitly-unrolled value elaboration stack.
59
elab_stack: Vec<ElabStackEntry>,
60
/// Results from the elab stack.
61
elab_result_stack: Vec<ElaboratedValue>,
62
/// Explicitly-unrolled block elaboration stack.
63
block_stack: Vec<BlockStackEntry>,
64
/// Copies of values that have been rematerialized.
65
remat_copies: FxHashMap<(Block, Value), Value>,
66
/// Stats for various events during egraph processing, to help
67
/// with optimization of this infrastructure.
68
stats: &'a mut Stats,
69
/// Chaos-mode control-plane so we can test that we still get
70
/// correct results when our heuristics make bad decisions.
71
ctrl_plane: &'a mut ControlPlane,
72
}
73
74
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
75
struct BestEntry(Cost, Value);
76
77
impl PartialOrd for BestEntry {
78
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
79
Some(self.cmp(other))
80
}
81
}
82
83
impl Ord for BestEntry {
84
#[inline]
85
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
86
self.0.cmp(&other.0).then_with(|| {
87
// Note that this comparison is reversed. When costs are equal,
88
// prefer the value with the bigger index. This is a heuristic that
89
// prefers results of rewrites to the original value, since we
90
// expect that our rewrites are generally improvements.
91
self.1.cmp(&other.1).reverse()
92
})
93
}
94
}
95
96
#[derive(Clone, Copy, Debug)]
97
struct ElaboratedValue {
98
in_block: Block,
99
value: Value,
100
}
101
102
#[derive(Clone, Debug)]
103
struct LoopStackEntry {
104
/// The loop identifier.
105
lp: Loop,
106
/// The hoist point: a block that immediately dominates this
107
/// loop. May not be an immediate predecessor, but will be a valid
108
/// point to place all loop-invariant ops: they must depend only
109
/// on inputs that dominate the loop, so are available at (the end
110
/// of) this block.
111
hoist_block: Block,
112
/// The depth in the scope map.
113
scope_depth: u32,
114
}
115
116
#[derive(Clone, Debug)]
117
enum ElabStackEntry {
118
/// Next action is to resolve this value into an elaborated inst
119
/// (placed into the layout) that produces the value, and
120
/// recursively elaborate the insts that produce its args.
121
///
122
/// Any inserted ops should be inserted before `before`, which is
123
/// the instruction demanding this value.
124
Start { value: Value, before: Inst },
125
/// Args have been pushed; waiting for results.
126
PendingInst {
127
inst: Inst,
128
result_idx: usize,
129
num_args: usize,
130
before: Inst,
131
},
132
}
133
134
#[derive(Clone, Debug)]
135
enum BlockStackEntry {
136
Elaborate { block: Block, idom: Option<Block> },
137
Pop,
138
}
139
140
impl<'a> Elaborator<'a> {
141
pub(crate) fn new(
142
func: &'a mut Function,
143
domtree: &'a DominatorTree,
144
loop_analysis: &'a LoopAnalysis,
145
remat_values: &'a FxHashSet<Value>,
146
stats: &'a mut Stats,
147
ctrl_plane: &'a mut ControlPlane,
148
) -> Self {
149
let num_values = func.dfg.num_values();
150
let mut value_to_best_value =
151
SecondaryMap::with_default(BestEntry(Cost::infinity(), Value::reserved_value()));
152
value_to_best_value.resize(num_values);
153
Self {
154
func,
155
domtree,
156
loop_analysis,
157
value_to_elaborated_value: ScopedHashMap::with_capacity(num_values),
158
value_to_best_value,
159
loop_stack: smallvec![],
160
cur_block: Block::reserved_value(),
161
remat_values,
162
elab_stack: vec![],
163
elab_result_stack: vec![],
164
block_stack: vec![],
165
remat_copies: FxHashMap::default(),
166
stats,
167
ctrl_plane,
168
}
169
}
170
171
fn start_block(&mut self, idom: Option<Block>, block: Block) {
172
trace!(
173
"start_block: block {:?} with idom {:?} at loop depth {:?} scope depth {}",
174
block,
175
idom,
176
self.loop_stack.len(),
177
self.value_to_elaborated_value.depth()
178
);
179
180
// Pop any loop levels we're no longer in.
181
while let Some(inner_loop) = self.loop_stack.last() {
182
if self.loop_analysis.is_in_loop(block, inner_loop.lp) {
183
break;
184
}
185
self.loop_stack.pop();
186
}
187
188
// Note that if the *entry* block is a loop header, we will
189
// not make note of the loop here because it will not have an
190
// immediate dominator. We must disallow this case because we
191
// will skip adding the `LoopStackEntry` here but our
192
// `LoopAnalysis` will otherwise still make note of this loop
193
// and loop depths will not match.
194
if let Some(idom) = idom {
195
if let Some(lp) = self.loop_analysis.is_loop_header(block) {
196
self.loop_stack.push(LoopStackEntry {
197
lp,
198
// Any code hoisted out of this loop will have code
199
// placed in `idom`, and will have def mappings
200
// inserted in to the scoped hashmap at that block's
201
// level.
202
hoist_block: idom,
203
scope_depth: (self.value_to_elaborated_value.depth() - 1) as u32,
204
});
205
trace!(
206
" -> loop header, pushing; depth now {}",
207
self.loop_stack.len()
208
);
209
}
210
} else {
211
debug_assert!(
212
self.loop_analysis.is_loop_header(block).is_none(),
213
"Entry block (domtree root) cannot be a loop header!"
214
);
215
}
216
217
trace!("block {}: loop stack is {:?}", block, self.loop_stack);
218
219
self.cur_block = block;
220
}
221
222
fn compute_best_values(&mut self) {
223
let best = &mut self.value_to_best_value;
224
225
// We can't make random decisions inside the fixpoint loop below because
226
// that could cause values to change on every iteration of the loop,
227
// which would make the loop never terminate. So in chaos testing
228
// mode we need a form of making suboptimal decisions that is fully
229
// deterministic. We choose to simply make the worst decision we know
230
// how to do instead of the best.
231
let use_worst = self.ctrl_plane.get_decision();
232
233
// Do a fixpoint loop to compute the best value for each eclass.
234
//
235
// The maximum number of iterations is the length of the longest chain
236
// of `vNN -> vMM` edges in the dataflow graph where `NN < MM`, so this
237
// is *technically* quadratic, but `cranelift-frontend` won't construct
238
// any such edges. NaN canonicalization will introduce some of these
239
// edges, but they are chains of only two or three edges. So in
240
// practice, we *never* do more than a handful of iterations here unless
241
// (a) we parsed the CLIF from text and the text was funkily numbered,
242
// which we don't really care about, or (b) the CLIF producer did
243
// something weird, in which case it is their responsibility to stop
244
// doing that.
245
trace!(
246
"Entering fixpoint loop to compute the {} values for each eclass",
247
if use_worst {
248
"worst (chaos mode)"
249
} else {
250
"best"
251
}
252
);
253
let mut keep_going = true;
254
while keep_going {
255
keep_going = false;
256
trace!(
257
"fixpoint iteration {}",
258
self.stats.elaborate_best_cost_fixpoint_iters
259
);
260
self.stats.elaborate_best_cost_fixpoint_iters += 1;
261
262
for (value, def) in self.func.dfg.values_and_defs() {
263
trace!("computing best for value {:?} def {:?}", value, def);
264
let orig_best_value = best[value];
265
266
match def {
267
ValueDef::Union(x, y) => {
268
// Pick the best of the two options based on
269
// min-cost. This works because each element of `best`
270
// is a `(cost, value)` tuple; `cost` comes first so
271
// the natural comparison works based on cost, and
272
// breaks ties based on value number.
273
best[value] = if use_worst {
274
if best[x].1.is_reserved_value() {
275
best[y]
276
} else if best[y].1.is_reserved_value() {
277
best[x]
278
} else {
279
std::cmp::max(best[x], best[y])
280
}
281
} else {
282
std::cmp::min(best[x], best[y])
283
};
284
trace!(
285
" -> best of union({:?}, {:?}) = {:?}",
286
best[x], best[y], best[value]
287
);
288
}
289
ValueDef::Param(_, _) => {
290
best[value] = BestEntry(Cost::zero(), value);
291
}
292
// If the Inst is inserted into the layout (which is,
293
// at this point, only the side-effecting skeleton),
294
// then it must be computed and thus we give it zero
295
// cost.
296
ValueDef::Result(inst, _) => {
297
if let Some(_) = self.func.layout.inst_block(inst) {
298
best[value] = BestEntry(Cost::zero(), value);
299
} else {
300
let inst_data = &self.func.dfg.insts[inst];
301
// N.B.: at this point we know that the opcode is
302
// pure, so `pure_op_cost`'s precondition is
303
// satisfied.
304
let cost = Cost::of_pure_op(
305
inst_data.opcode(),
306
self.func.dfg.inst_values(inst).map(|value| best[value].0),
307
);
308
best[value] = BestEntry(cost, value);
309
trace!(" -> cost of value {} = {:?}", value, cost);
310
}
311
}
312
};
313
314
// Keep on iterating the fixpoint loop while we are finding new
315
// best values.
316
keep_going |= orig_best_value != best[value];
317
}
318
}
319
320
if cfg!(any(feature = "trace-log", debug_assertions)) {
321
trace!("finished fixpoint loop to compute best value for each eclass");
322
for value in self.func.dfg.values() {
323
trace!("-> best for eclass {:?}: {:?}", value, best[value]);
324
debug_assert_ne!(best[value].1, Value::reserved_value());
325
// You might additionally be expecting an assert that the best
326
// cost is not infinity, however infinite cost *can* happen in
327
// practice. First, note that our cost function doesn't know
328
// about any shared structure in the dataflow graph, it only
329
// sums operand costs. (And trying to avoid that by deduping a
330
// single operation's operands is a losing game because you can
331
// always just add one indirection and go from `add(x, x)` to
332
// `add(foo(x), bar(x))` to hide the shared structure.) Given
333
// that blindness to sharing, we can make cost grow
334
// exponentially with a linear sequence of operations:
335
//
336
// v0 = iconst.i32 1 ;; cost = 1
337
// v1 = iadd v0, v0 ;; cost = 3 + 1 + 1
338
// v2 = iadd v1, v1 ;; cost = 3 + 5 + 5
339
// v3 = iadd v2, v2 ;; cost = 3 + 13 + 13
340
// v4 = iadd v3, v3 ;; cost = 3 + 29 + 29
341
// v5 = iadd v4, v4 ;; cost = 3 + 61 + 61
342
// v6 = iadd v5, v5 ;; cost = 3 + 125 + 125
343
// ;; etc...
344
//
345
// Such a chain can cause cost to saturate to infinity. How do
346
// we choose which e-node is best when there are multiple that
347
// have saturated to infinity? It doesn't matter. As long as
348
// invariant (2) for optimization rules is upheld by our rule
349
// set (see `cranelift/codegen/src/opts/README.md`) it is safe
350
// to choose *any* e-node in the e-class. At worst we will
351
// produce suboptimal code, but never an incorrectness.
352
}
353
}
354
}
355
356
/// Elaborate use of an eclass, inserting any needed new
357
/// instructions before the given inst `before`. Should only be
358
/// given values corresponding to results of instructions or
359
/// blockparams.
360
fn elaborate_eclass_use(&mut self, value: Value, before: Inst) -> ElaboratedValue {
361
debug_assert_ne!(value, Value::reserved_value());
362
363
// Kick off the process by requesting this result
364
// value.
365
self.elab_stack
366
.push(ElabStackEntry::Start { value, before });
367
368
// Now run the explicit-stack recursion until we reach
369
// the root.
370
self.process_elab_stack();
371
debug_assert_eq!(self.elab_result_stack.len(), 1);
372
self.elab_result_stack.pop().unwrap()
373
}
374
375
/// Possibly rematerialize the instruction producing the value in
376
/// `arg` and rewrite `arg` to refer to it, if needed. Returns
377
/// `true` if a rewrite occurred.
378
fn maybe_remat_arg(
379
remat_values: &FxHashSet<Value>,
380
func: &mut Function,
381
remat_copies: &mut FxHashMap<(Block, Value), Value>,
382
insert_block: Block,
383
before: Inst,
384
arg: &mut ElaboratedValue,
385
stats: &mut Stats,
386
) -> bool {
387
// TODO (#7313): we may want to consider recursive
388
// rematerialization as well. We could process the arguments of
389
// the rematerialized instruction up to a certain depth. This
390
// would affect, e.g., adds-with-one-constant-arg, which are
391
// currently rematerialized. Right now we don't do this, to
392
// avoid the need for another fixpoint loop here.
393
if arg.in_block != insert_block && remat_values.contains(&arg.value) {
394
let new_value = match remat_copies.entry((insert_block, arg.value)) {
395
HashEntry::Occupied(o) => *o.get(),
396
HashEntry::Vacant(v) => {
397
let inst = func.dfg.value_def(arg.value).inst().unwrap();
398
debug_assert_eq!(func.dfg.inst_results(inst).len(), 1);
399
let new_inst = func.dfg.clone_inst(inst);
400
func.layout.insert_inst(new_inst, before);
401
let new_result = func.dfg.inst_results(new_inst)[0];
402
*v.insert(new_result)
403
}
404
};
405
trace!("rematerialized {} as {}", arg.value, new_value);
406
arg.value = new_value;
407
stats.elaborate_remat += 1;
408
true
409
} else {
410
false
411
}
412
}
413
414
fn process_elab_stack(&mut self) {
415
while let Some(entry) = self.elab_stack.pop() {
416
match entry {
417
ElabStackEntry::Start { value, before } => {
418
debug_assert!(self.func.dfg.value_is_real(value));
419
420
self.stats.elaborate_visit_node += 1;
421
422
// Get the best option; we use `value` (latest
423
// value) here so we have a full view of the
424
// eclass.
425
trace!("looking up best value for {}", value);
426
let BestEntry(_, best_value) = self.value_to_best_value[value];
427
trace!("elaborate: value {} -> best {}", value, best_value);
428
debug_assert_ne!(best_value, Value::reserved_value());
429
430
if let Some(elab_val) =
431
self.value_to_elaborated_value.get(&NullCtx, &best_value)
432
{
433
// Value is available; use it.
434
trace!("elaborate: value {} -> {:?}", value, elab_val);
435
self.stats.elaborate_memoize_hit += 1;
436
self.elab_result_stack.push(*elab_val);
437
continue;
438
}
439
440
self.stats.elaborate_memoize_miss += 1;
441
442
// Now resolve the value to its definition to see
443
// how we can compute it.
444
let (inst, result_idx) = match self.func.dfg.value_def(best_value) {
445
ValueDef::Result(inst, result_idx) => {
446
trace!(
447
" -> value {} is result {} of {}",
448
best_value, result_idx, inst
449
);
450
(inst, result_idx)
451
}
452
ValueDef::Param(in_block, _) => {
453
// We don't need to do anything to compute
454
// this value; just push its result on the
455
// result stack (blockparams are already
456
// available).
457
trace!(" -> value {} is a blockparam", best_value);
458
self.elab_result_stack.push(ElaboratedValue {
459
in_block,
460
value: best_value,
461
});
462
continue;
463
}
464
ValueDef::Union(_, _) => {
465
panic!("Should never have a Union value as the best value");
466
}
467
};
468
469
trace!(
470
" -> result {} of inst {:?}",
471
result_idx, self.func.dfg.insts[inst]
472
);
473
474
// We're going to need to use this instruction
475
// result, placing the instruction into the
476
// layout. First, enqueue all args to be
477
// elaborated. Push state to receive the results
478
// and later elab this inst.
479
let num_args = self.func.dfg.inst_values(inst).count();
480
self.elab_stack.push(ElabStackEntry::PendingInst {
481
inst,
482
result_idx,
483
num_args,
484
before,
485
});
486
487
// Push args in reverse order so we process the
488
// first arg first.
489
for arg in self.func.dfg.inst_values(inst).rev() {
490
debug_assert_ne!(arg, Value::reserved_value());
491
self.elab_stack
492
.push(ElabStackEntry::Start { value: arg, before });
493
}
494
}
495
496
ElabStackEntry::PendingInst {
497
inst,
498
result_idx,
499
num_args,
500
before,
501
} => {
502
trace!(
503
"PendingInst: {} result {} args {} before {}",
504
inst, result_idx, num_args, before
505
);
506
507
// We should have all args resolved at this
508
// point. Grab them and drain them out, removing
509
// them.
510
let arg_idx = self.elab_result_stack.len() - num_args;
511
let arg_values = &mut self.elab_result_stack[arg_idx..];
512
513
// Compute max loop depth.
514
//
515
// Note that if there are no arguments then this instruction
516
// is allowed to get hoisted up one loop. This is not
517
// usually used since no-argument values are things like
518
// constants which are typically rematerialized, but for the
519
// `vconst` instruction 128-bit constants aren't as easily
520
// rematerialized. They're hoisted out of inner loops but
521
// not to the function entry which may run the risk of
522
// placing too much register pressure on the entire
523
// function. This is modeled with the `.saturating_sub(1)`
524
// as the default if there's otherwise no maximum.
525
let loop_hoist_level = arg_values
526
.iter()
527
.map(|&value| {
528
// Find the outermost loop level at which
529
// the value's defining block *is not* a
530
// member. This is the loop-nest level
531
// whose hoist-block we hoist to.
532
let hoist_level = self
533
.loop_stack
534
.iter()
535
.position(|loop_entry| {
536
!self.loop_analysis.is_in_loop(value.in_block, loop_entry.lp)
537
})
538
.unwrap_or(self.loop_stack.len());
539
trace!(
540
" -> arg: elab_value {:?} hoist level {:?}",
541
value, hoist_level
542
);
543
hoist_level
544
})
545
.max()
546
.unwrap_or(self.loop_stack.len().saturating_sub(1));
547
trace!(
548
" -> loop hoist level: {:?}; cur loop depth: {:?}, loop_stack: {:?}",
549
loop_hoist_level,
550
self.loop_stack.len(),
551
self.loop_stack,
552
);
553
554
// We know that this is a pure inst, because
555
// non-pure roots have already been placed in the
556
// value-to-elab'd-value map, so they will not
557
// reach this stage of processing.
558
//
559
// We now must determine the location at which we
560
// place the instruction. This is the current
561
// block *unless* we hoist above a loop when all
562
// args are loop-invariant (and this op is pure).
563
let (scope_depth, before, insert_block) = if loop_hoist_level
564
== self.loop_stack.len()
565
{
566
// Depends on some value at the current
567
// loop depth, or remat forces it here:
568
// place it at the current location.
569
(
570
self.value_to_elaborated_value.depth(),
571
before,
572
self.func.layout.inst_block(before).unwrap(),
573
)
574
} else {
575
// Does not depend on any args at current
576
// loop depth: hoist out of loop.
577
self.stats.elaborate_licm_hoist += 1;
578
let data = &self.loop_stack[loop_hoist_level];
579
// `data.hoist_block` should dominate `before`'s block.
580
let before_block = self.func.layout.inst_block(before).unwrap();
581
debug_assert!(self.domtree.block_dominates(data.hoist_block, before_block));
582
// Determine the instruction at which we
583
// insert in `data.hoist_block`.
584
let before = self.func.layout.last_inst(data.hoist_block).unwrap();
585
(data.scope_depth as usize, before, data.hoist_block)
586
};
587
588
trace!(
589
" -> decided to place: before {} insert_block {}",
590
before, insert_block
591
);
592
593
// Now that we have the location for the
594
// instruction, check if any of its args are remat
595
// values. If so, and if we don't have a copy of
596
// the rematerializing instruction for this block
597
// yet, create one.
598
let mut remat_arg = false;
599
for arg_value in arg_values.iter_mut() {
600
if Self::maybe_remat_arg(
601
&self.remat_values,
602
&mut self.func,
603
&mut self.remat_copies,
604
insert_block,
605
before,
606
arg_value,
607
&mut self.stats,
608
) {
609
remat_arg = true;
610
}
611
}
612
613
// Now we need to place `inst` at the computed
614
// location (just before `before`). Note that
615
// `inst` may already have been placed somewhere
616
// else, because a pure node may be elaborated at
617
// more than one place. In this case, we need to
618
// duplicate the instruction (and return the
619
// `Value`s for that duplicated instance instead).
620
//
621
// Also clone if we rematerialized, because we
622
// don't want to rewrite the args in the original
623
// copy.
624
trace!("need inst {} before {}", inst, before);
625
let inst = if self.func.layout.inst_block(inst).is_some() || remat_arg {
626
// Clone the inst!
627
let new_inst = self.func.dfg.clone_inst(inst);
628
trace!(
629
" -> inst {} already has a location; cloned to {}",
630
inst, new_inst
631
);
632
// Create mappings in the
633
// value-to-elab'd-value map from original
634
// results to cloned results.
635
for (&result, &new_result) in self
636
.func
637
.dfg
638
.inst_results(inst)
639
.iter()
640
.zip(self.func.dfg.inst_results(new_inst).iter())
641
{
642
let elab_value = ElaboratedValue {
643
value: new_result,
644
in_block: insert_block,
645
};
646
let best_result = self.value_to_best_value[result];
647
self.value_to_elaborated_value.insert_if_absent_with_depth(
648
&NullCtx,
649
best_result.1,
650
elab_value,
651
scope_depth,
652
);
653
654
self.value_to_best_value[new_result] = best_result;
655
656
trace!(
657
" -> cloned inst has new result {} for orig {}",
658
new_result, result
659
);
660
}
661
new_inst
662
} else {
663
trace!(" -> no location; using original inst");
664
// Create identity mappings from result values
665
// to themselves in this scope, since we're
666
// using the original inst.
667
for &result in self.func.dfg.inst_results(inst) {
668
let elab_value = ElaboratedValue {
669
value: result,
670
in_block: insert_block,
671
};
672
let best_result = self.value_to_best_value[result];
673
self.value_to_elaborated_value.insert_if_absent_with_depth(
674
&NullCtx,
675
best_result.1,
676
elab_value,
677
scope_depth,
678
);
679
trace!(" -> inserting identity mapping for {}", result);
680
}
681
inst
682
};
683
684
// Place the inst just before `before`.
685
assert!(
686
is_pure_for_egraph(self.func, inst),
687
"something has gone very wrong if we are elaborating effectful \
688
instructions, they should have remained in the skeleton"
689
);
690
self.func.layout.insert_inst(inst, before);
691
692
// Update the inst's arguments.
693
self.func
694
.dfg
695
.overwrite_inst_values(inst, arg_values.into_iter().map(|ev| ev.value));
696
697
// Now that we've consumed the arg values, pop
698
// them off the stack.
699
self.elab_result_stack.truncate(arg_idx);
700
701
// Push the requested result index of the
702
// instruction onto the elab-results stack.
703
self.elab_result_stack.push(ElaboratedValue {
704
in_block: insert_block,
705
value: self.func.dfg.inst_results(inst)[result_idx],
706
});
707
}
708
}
709
}
710
}
711
712
fn elaborate_block(&mut self, elab_values: &mut Vec<Value>, idom: Option<Block>, block: Block) {
713
trace!("elaborate_block: block {}", block);
714
self.start_block(idom, block);
715
716
// Iterate over the side-effecting skeleton using the linked
717
// list in Layout. We will insert instructions that are
718
// elaborated *before* `inst`, so we can always use its
719
// next-link to continue the iteration.
720
let mut next_inst = self.func.layout.first_inst(block);
721
let mut first_branch = None;
722
while let Some(inst) = next_inst {
723
trace!(
724
"elaborating inst {} with results {:?}",
725
inst,
726
self.func.dfg.inst_results(inst)
727
);
728
// Record the first branch we see in the block; all
729
// elaboration for args of *any* branch must be inserted
730
// before the *first* branch, because the branch group
731
// must remain contiguous at the end of the block.
732
if self.func.dfg.insts[inst].opcode().is_branch() && first_branch == None {
733
first_branch = Some(inst);
734
}
735
736
// Determine where elaboration inserts insts.
737
let before = first_branch.unwrap_or(inst);
738
trace!(" -> inserting before {}", before);
739
740
elab_values.extend(self.func.dfg.inst_values(inst));
741
for arg in elab_values.iter_mut() {
742
trace!(" -> arg {}", *arg);
743
// Elaborate the arg, placing any newly-inserted insts
744
// before `before`. Get the updated value, which may
745
// be different than the original.
746
let mut new_arg = self.elaborate_eclass_use(*arg, before);
747
Self::maybe_remat_arg(
748
&self.remat_values,
749
&mut self.func,
750
&mut self.remat_copies,
751
block,
752
inst,
753
&mut new_arg,
754
&mut self.stats,
755
);
756
trace!(" -> rewrote arg to {:?}", new_arg);
757
*arg = new_arg.value;
758
}
759
self.func
760
.dfg
761
.overwrite_inst_values(inst, elab_values.drain(..));
762
763
// We need to put the results of this instruction in the
764
// map now.
765
for &result in self.func.dfg.inst_results(inst) {
766
trace!(" -> result {}", result);
767
let best_result = self.value_to_best_value[result];
768
self.value_to_elaborated_value.insert_if_absent(
769
&NullCtx,
770
best_result.1,
771
ElaboratedValue {
772
in_block: block,
773
value: result,
774
},
775
);
776
}
777
778
next_inst = self.func.layout.next_inst(inst);
779
}
780
}
781
782
fn elaborate_domtree(&mut self, domtree: &DominatorTree) {
783
self.block_stack.push(BlockStackEntry::Elaborate {
784
block: self.func.layout.entry_block().unwrap(),
785
idom: None,
786
});
787
788
// A temporary workspace for elaborate_block, allocated here to maximize the use of the
789
// allocation.
790
let mut elab_values = Vec::new();
791
792
while let Some(top) = self.block_stack.pop() {
793
match top {
794
BlockStackEntry::Elaborate { block, idom } => {
795
self.block_stack.push(BlockStackEntry::Pop);
796
self.value_to_elaborated_value.increment_depth();
797
798
self.elaborate_block(&mut elab_values, idom, block);
799
800
// Push children. We are doing a preorder
801
// traversal so we do this after processing this
802
// block above.
803
let block_stack_end = self.block_stack.len();
804
for child in self.ctrl_plane.shuffled(domtree.children(block)) {
805
self.block_stack.push(BlockStackEntry::Elaborate {
806
block: child,
807
idom: Some(block),
808
});
809
}
810
// Reverse what we just pushed so we elaborate in
811
// original block order. (The domtree iter is a
812
// single-ended iter over a singly-linked list so
813
// we can't `.rev()` above.)
814
self.block_stack[block_stack_end..].reverse();
815
}
816
BlockStackEntry::Pop => {
817
self.value_to_elaborated_value.decrement_depth();
818
}
819
}
820
}
821
}
822
823
pub(crate) fn elaborate(&mut self) {
824
self.stats.elaborate_func += 1;
825
self.stats.elaborate_func_pre_insts += self.func.dfg.num_insts() as u64;
826
self.compute_best_values();
827
self.elaborate_domtree(&self.domtree);
828
self.stats.elaborate_func_post_insts += self.func.dfg.num_insts() as u64;
829
}
830
}
831
832