Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bytecodealliance
GitHub Repository: bytecodealliance/wasmtime
Path: blob/main/cranelift/codegen/src/machinst/abi.rs
1693 views
1
//! Implementation of a vanilla ABI, shared between several machines. The
2
//! implementation here assumes that arguments will be passed in registers
3
//! first, then additional args on the stack; that the stack grows downward,
4
//! contains a standard frame (return address and frame pointer), and the
5
//! compiler is otherwise free to allocate space below that with its choice of
6
//! layout; and that the machine has some notion of caller- and callee-save
7
//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
8
//! mold and thus both of these backends use this shared implementation.
9
//!
10
//! See the documentation in specific machine backends for the "instantiation"
11
//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
12
//! and return values, and any other special requirements.
13
//!
14
//! For now the implementation here assumes a 64-bit machine, but we intend to
15
//! make this 32/64-bit-generic shortly.
16
//!
17
//! # Vanilla ABI
18
//!
19
//! First, arguments and return values are passed in registers up to a certain
20
//! fixed count, after which they overflow onto the stack. Multiple return
21
//! values either fit in registers, or are returned in a separate return-value
22
//! area on the stack, given by a hidden extra parameter.
23
//!
24
//! Note that the exact stack layout is up to us. We settled on the
25
//! below design based on several requirements. In particular, we need
26
//! to be able to generate instructions (or instruction sequences) to
27
//! access arguments, stack slots, and spill slots before we know how
28
//! many spill slots or clobber-saves there will be, because of our
29
//! pass structure. We also prefer positive offsets to negative
30
//! offsets because of an asymmetry in some machines' addressing modes
31
//! (e.g., on AArch64, positive offsets have a larger possible range
32
//! without a long-form sequence to synthesize an arbitrary
33
//! offset). We also need clobber-save registers to be "near" the
34
//! frame pointer: Windows unwind information requires it to be within
35
//! 240 bytes of RBP. Finally, it is not allowed to access memory
36
//! below the current SP value.
37
//!
38
//! We assume that a prologue first pushes the frame pointer (and
39
//! return address above that, if the machine does not do that in
40
//! hardware). We set FP to point to this two-word frame record. We
41
//! store all other frame slots below this two-word frame record, as
42
//! well as enough space for arguments to the largest possible
43
//! function call. The stack pointer then remains at this position
44
//! for the duration of the function, allowing us to address all
45
//! frame storage at positive offsets from SP.
46
//!
47
//! Note that if we ever support dynamic stack-space allocation (for
48
//! `alloca`), we will need a way to reference spill slots and stack
49
//! slots relative to a dynamic SP, because we will no longer be able
50
//! to know a static offset from SP to the slots at any particular
51
//! program point. Probably the best solution at that point will be to
52
//! revert to using the frame pointer as the reference for all slots,
53
//! to allow generating spill/reload and stackslot accesses before we
54
//! know how large the clobber-saves will be.
55
//!
56
//! # Stack Layout
57
//!
58
//! The stack looks like:
59
//!
60
//! ```plain
61
//! (high address)
62
//! | ... |
63
//! | caller frames |
64
//! | ... |
65
//! +===========================+
66
//! | ... |
67
//! | stack args |
68
//! Canonical Frame Address --> | (accessed via FP) |
69
//! +---------------------------+
70
//! SP at function entry -----> | return address |
71
//! +---------------------------+
72
//! FP after prologue --------> | FP (pushed by prologue) |
73
//! +---------------------------+ -----
74
//! | ... | |
75
//! | clobbered callee-saves | |
76
//! unwind-frame base --------> | (pushed by prologue) | |
77
//! +---------------------------+ ----- |
78
//! | ... | | |
79
//! | spill slots | | |
80
//! | (accessed via SP) | fixed active
81
//! | ... | frame size
82
//! | stack slots | storage |
83
//! | (accessed via SP) | size |
84
//! | (alloc'd by prologue) | | |
85
//! +---------------------------+ ----- |
86
//! | [alignment as needed] | |
87
//! | ... | |
88
//! | args for largest call | |
89
//! SP -----------------------> | (alloc'd by prologue) | |
90
//! +===========================+ -----
91
//!
92
//! (low address)
93
//! ```
94
//!
95
//! # Multi-value Returns
96
//!
97
//! We support multi-value returns by using multiple return-value
98
//! registers. In some cases this is an extension of the base system
99
//! ABI. See each platform's `abi.rs` implementation for details.
100
101
use crate::CodegenError;
102
use crate::entity::SecondaryMap;
103
use crate::ir::types::*;
104
use crate::ir::{ArgumentExtension, ArgumentPurpose, ExceptionTag, Signature};
105
use crate::isa::TargetIsa;
106
use crate::settings::ProbestackStrategy;
107
use crate::{ir, isa};
108
use crate::{machinst::*, trace};
109
use alloc::boxed::Box;
110
use regalloc2::{MachineEnv, PReg, PRegSet};
111
use rustc_hash::FxHashMap;
112
use smallvec::smallvec;
113
use std::collections::HashMap;
114
use std::marker::PhantomData;
115
116
/// A small vector of instructions (with some reasonable size); appropriate for
117
/// a small fixed sequence implementing one operation.
118
pub type SmallInstVec<I> = SmallVec<[I; 4]>;
119
120
/// A type used by backends to track argument-binding info in the "args"
121
/// pseudoinst. The pseudoinst holds a vec of `ArgPair` structs.
122
#[derive(Clone, Debug)]
123
pub struct ArgPair {
124
/// The vreg that is defined by this args pseudoinst.
125
pub vreg: Writable<Reg>,
126
/// The preg that the arg arrives in; this constrains the vreg's
127
/// placement at the pseudoinst.
128
pub preg: Reg,
129
}
130
131
/// A type used by backends to track return register binding info in the "ret"
132
/// pseudoinst. The pseudoinst holds a vec of `RetPair` structs.
133
#[derive(Clone, Debug)]
134
pub struct RetPair {
135
/// The vreg that is returned by this pseudionst.
136
pub vreg: Reg,
137
/// The preg that the arg is returned through; this constrains the vreg's
138
/// placement at the pseudoinst.
139
pub preg: Reg,
140
}
141
142
/// A location for (part of) an argument or return value. These "storage slots"
143
/// are specified for each register-sized part of an argument.
144
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
145
pub enum ABIArgSlot {
146
/// In a real register.
147
Reg {
148
/// Register that holds this arg.
149
reg: RealReg,
150
/// Value type of this arg.
151
ty: ir::Type,
152
/// Should this arg be zero- or sign-extended?
153
extension: ir::ArgumentExtension,
154
},
155
/// Arguments only: on stack, at given offset from SP at entry.
156
Stack {
157
/// Offset of this arg relative to the base of stack args.
158
offset: i64,
159
/// Value type of this arg.
160
ty: ir::Type,
161
/// Should this arg be zero- or sign-extended?
162
extension: ir::ArgumentExtension,
163
},
164
}
165
166
impl ABIArgSlot {
167
/// The type of the value that will be stored in this slot.
168
pub fn get_type(&self) -> ir::Type {
169
match self {
170
ABIArgSlot::Reg { ty, .. } => *ty,
171
ABIArgSlot::Stack { ty, .. } => *ty,
172
}
173
}
174
}
175
176
/// A vector of `ABIArgSlot`s. Inline capacity for one element because basically
177
/// 100% of values use one slot. Only `i128`s need multiple slots, and they are
178
/// super rare (and never happen with Wasm).
179
pub type ABIArgSlotVec = SmallVec<[ABIArgSlot; 1]>;
180
181
/// An ABIArg is composed of one or more parts. This allows for a CLIF-level
182
/// Value to be passed with its parts in more than one location at the ABI
183
/// level. For example, a 128-bit integer may be passed in two 64-bit registers,
184
/// or even a 64-bit register and a 64-bit stack slot, on a 64-bit machine. The
185
/// number of "parts" should correspond to the number of registers used to store
186
/// this type according to the machine backend.
187
///
188
/// As an invariant, the `purpose` for every part must match. As a further
189
/// invariant, a `StructArg` part cannot appear with any other part.
190
#[derive(Clone, Debug)]
191
pub enum ABIArg {
192
/// Storage slots (registers or stack locations) for each part of the
193
/// argument value. The number of slots must equal the number of register
194
/// parts used to store a value of this type.
195
Slots {
196
/// Slots, one per register part.
197
slots: ABIArgSlotVec,
198
/// Purpose of this arg.
199
purpose: ir::ArgumentPurpose,
200
},
201
/// Structure argument. We reserve stack space for it, but the CLIF-level
202
/// semantics are a little weird: the value passed to the call instruction,
203
/// and received in the corresponding block param, is a *pointer*. On the
204
/// caller side, we memcpy the data from the passed-in pointer to the stack
205
/// area; on the callee side, we compute a pointer to this stack area and
206
/// provide that as the argument's value.
207
StructArg {
208
/// Offset of this arg relative to base of stack args.
209
offset: i64,
210
/// Size of this arg on the stack.
211
size: u64,
212
/// Purpose of this arg.
213
purpose: ir::ArgumentPurpose,
214
},
215
/// Implicit argument. Similar to a StructArg, except that we have the
216
/// target type, not a pointer type, at the CLIF-level. This argument is
217
/// still being passed via reference implicitly.
218
ImplicitPtrArg {
219
/// Register or stack slot holding a pointer to the buffer.
220
pointer: ABIArgSlot,
221
/// Offset of the argument buffer.
222
offset: i64,
223
/// Type of the implicit argument.
224
ty: Type,
225
/// Purpose of this arg.
226
purpose: ir::ArgumentPurpose,
227
},
228
}
229
230
impl ABIArg {
231
/// Create an ABIArg from one register.
232
pub fn reg(
233
reg: RealReg,
234
ty: ir::Type,
235
extension: ir::ArgumentExtension,
236
purpose: ir::ArgumentPurpose,
237
) -> ABIArg {
238
ABIArg::Slots {
239
slots: smallvec![ABIArgSlot::Reg { reg, ty, extension }],
240
purpose,
241
}
242
}
243
244
/// Create an ABIArg from one stack slot.
245
pub fn stack(
246
offset: i64,
247
ty: ir::Type,
248
extension: ir::ArgumentExtension,
249
purpose: ir::ArgumentPurpose,
250
) -> ABIArg {
251
ABIArg::Slots {
252
slots: smallvec![ABIArgSlot::Stack {
253
offset,
254
ty,
255
extension,
256
}],
257
purpose,
258
}
259
}
260
}
261
262
/// Are we computing information about arguments or return values? Much of the
263
/// handling is factored out into common routines; this enum allows us to
264
/// distinguish which case we're handling.
265
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
266
pub enum ArgsOrRets {
267
/// Arguments.
268
Args,
269
/// Return values.
270
Rets,
271
}
272
273
/// Abstract location for a machine-specific ABI impl to translate into the
274
/// appropriate addressing mode.
275
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
276
pub enum StackAMode {
277
/// Offset into the current frame's argument area.
278
IncomingArg(i64, u32),
279
/// Offset within the stack slots in the current frame.
280
Slot(i64),
281
/// Offset into the callee frame's argument area.
282
OutgoingArg(i64),
283
}
284
285
impl StackAMode {
286
fn offset_by(&self, offset: u32) -> Self {
287
match self {
288
StackAMode::IncomingArg(off, size) => {
289
StackAMode::IncomingArg(off.checked_add(i64::from(offset)).unwrap(), *size)
290
}
291
StackAMode::Slot(off) => StackAMode::Slot(off.checked_add(i64::from(offset)).unwrap()),
292
StackAMode::OutgoingArg(off) => {
293
StackAMode::OutgoingArg(off.checked_add(i64::from(offset)).unwrap())
294
}
295
}
296
}
297
}
298
299
/// Trait implemented by machine-specific backend to represent ISA flags.
300
pub trait IsaFlags: Clone {
301
/// Get a flag indicating whether forward-edge CFI is enabled.
302
fn is_forward_edge_cfi_enabled(&self) -> bool {
303
false
304
}
305
}
306
307
/// Used as an out-parameter to accumulate a sequence of `ABIArg`s in
308
/// `ABIMachineSpec::compute_arg_locs`. Wraps the shared allocation for all
309
/// `ABIArg`s in `SigSet` and exposes just the args for the current
310
/// `compute_arg_locs` call.
311
pub struct ArgsAccumulator<'a> {
312
sig_set_abi_args: &'a mut Vec<ABIArg>,
313
start: usize,
314
non_formal_flag: bool,
315
}
316
317
impl<'a> ArgsAccumulator<'a> {
318
fn new(sig_set_abi_args: &'a mut Vec<ABIArg>) -> Self {
319
let start = sig_set_abi_args.len();
320
ArgsAccumulator {
321
sig_set_abi_args,
322
start,
323
non_formal_flag: false,
324
}
325
}
326
327
#[inline]
328
pub fn push(&mut self, arg: ABIArg) {
329
debug_assert!(!self.non_formal_flag);
330
self.sig_set_abi_args.push(arg)
331
}
332
333
#[inline]
334
pub fn push_non_formal(&mut self, arg: ABIArg) {
335
self.non_formal_flag = true;
336
self.sig_set_abi_args.push(arg)
337
}
338
339
#[inline]
340
pub fn args(&self) -> &[ABIArg] {
341
&self.sig_set_abi_args[self.start..]
342
}
343
344
#[inline]
345
pub fn args_mut(&mut self) -> &mut [ABIArg] {
346
&mut self.sig_set_abi_args[self.start..]
347
}
348
}
349
350
/// Trait implemented by machine-specific backend to provide information about
351
/// register assignments and to allow generating the specific instructions for
352
/// stack loads/saves, prologues/epilogues, etc.
353
pub trait ABIMachineSpec {
354
/// The instruction type.
355
type I: VCodeInst;
356
357
/// The ISA flags type.
358
type F: IsaFlags;
359
360
/// This is the limit for the size of argument and return-value areas on the
361
/// stack. We place a reasonable limit here to avoid integer overflow issues
362
/// with 32-bit arithmetic.
363
const STACK_ARG_RET_SIZE_LIMIT: u32;
364
365
/// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
366
fn word_bits() -> u32;
367
368
/// Returns the number of bytes in a word.
369
fn word_bytes() -> u32 {
370
return Self::word_bits() / 8;
371
}
372
373
/// Returns word-size integer type.
374
fn word_type() -> Type {
375
match Self::word_bits() {
376
32 => I32,
377
64 => I64,
378
_ => unreachable!(),
379
}
380
}
381
382
/// Returns word register class.
383
fn word_reg_class() -> RegClass {
384
RegClass::Int
385
}
386
387
/// Returns required stack alignment in bytes.
388
fn stack_align(call_conv: isa::CallConv) -> u32;
389
390
/// Process a list of parameters or return values and allocate them to registers
391
/// and stack slots.
392
///
393
/// The argument locations should be pushed onto the given `ArgsAccumulator`
394
/// in order. Any extra arguments added (such as return area pointers)
395
/// should come at the end of the list so that the first N lowered
396
/// parameters align with the N clif parameters.
397
///
398
/// Returns the stack-space used (rounded up to as alignment requires), and
399
/// if `add_ret_area_ptr` was passed, the index of the extra synthetic arg
400
/// that was added.
401
fn compute_arg_locs(
402
call_conv: isa::CallConv,
403
flags: &settings::Flags,
404
params: &[ir::AbiParam],
405
args_or_rets: ArgsOrRets,
406
add_ret_area_ptr: bool,
407
args: ArgsAccumulator,
408
) -> CodegenResult<(u32, Option<usize>)>;
409
410
/// Generate a load from the stack.
411
fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
412
413
/// Generate a store to the stack.
414
fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;
415
416
/// Generate a move.
417
fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;
418
419
/// Generate an integer-extend operation.
420
fn gen_extend(
421
to_reg: Writable<Reg>,
422
from_reg: Reg,
423
is_signed: bool,
424
from_bits: u8,
425
to_bits: u8,
426
) -> Self::I;
427
428
/// Generate an "args" pseudo-instruction to capture input args in
429
/// registers.
430
fn gen_args(args: Vec<ArgPair>) -> Self::I;
431
432
/// Generate a "rets" pseudo-instruction that moves vregs to return
433
/// registers.
434
fn gen_rets(rets: Vec<RetPair>) -> Self::I;
435
436
/// Generate an add-with-immediate. Note that even if this uses a scratch
437
/// register, it must satisfy two requirements:
438
///
439
/// - The add-imm sequence must only clobber caller-save registers that are
440
/// not used for arguments, because it will be placed in the prologue
441
/// before the clobbered callee-save registers are saved.
442
///
443
/// - The add-imm sequence must work correctly when `from_reg` and/or
444
/// `into_reg` are the register returned by `get_stacklimit_reg()`.
445
fn gen_add_imm(
446
call_conv: isa::CallConv,
447
into_reg: Writable<Reg>,
448
from_reg: Reg,
449
imm: u32,
450
) -> SmallInstVec<Self::I>;
451
452
/// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
453
/// the stack pointer is less than the given limit register (assuming the
454
/// stack grows downward).
455
fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;
456
457
/// Generate an instruction to compute an address of a stack slot (FP- or
458
/// SP-based offset).
459
fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>) -> Self::I;
460
461
/// Get a fixed register to use to compute a stack limit. This is needed for
462
/// certain sequences generated after the register allocator has already
463
/// run. This must satisfy two requirements:
464
///
465
/// - It must be a caller-save register that is not used for arguments,
466
/// because it will be clobbered in the prologue before the clobbered
467
/// callee-save registers are saved.
468
///
469
/// - It must be safe to pass as an argument and/or destination to
470
/// `gen_add_imm()`. This is relevant when an addition with a large
471
/// immediate needs its own temporary; it cannot use the same fixed
472
/// temporary as this one.
473
fn get_stacklimit_reg(call_conv: isa::CallConv) -> Reg;
474
475
/// Generate a load to the given [base+offset] address.
476
fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;
477
478
/// Generate a store from the given [base+offset] address.
479
fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;
480
481
/// Adjust the stack pointer up or down.
482
fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;
483
484
/// Compute a FrameLayout structure containing a sorted list of all clobbered
485
/// registers that are callee-saved according to the ABI, as well as the sizes
486
/// of all parts of the stack frame. The result is used to emit the prologue
487
/// and epilogue routines.
488
fn compute_frame_layout(
489
call_conv: isa::CallConv,
490
flags: &settings::Flags,
491
sig: &Signature,
492
regs: &[Writable<RealReg>],
493
function_calls: FunctionCalls,
494
incoming_args_size: u32,
495
tail_args_size: u32,
496
stackslots_size: u32,
497
fixed_frame_storage_size: u32,
498
outgoing_args_size: u32,
499
) -> FrameLayout;
500
501
/// Generate the usual frame-setup sequence for this architecture: e.g.,
502
/// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
503
/// AArch64.
504
fn gen_prologue_frame_setup(
505
call_conv: isa::CallConv,
506
flags: &settings::Flags,
507
isa_flags: &Self::F,
508
frame_layout: &FrameLayout,
509
) -> SmallInstVec<Self::I>;
510
511
/// Generate the usual frame-restore sequence for this architecture.
512
fn gen_epilogue_frame_restore(
513
call_conv: isa::CallConv,
514
flags: &settings::Flags,
515
isa_flags: &Self::F,
516
frame_layout: &FrameLayout,
517
) -> SmallInstVec<Self::I>;
518
519
/// Generate a return instruction.
520
fn gen_return(
521
call_conv: isa::CallConv,
522
isa_flags: &Self::F,
523
frame_layout: &FrameLayout,
524
) -> SmallInstVec<Self::I>;
525
526
/// Generate a probestack call.
527
fn gen_probestack(insts: &mut SmallInstVec<Self::I>, frame_size: u32);
528
529
/// Generate a inline stack probe.
530
fn gen_inline_probestack(
531
insts: &mut SmallInstVec<Self::I>,
532
call_conv: isa::CallConv,
533
frame_size: u32,
534
guard_size: u32,
535
);
536
537
/// Generate a clobber-save sequence. The implementation here should return
538
/// a sequence of instructions that "push" or otherwise save to the stack all
539
/// registers written/modified by the function body that are callee-saved.
540
/// The sequence of instructions should adjust the stack pointer downward,
541
/// and should align as necessary according to ABI requirements.
542
fn gen_clobber_save(
543
call_conv: isa::CallConv,
544
flags: &settings::Flags,
545
frame_layout: &FrameLayout,
546
) -> SmallVec<[Self::I; 16]>;
547
548
/// Generate a clobber-restore sequence. This sequence should perform the
549
/// opposite of the clobber-save sequence generated above, assuming that SP
550
/// going into the sequence is at the same point that it was left when the
551
/// clobber-save sequence finished.
552
fn gen_clobber_restore(
553
call_conv: isa::CallConv,
554
flags: &settings::Flags,
555
frame_layout: &FrameLayout,
556
) -> SmallVec<[Self::I; 16]>;
557
558
/// Generate a memcpy invocation. Used to set up struct
559
/// args. Takes `src`, `dst` as read-only inputs and passes a temporary
560
/// allocator.
561
fn gen_memcpy<F: FnMut(Type) -> Writable<Reg>>(
562
call_conv: isa::CallConv,
563
dst: Reg,
564
src: Reg,
565
size: usize,
566
alloc_tmp: F,
567
) -> SmallVec<[Self::I; 8]>;
568
569
/// Get the number of spillslots required for the given register-class.
570
fn get_number_of_spillslots_for_value(
571
rc: RegClass,
572
target_vector_bytes: u32,
573
isa_flags: &Self::F,
574
) -> u32;
575
576
/// Get the ABI-dependent MachineEnv for managing register allocation.
577
fn get_machine_env(flags: &settings::Flags, call_conv: isa::CallConv) -> &MachineEnv;
578
579
/// Get all caller-save registers, that is, registers that we expect
580
/// not to be saved across a call to a callee with the given ABI.
581
fn get_regs_clobbered_by_call(
582
call_conv_of_callee: isa::CallConv,
583
is_exception: bool,
584
) -> PRegSet;
585
586
/// Get the needed extension mode, given the mode attached to the argument
587
/// in the signature and the calling convention. The input (the attribute in
588
/// the signature) specifies what extension type should be done *if* the ABI
589
/// requires extension to the full register; this method's return value
590
/// indicates whether the extension actually *will* be done.
591
fn get_ext_mode(
592
call_conv: isa::CallConv,
593
specified: ir::ArgumentExtension,
594
) -> ir::ArgumentExtension;
595
596
/// Get a temporary register that is available to use after a call
597
/// completes and that does not interfere with register-carried
598
/// return values. This is used to move stack-carried return
599
/// values directly into spillslots if needed.
600
fn retval_temp_reg(call_conv_of_callee: isa::CallConv) -> Writable<Reg>;
601
602
/// Get the exception payload registers, if any, for a calling
603
/// convention.
604
///
605
/// Note that the argument here is the calling convention of the *callee*.
606
/// This might differ from the caller but the exceptional payloads that are
607
/// available are defined by the callee, not the caller.
608
fn exception_payload_regs(callee_conv: isa::CallConv) -> &'static [Reg] {
609
let _ = callee_conv;
610
&[]
611
}
612
}
613
614
/// Out-of-line data for calls, to keep the size of `Inst` down.
615
#[derive(Clone, Debug)]
616
pub struct CallInfo<T> {
617
/// Receiver of this call
618
pub dest: T,
619
/// Register uses of this call.
620
pub uses: CallArgList,
621
/// Register defs of this call.
622
pub defs: CallRetList,
623
/// Registers clobbered by this call, as per its calling convention.
624
pub clobbers: PRegSet,
625
/// The calling convention of the callee.
626
pub callee_conv: isa::CallConv,
627
/// The calling convention of the caller.
628
pub caller_conv: isa::CallConv,
629
/// The number of bytes that the callee will pop from the stack for the
630
/// caller, if any. (Used for popping stack arguments with the `tail`
631
/// calling convention.)
632
pub callee_pop_size: u32,
633
/// Information for a try-call, if this is one. We combine
634
/// handling of calls and try-calls as much as possible to share
635
/// argument/return logic; they mostly differ in the metadata that
636
/// they emit, which this information feeds into.
637
pub try_call_info: Option<TryCallInfo>,
638
}
639
640
/// Out-of-line information present on `try_call` instructions only:
641
/// information that is used to generate exception-handling tables and
642
/// link up to destination blocks properly.
643
#[derive(Clone, Debug)]
644
pub struct TryCallInfo {
645
/// The target to jump to on a normal returhn.
646
pub continuation: MachLabel,
647
/// Exception tags to catch and corresponding destination labels.
648
pub exception_handlers: Box<[TryCallHandler]>,
649
}
650
651
/// Information about an individual handler at a try-call site.
652
#[derive(Clone, Debug)]
653
pub enum TryCallHandler {
654
/// If the tag matches (given the current context), recover at the
655
/// label.
656
Tag(ExceptionTag, MachLabel),
657
/// Recover at the label unconditionally.
658
Default(MachLabel),
659
/// Set the dynamic context for interpreting tags at this point in
660
/// the handler list.
661
Context(Reg),
662
}
663
664
impl<T> CallInfo<T> {
665
/// Creates an empty set of info with no clobbers/uses/etc with the
666
/// specified ABI
667
pub fn empty(dest: T, call_conv: isa::CallConv) -> CallInfo<T> {
668
CallInfo {
669
dest,
670
uses: smallvec![],
671
defs: smallvec![],
672
clobbers: PRegSet::empty(),
673
caller_conv: call_conv,
674
callee_conv: call_conv,
675
callee_pop_size: 0,
676
try_call_info: None,
677
}
678
}
679
}
680
681
/// The id of an ABI signature within the `SigSet`.
682
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
683
pub struct Sig(u32);
684
cranelift_entity::entity_impl!(Sig);
685
686
impl Sig {
687
fn prev(self) -> Option<Sig> {
688
self.0.checked_sub(1).map(Sig)
689
}
690
}
691
692
/// ABI information shared between body (callee) and caller.
693
#[derive(Clone, Debug)]
694
pub struct SigData {
695
/// Currently both return values and arguments are stored in a continuous space vector
696
/// in `SigSet::abi_args`.
697
///
698
/// ```plain
699
/// +----------------------------------------------+
700
/// | return values |
701
/// | ... |
702
/// rets_end --> +----------------------------------------------+
703
/// | arguments |
704
/// | ... |
705
/// args_end --> +----------------------------------------------+
706
///
707
/// ```
708
///
709
/// Note we only store two offsets as rets_end == args_start, and rets_start == prev.args_end.
710
///
711
/// Argument location ending offset (regs or stack slots). Stack offsets are relative to
712
/// SP on entry to function.
713
///
714
/// This is a index into the `SigSet::abi_args`.
715
args_end: u32,
716
717
/// Return-value location ending offset. Stack offsets are relative to the return-area
718
/// pointer.
719
///
720
/// This is a index into the `SigSet::abi_args`.
721
rets_end: u32,
722
723
/// Space on stack used to store arguments. We're storing the size in u32 to
724
/// reduce the size of the struct.
725
sized_stack_arg_space: u32,
726
727
/// Space on stack used to store return values. We're storing the size in u32 to
728
/// reduce the size of the struct.
729
sized_stack_ret_space: u32,
730
731
/// Index in `args` of the stack-return-value-area argument.
732
stack_ret_arg: Option<u16>,
733
734
/// Calling convention used.
735
call_conv: isa::CallConv,
736
}
737
738
impl SigData {
739
/// Get total stack space required for arguments.
740
pub fn sized_stack_arg_space(&self) -> u32 {
741
self.sized_stack_arg_space
742
}
743
744
/// Get total stack space required for return values.
745
pub fn sized_stack_ret_space(&self) -> u32 {
746
self.sized_stack_ret_space
747
}
748
749
/// Get calling convention used.
750
pub fn call_conv(&self) -> isa::CallConv {
751
self.call_conv
752
}
753
754
/// The index of the stack-return-value-area argument, if any.
755
pub fn stack_ret_arg(&self) -> Option<u16> {
756
self.stack_ret_arg
757
}
758
}
759
760
/// A (mostly) deduplicated set of ABI signatures.
761
///
762
/// We say "mostly" because we do not dedupe between signatures interned via
763
/// `ir::SigRef` (direct and indirect calls; the vast majority of signatures in
764
/// this set) vs via `ir::Signature` (the callee itself and libcalls). Doing
765
/// this final bit of deduplication would require filling out the
766
/// `ir_signature_to_abi_sig`, which is a bunch of allocations (not just the
767
/// hash map itself but params and returns vecs in each signature) that we want
768
/// to avoid.
769
///
770
/// In general, prefer using the `ir::SigRef`-taking methods to the
771
/// `ir::Signature`-taking methods when you can get away with it, as they don't
772
/// require cloning non-copy types that will trigger heap allocations.
773
///
774
/// This type can be indexed by `Sig` to access its associated `SigData`.
775
pub struct SigSet {
776
/// Interned `ir::Signature`s that we already have an ABI signature for.
777
ir_signature_to_abi_sig: FxHashMap<ir::Signature, Sig>,
778
779
/// Interned `ir::SigRef`s that we already have an ABI signature for.
780
ir_sig_ref_to_abi_sig: SecondaryMap<ir::SigRef, Option<Sig>>,
781
782
/// A single, shared allocation for all `ABIArg`s used by all
783
/// `SigData`s. Each `SigData` references its args/rets via indices into
784
/// this allocation.
785
abi_args: Vec<ABIArg>,
786
787
/// The actual ABI signatures, keyed by `Sig`.
788
sigs: PrimaryMap<Sig, SigData>,
789
}
790
791
impl SigSet {
792
/// Construct a new `SigSet`, interning all of the signatures used by the
793
/// given function.
794
pub fn new<M>(func: &ir::Function, flags: &settings::Flags) -> CodegenResult<Self>
795
where
796
M: ABIMachineSpec,
797
{
798
let arg_estimate = func.dfg.signatures.len() * 6;
799
800
let mut sigs = SigSet {
801
ir_signature_to_abi_sig: FxHashMap::default(),
802
ir_sig_ref_to_abi_sig: SecondaryMap::with_capacity(func.dfg.signatures.len()),
803
abi_args: Vec::with_capacity(arg_estimate),
804
sigs: PrimaryMap::with_capacity(1 + func.dfg.signatures.len()),
805
};
806
807
sigs.make_abi_sig_from_ir_signature::<M>(func.signature.clone(), flags)?;
808
for sig_ref in func.dfg.signatures.keys() {
809
sigs.make_abi_sig_from_ir_sig_ref::<M>(sig_ref, &func.dfg, flags)?;
810
}
811
812
Ok(sigs)
813
}
814
815
/// Have we already interned an ABI signature for the given `ir::Signature`?
816
pub fn have_abi_sig_for_signature(&self, signature: &ir::Signature) -> bool {
817
self.ir_signature_to_abi_sig.contains_key(signature)
818
}
819
820
/// Construct and intern an ABI signature for the given `ir::Signature`.
821
pub fn make_abi_sig_from_ir_signature<M>(
822
&mut self,
823
signature: ir::Signature,
824
flags: &settings::Flags,
825
) -> CodegenResult<Sig>
826
where
827
M: ABIMachineSpec,
828
{
829
// Because the `HashMap` entry API requires taking ownership of the
830
// lookup key -- and we want to avoid unnecessary clones of
831
// `ir::Signature`s, even at the cost of duplicate lookups -- we can't
832
// have a single, get-or-create-style method for interning
833
// `ir::Signature`s into ABI signatures. So at least (debug) assert that
834
// we aren't creating duplicate ABI signatures for the same
835
// `ir::Signature`.
836
debug_assert!(!self.have_abi_sig_for_signature(&signature));
837
838
let sig_data = self.from_func_sig::<M>(&signature, flags)?;
839
let sig = self.sigs.push(sig_data);
840
self.ir_signature_to_abi_sig.insert(signature, sig);
841
Ok(sig)
842
}
843
844
fn make_abi_sig_from_ir_sig_ref<M>(
845
&mut self,
846
sig_ref: ir::SigRef,
847
dfg: &ir::DataFlowGraph,
848
flags: &settings::Flags,
849
) -> CodegenResult<Sig>
850
where
851
M: ABIMachineSpec,
852
{
853
if let Some(sig) = self.ir_sig_ref_to_abi_sig[sig_ref] {
854
return Ok(sig);
855
}
856
let signature = &dfg.signatures[sig_ref];
857
let sig_data = self.from_func_sig::<M>(signature, flags)?;
858
let sig = self.sigs.push(sig_data);
859
self.ir_sig_ref_to_abi_sig[sig_ref] = Some(sig);
860
Ok(sig)
861
}
862
863
/// Get the already-interned ABI signature id for the given `ir::SigRef`.
864
pub fn abi_sig_for_sig_ref(&self, sig_ref: ir::SigRef) -> Sig {
865
self.ir_sig_ref_to_abi_sig[sig_ref]
866
.expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
867
}
868
869
/// Get the already-interned ABI signature id for the given `ir::Signature`.
870
pub fn abi_sig_for_signature(&self, signature: &ir::Signature) -> Sig {
871
self.ir_signature_to_abi_sig
872
.get(signature)
873
.copied()
874
.expect("must call `make_abi_sig_from_ir_signature` before `get_abi_sig_for_signature`")
875
}
876
877
pub fn from_func_sig<M: ABIMachineSpec>(
878
&mut self,
879
sig: &ir::Signature,
880
flags: &settings::Flags,
881
) -> CodegenResult<SigData> {
882
// Keep in sync with ensure_struct_return_ptr_is_returned
883
if sig.uses_special_return(ArgumentPurpose::StructReturn) {
884
panic!("Explicit StructReturn return value not allowed: {sig:?}")
885
}
886
let tmp;
887
let returns = if let Some(struct_ret_index) =
888
sig.special_param_index(ArgumentPurpose::StructReturn)
889
{
890
if !sig.returns.is_empty() {
891
panic!("No return values are allowed when using StructReturn: {sig:?}");
892
}
893
tmp = [sig.params[struct_ret_index]];
894
&tmp
895
} else {
896
sig.returns.as_slice()
897
};
898
899
// Compute args and retvals from signature. Handle retvals first,
900
// because we may need to add a return-area arg to the args.
901
902
// NOTE: We rely on the order of the args (rets -> args) inserted to compute the offsets in
903
// `SigSet::args()` and `SigSet::rets()`. Therefore, we cannot change the two
904
// compute_arg_locs order.
905
let (sized_stack_ret_space, _) = M::compute_arg_locs(
906
sig.call_conv,
907
flags,
908
&returns,
909
ArgsOrRets::Rets,
910
/* extra ret-area ptr = */ false,
911
ArgsAccumulator::new(&mut self.abi_args),
912
)?;
913
if !flags.enable_multi_ret_implicit_sret() {
914
assert_eq!(sized_stack_ret_space, 0);
915
}
916
let rets_end = u32::try_from(self.abi_args.len()).unwrap();
917
918
// To avoid overflow issues, limit the return size to something reasonable.
919
if sized_stack_ret_space > M::STACK_ARG_RET_SIZE_LIMIT {
920
return Err(CodegenError::ImplLimitExceeded);
921
}
922
923
let need_stack_return_area = sized_stack_ret_space > 0;
924
if need_stack_return_area {
925
assert!(!sig.uses_special_param(ir::ArgumentPurpose::StructReturn));
926
}
927
928
let (sized_stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
929
sig.call_conv,
930
flags,
931
&sig.params,
932
ArgsOrRets::Args,
933
need_stack_return_area,
934
ArgsAccumulator::new(&mut self.abi_args),
935
)?;
936
let args_end = u32::try_from(self.abi_args.len()).unwrap();
937
938
// To avoid overflow issues, limit the arg size to something reasonable.
939
if sized_stack_arg_space > M::STACK_ARG_RET_SIZE_LIMIT {
940
return Err(CodegenError::ImplLimitExceeded);
941
}
942
943
trace!(
944
"ABISig: sig {:?} => args end = {} rets end = {}
945
arg stack = {} ret stack = {} stack_ret_arg = {:?}",
946
sig,
947
args_end,
948
rets_end,
949
sized_stack_arg_space,
950
sized_stack_ret_space,
951
need_stack_return_area,
952
);
953
954
let stack_ret_arg = stack_ret_arg.map(|s| u16::try_from(s).unwrap());
955
Ok(SigData {
956
args_end,
957
rets_end,
958
sized_stack_arg_space,
959
sized_stack_ret_space,
960
stack_ret_arg,
961
call_conv: sig.call_conv,
962
})
963
}
964
965
/// Get this signature's ABI arguments.
966
pub fn args(&self, sig: Sig) -> &[ABIArg] {
967
let sig_data = &self.sigs[sig];
968
// Please see comments in `SigSet::from_func_sig` of how we store the offsets.
969
let start = usize::try_from(sig_data.rets_end).unwrap();
970
let end = usize::try_from(sig_data.args_end).unwrap();
971
&self.abi_args[start..end]
972
}
973
974
/// Get information specifying how to pass the implicit pointer
975
/// to the return-value area on the stack, if required.
976
pub fn get_ret_arg(&self, sig: Sig) -> Option<ABIArg> {
977
let sig_data = &self.sigs[sig];
978
if let Some(i) = sig_data.stack_ret_arg {
979
Some(self.args(sig)[usize::from(i)].clone())
980
} else {
981
None
982
}
983
}
984
985
/// Get information specifying how to pass one argument.
986
pub fn get_arg(&self, sig: Sig, idx: usize) -> ABIArg {
987
self.args(sig)[idx].clone()
988
}
989
990
/// Get this signature's ABI returns.
991
pub fn rets(&self, sig: Sig) -> &[ABIArg] {
992
let sig_data = &self.sigs[sig];
993
// Please see comments in `SigSet::from_func_sig` of how we store the offsets.
994
let start = usize::try_from(sig.prev().map_or(0, |prev| self.sigs[prev].args_end)).unwrap();
995
let end = usize::try_from(sig_data.rets_end).unwrap();
996
&self.abi_args[start..end]
997
}
998
999
/// Get information specifying how to pass one return value.
1000
pub fn get_ret(&self, sig: Sig, idx: usize) -> ABIArg {
1001
self.rets(sig)[idx].clone()
1002
}
1003
1004
/// Get the number of arguments expected.
1005
pub fn num_args(&self, sig: Sig) -> usize {
1006
let len = self.args(sig).len();
1007
if self.sigs[sig].stack_ret_arg.is_some() {
1008
len - 1
1009
} else {
1010
len
1011
}
1012
}
1013
1014
/// Get the number of return values expected.
1015
pub fn num_rets(&self, sig: Sig) -> usize {
1016
self.rets(sig).len()
1017
}
1018
}
1019
1020
// NB: we do _not_ implement `IndexMut` because these signatures are
1021
// deduplicated and shared!
1022
impl std::ops::Index<Sig> for SigSet {
1023
type Output = SigData;
1024
1025
fn index(&self, sig: Sig) -> &Self::Output {
1026
&self.sigs[sig]
1027
}
1028
}
1029
1030
/// Structure describing the layout of a function's stack frame.
1031
#[derive(Clone, Debug, Default)]
1032
pub struct FrameLayout {
1033
/// Word size in bytes, so this struct can be
1034
/// monomorphic/independent of `ABIMachineSpec`.
1035
pub word_bytes: u32,
1036
1037
/// N.B. The areas whose sizes are given in this structure fully
1038
/// cover the current function's stack frame, from high to low
1039
/// stack addresses in the sequence below. Each size contains
1040
/// any alignment padding that may be required by the ABI.
1041
1042
/// Size of incoming arguments on the stack. This is not technically
1043
/// part of this function's frame, but code in the function will still
1044
/// need to access it. Depending on the ABI, we may need to set up a
1045
/// frame pointer to do so; we also may need to pop this area from the
1046
/// stack upon return.
1047
pub incoming_args_size: u32,
1048
1049
/// The size of the incoming argument area, taking into account any
1050
/// potential increase in size required for tail calls present in the
1051
/// function. In the case that no tail calls are present, this value
1052
/// will be the same as [`Self::incoming_args_size`].
1053
pub tail_args_size: u32,
1054
1055
/// Size of the "setup area", typically holding the return address
1056
/// and/or the saved frame pointer. This may be written either during
1057
/// the call itself (e.g. a pushed return address) or by code emitted
1058
/// from gen_prologue_frame_setup. In any case, after that code has
1059
/// completed execution, the stack pointer is expected to point to the
1060
/// bottom of this area. The same holds at the start of code emitted
1061
/// by gen_epilogue_frame_restore.
1062
pub setup_area_size: u32,
1063
1064
/// Size of the area used to save callee-saved clobbered registers.
1065
/// This area is accessed by code emitted from gen_clobber_save and
1066
/// gen_clobber_restore.
1067
pub clobber_size: u32,
1068
1069
/// Storage allocated for the fixed part of the stack frame.
1070
/// This contains stack slots and spill slots.
1071
pub fixed_frame_storage_size: u32,
1072
1073
/// The size of all stackslots.
1074
pub stackslots_size: u32,
1075
1076
/// Stack size to be reserved for outgoing arguments, if used by
1077
/// the current ABI, or 0 otherwise. After gen_clobber_save and
1078
/// before gen_clobber_restore, the stack pointer points to the
1079
/// bottom of this area.
1080
pub outgoing_args_size: u32,
1081
1082
/// Sorted list of callee-saved registers that are clobbered
1083
/// according to the ABI. These registers will be saved and
1084
/// restored by gen_clobber_save and gen_clobber_restore.
1085
pub clobbered_callee_saves: Vec<Writable<RealReg>>,
1086
1087
/// The function's call pattern classification.
1088
pub function_calls: FunctionCalls,
1089
}
1090
1091
impl FrameLayout {
1092
/// Split the clobbered callee-save registers into integer-class and
1093
/// float-class groups.
1094
///
1095
/// This method does not currently support vector-class callee-save
1096
/// registers because no current backend has them.
1097
pub fn clobbered_callee_saves_by_class(&self) -> (&[Writable<RealReg>], &[Writable<RealReg>]) {
1098
let (ints, floats) = self.clobbered_callee_saves.split_at(
1099
self.clobbered_callee_saves
1100
.partition_point(|r| r.to_reg().class() == RegClass::Int),
1101
);
1102
debug_assert!(floats.iter().all(|r| r.to_reg().class() == RegClass::Float));
1103
(ints, floats)
1104
}
1105
1106
/// The size of FP to SP while the frame is active (not during prologue
1107
/// setup or epilogue tear down).
1108
pub fn active_size(&self) -> u32 {
1109
self.outgoing_args_size + self.fixed_frame_storage_size + self.clobber_size
1110
}
1111
1112
/// Get the offset from the SP to the sized stack slots area.
1113
pub fn sp_to_sized_stack_slots(&self) -> u32 {
1114
self.outgoing_args_size
1115
}
1116
1117
/// Get the offset of a spill slot from SP.
1118
pub fn spillslot_offset(&self, spillslot: SpillSlot) -> i64 {
1119
// Offset from beginning of spillslot area.
1120
let islot = spillslot.index() as i64;
1121
let spill_off = islot * self.word_bytes as i64;
1122
let sp_off = self.stackslots_size as i64 + spill_off;
1123
1124
sp_off
1125
}
1126
1127
/// Get the offset from SP up to FP.
1128
pub fn sp_to_fp(&self) -> u32 {
1129
self.outgoing_args_size + self.fixed_frame_storage_size + self.clobber_size
1130
}
1131
}
1132
1133
/// ABI object for a function body.
1134
pub struct Callee<M: ABIMachineSpec> {
1135
/// CLIF-level signature, possibly normalized.
1136
ir_sig: ir::Signature,
1137
/// Signature: arg and retval regs.
1138
sig: Sig,
1139
/// Defined dynamic types.
1140
dynamic_type_sizes: HashMap<Type, u32>,
1141
/// Offsets to each dynamic stackslot.
1142
dynamic_stackslots: PrimaryMap<DynamicStackSlot, u32>,
1143
/// Offsets to each sized stackslot.
1144
sized_stackslots: PrimaryMap<StackSlot, u32>,
1145
/// Total stack size of all stackslots
1146
stackslots_size: u32,
1147
/// Stack size to be reserved for outgoing arguments.
1148
outgoing_args_size: u32,
1149
/// Initially the number of bytes originating in the callers frame where stack arguments will
1150
/// live. After lowering this number may be larger than the size expected by the function being
1151
/// compiled, as tail calls potentially require more space for stack arguments.
1152
tail_args_size: u32,
1153
/// Register-argument defs, to be provided to the `args`
1154
/// pseudo-inst, and pregs to constrain them to.
1155
reg_args: Vec<ArgPair>,
1156
/// Finalized frame layout for this function.
1157
frame_layout: Option<FrameLayout>,
1158
/// The register holding the return-area pointer, if needed.
1159
ret_area_ptr: Option<Reg>,
1160
/// Calling convention this function expects.
1161
call_conv: isa::CallConv,
1162
/// The settings controlling this function's compilation.
1163
flags: settings::Flags,
1164
/// The ISA-specific flag values controlling this function's compilation.
1165
isa_flags: M::F,
1166
/// If this function has a stack limit specified, then `Reg` is where the
1167
/// stack limit will be located after the instructions specified have been
1168
/// executed.
1169
///
1170
/// Note that this is intended for insertion into the prologue, if
1171
/// present. Also note that because the instructions here execute in the
1172
/// prologue this happens after legalization/register allocation/etc so we
1173
/// need to be extremely careful with each instruction. The instructions are
1174
/// manually register-allocated and carefully only use caller-saved
1175
/// registers and keep nothing live after this sequence of instructions.
1176
stack_limit: Option<(Reg, SmallInstVec<M::I>)>,
1177
1178
_mach: PhantomData<M>,
1179
}
1180
1181
fn get_special_purpose_param_register(
1182
f: &ir::Function,
1183
sigs: &SigSet,
1184
sig: Sig,
1185
purpose: ir::ArgumentPurpose,
1186
) -> Option<Reg> {
1187
let idx = f.signature.special_param_index(purpose)?;
1188
match &sigs.args(sig)[idx] {
1189
&ABIArg::Slots { ref slots, .. } => match &slots[0] {
1190
&ABIArgSlot::Reg { reg, .. } => Some(reg.into()),
1191
_ => None,
1192
},
1193
_ => None,
1194
}
1195
}
1196
1197
fn checked_round_up(val: u32, mask: u32) -> Option<u32> {
1198
Some(val.checked_add(mask)? & !mask)
1199
}
1200
1201
impl<M: ABIMachineSpec> Callee<M> {
1202
/// Create a new body ABI instance.
1203
pub fn new(
1204
f: &ir::Function,
1205
isa: &dyn TargetIsa,
1206
isa_flags: &M::F,
1207
sigs: &SigSet,
1208
) -> CodegenResult<Self> {
1209
trace!("ABI: func signature {:?}", f.signature);
1210
1211
let flags = isa.flags().clone();
1212
let sig = sigs.abi_sig_for_signature(&f.signature);
1213
1214
let call_conv = f.signature.call_conv;
1215
// Only these calling conventions are supported.
1216
debug_assert!(
1217
call_conv == isa::CallConv::SystemV
1218
|| call_conv == isa::CallConv::Tail
1219
|| call_conv == isa::CallConv::Fast
1220
|| call_conv == isa::CallConv::Cold
1221
|| call_conv == isa::CallConv::WindowsFastcall
1222
|| call_conv == isa::CallConv::AppleAarch64
1223
|| call_conv == isa::CallConv::Winch,
1224
"Unsupported calling convention: {call_conv:?}"
1225
);
1226
1227
// Compute sized stackslot locations and total stackslot size.
1228
let mut end_offset: u32 = 0;
1229
let mut sized_stackslots = PrimaryMap::new();
1230
1231
for (stackslot, data) in f.sized_stack_slots.iter() {
1232
// We start our computation possibly unaligned where the previous
1233
// stackslot left off.
1234
let unaligned_start_offset = end_offset;
1235
1236
// The start of the stackslot must be aligned.
1237
//
1238
// We always at least machine-word-align slots, but also
1239
// satisfy the user's requested alignment.
1240
debug_assert!(data.align_shift < 32);
1241
let align = std::cmp::max(M::word_bytes(), 1u32 << data.align_shift);
1242
let mask = align - 1;
1243
let start_offset = checked_round_up(unaligned_start_offset, mask)
1244
.ok_or(CodegenError::ImplLimitExceeded)?;
1245
1246
// The end offset is the start offset increased by the size
1247
end_offset = start_offset
1248
.checked_add(data.size)
1249
.ok_or(CodegenError::ImplLimitExceeded)?;
1250
1251
debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
1252
sized_stackslots.push(start_offset);
1253
}
1254
1255
// Compute dynamic stackslot locations and total stackslot size.
1256
let mut dynamic_stackslots = PrimaryMap::new();
1257
for (stackslot, data) in f.dynamic_stack_slots.iter() {
1258
debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());
1259
1260
// This computation is similar to the stackslots above
1261
let unaligned_start_offset = end_offset;
1262
1263
let mask = M::word_bytes() - 1;
1264
let start_offset = checked_round_up(unaligned_start_offset, mask)
1265
.ok_or(CodegenError::ImplLimitExceeded)?;
1266
1267
let ty = f.get_concrete_dynamic_ty(data.dyn_ty).ok_or_else(|| {
1268
CodegenError::Unsupported(format!("invalid dynamic vector type: {}", data.dyn_ty))
1269
})?;
1270
1271
end_offset = start_offset
1272
.checked_add(isa.dynamic_vector_bytes(ty))
1273
.ok_or(CodegenError::ImplLimitExceeded)?;
1274
1275
dynamic_stackslots.push(start_offset);
1276
}
1277
1278
// The size of the stackslots needs to be word aligned
1279
let stackslots_size = checked_round_up(end_offset, M::word_bytes() - 1)
1280
.ok_or(CodegenError::ImplLimitExceeded)?;
1281
1282
let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
1283
for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
1284
let ty = f
1285
.get_concrete_dynamic_ty(dyn_ty)
1286
.unwrap_or_else(|| panic!("invalid dynamic vector type: {dyn_ty}"));
1287
let size = isa.dynamic_vector_bytes(ty);
1288
dynamic_type_sizes.insert(ty, size);
1289
}
1290
1291
// Figure out what instructions, if any, will be needed to check the
1292
// stack limit. This can either be specified as a special-purpose
1293
// argument or as a global value which often calculates the stack limit
1294
// from the arguments.
1295
let stack_limit = f
1296
.stack_limit
1297
.map(|gv| gen_stack_limit::<M>(f, sigs, sig, gv));
1298
1299
let tail_args_size = sigs[sig].sized_stack_arg_space;
1300
1301
Ok(Self {
1302
ir_sig: ensure_struct_return_ptr_is_returned(&f.signature),
1303
sig,
1304
dynamic_stackslots,
1305
dynamic_type_sizes,
1306
sized_stackslots,
1307
stackslots_size,
1308
outgoing_args_size: 0,
1309
tail_args_size,
1310
reg_args: vec![],
1311
frame_layout: None,
1312
ret_area_ptr: None,
1313
call_conv,
1314
flags,
1315
isa_flags: isa_flags.clone(),
1316
stack_limit,
1317
_mach: PhantomData,
1318
})
1319
}
1320
1321
/// Inserts instructions necessary for checking the stack limit into the
1322
/// prologue.
1323
///
1324
/// This function will generate instructions necessary for perform a stack
1325
/// check at the header of a function. The stack check is intended to trap
1326
/// if the stack pointer goes below a particular threshold, preventing stack
1327
/// overflow in wasm or other code. The `stack_limit` argument here is the
1328
/// register which holds the threshold below which we're supposed to trap.
1329
/// This function is known to allocate `stack_size` bytes and we'll push
1330
/// instructions onto `insts`.
1331
///
1332
/// Note that the instructions generated here are special because this is
1333
/// happening so late in the pipeline (e.g. after register allocation). This
1334
/// means that we need to do manual register allocation here and also be
1335
/// careful to not clobber any callee-saved or argument registers. For now
1336
/// this routine makes do with the `spilltmp_reg` as one temporary
1337
/// register, and a second register of `tmp2` which is caller-saved. This
1338
/// should be fine for us since no spills should happen in this sequence of
1339
/// instructions, so our register won't get accidentally clobbered.
1340
///
1341
/// No values can be live after the prologue, but in this case that's ok
1342
/// because we just need to perform a stack check before progressing with
1343
/// the rest of the function.
1344
fn insert_stack_check(
1345
&self,
1346
stack_limit: Reg,
1347
stack_size: u32,
1348
insts: &mut SmallInstVec<M::I>,
1349
) {
1350
// With no explicit stack allocated we can just emit the simple check of
1351
// the stack registers against the stack limit register, and trap if
1352
// it's out of bounds.
1353
if stack_size == 0 {
1354
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
1355
return;
1356
}
1357
1358
// Note that the 32k stack size here is pretty special. See the
1359
// documentation in x86/abi.rs for why this is here. The general idea is
1360
// that we're protecting against overflow in the addition that happens
1361
// below.
1362
if stack_size >= 32 * 1024 {
1363
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
1364
}
1365
1366
// Add the `stack_size` to `stack_limit`, placing the result in
1367
// `scratch`.
1368
//
1369
// Note though that `stack_limit`'s register may be the same as
1370
// `scratch`. If our stack size doesn't fit into an immediate this
1371
// means we need a second scratch register for loading the stack size
1372
// into a register.
1373
let scratch = Writable::from_reg(M::get_stacklimit_reg(self.call_conv));
1374
insts.extend(M::gen_add_imm(
1375
self.call_conv,
1376
scratch,
1377
stack_limit,
1378
stack_size,
1379
));
1380
insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
1381
}
1382
}
1383
1384
/// Generates the instructions necessary for the `gv` to be materialized into a
1385
/// register.
1386
///
1387
/// This function will return a register that will contain the result of
1388
/// evaluating `gv`. It will also return any instructions necessary to calculate
1389
/// the value of the register.
1390
///
1391
/// Note that global values are typically lowered to instructions via the
1392
/// standard legalization pass. Unfortunately though prologue generation happens
1393
/// so late in the pipeline that we can't use these legalization passes to
1394
/// generate the instructions for `gv`. As a result we duplicate some lowering
1395
/// of `gv` here and support only some global values. This is similar to what
1396
/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
1397
/// in the future too!
1398
///
1399
/// Also note that this function will make use of `writable_spilltmp_reg()` as a
1400
/// temporary register to store values in if necessary. Currently after we write
1401
/// to this register there's guaranteed to be no spilled values between where
1402
/// it's used, because we're not participating in register allocation anyway!
1403
fn gen_stack_limit<M: ABIMachineSpec>(
1404
f: &ir::Function,
1405
sigs: &SigSet,
1406
sig: Sig,
1407
gv: ir::GlobalValue,
1408
) -> (Reg, SmallInstVec<M::I>) {
1409
let mut insts = smallvec![];
1410
let reg = generate_gv::<M>(f, sigs, sig, gv, &mut insts);
1411
return (reg, insts);
1412
}
1413
1414
fn generate_gv<M: ABIMachineSpec>(
1415
f: &ir::Function,
1416
sigs: &SigSet,
1417
sig: Sig,
1418
gv: ir::GlobalValue,
1419
insts: &mut SmallInstVec<M::I>,
1420
) -> Reg {
1421
match f.global_values[gv] {
1422
// Return the direct register the vmcontext is in
1423
ir::GlobalValueData::VMContext => {
1424
get_special_purpose_param_register(f, sigs, sig, ir::ArgumentPurpose::VMContext)
1425
.expect("no vmcontext parameter found")
1426
}
1427
// Load our base value into a register, then load from that register
1428
// in to a temporary register.
1429
ir::GlobalValueData::Load {
1430
base,
1431
offset,
1432
global_type: _,
1433
flags: _,
1434
} => {
1435
let base = generate_gv::<M>(f, sigs, sig, base, insts);
1436
let into_reg = Writable::from_reg(M::get_stacklimit_reg(f.stencil.signature.call_conv));
1437
insts.push(M::gen_load_base_offset(
1438
into_reg,
1439
base,
1440
offset.into(),
1441
M::word_type(),
1442
));
1443
return into_reg.to_reg();
1444
}
1445
ref other => panic!("global value for stack limit not supported: {other}"),
1446
}
1447
}
1448
1449
/// Returns true if the signature needs to be legalized.
1450
fn missing_struct_return(sig: &ir::Signature) -> bool {
1451
sig.uses_special_param(ArgumentPurpose::StructReturn)
1452
&& !sig.uses_special_return(ArgumentPurpose::StructReturn)
1453
}
1454
1455
fn ensure_struct_return_ptr_is_returned(sig: &ir::Signature) -> ir::Signature {
1456
// Keep in sync with Callee::new
1457
let mut sig = sig.clone();
1458
if sig.uses_special_return(ArgumentPurpose::StructReturn) {
1459
panic!("Explicit StructReturn return value not allowed: {sig:?}")
1460
}
1461
if let Some(struct_ret_index) = sig.special_param_index(ArgumentPurpose::StructReturn) {
1462
if !sig.returns.is_empty() {
1463
panic!("No return values are allowed when using StructReturn: {sig:?}");
1464
}
1465
sig.returns.insert(0, sig.params[struct_ret_index]);
1466
}
1467
sig
1468
}
1469
1470
/// ### Pre-Regalloc Functions
1471
///
1472
/// These methods of `Callee` may only be called before regalloc.
1473
impl<M: ABIMachineSpec> Callee<M> {
1474
/// Access the (possibly legalized) signature.
1475
pub fn signature(&self) -> &ir::Signature {
1476
debug_assert!(
1477
!missing_struct_return(&self.ir_sig),
1478
"`Callee::ir_sig` is always legalized"
1479
);
1480
&self.ir_sig
1481
}
1482
1483
/// Initialize. This is called after the Callee is constructed because it
1484
/// may allocate a temp vreg, which can only be allocated once the lowering
1485
/// context exists.
1486
pub fn init_retval_area(
1487
&mut self,
1488
sigs: &SigSet,
1489
vregs: &mut VRegAllocator<M::I>,
1490
) -> CodegenResult<()> {
1491
if sigs[self.sig].stack_ret_arg.is_some() {
1492
let ret_area_ptr = vregs.alloc(M::word_type())?;
1493
self.ret_area_ptr = Some(ret_area_ptr.only_reg().unwrap());
1494
}
1495
Ok(())
1496
}
1497
1498
/// Get the return area pointer register, if any.
1499
pub fn ret_area_ptr(&self) -> Option<Reg> {
1500
self.ret_area_ptr
1501
}
1502
1503
/// Accumulate outgoing arguments.
1504
///
1505
/// This ensures that at least `size` bytes are allocated in the prologue to
1506
/// be available for use in function calls to hold arguments and/or return
1507
/// values. If this function is called multiple times, the maximum of all
1508
/// `size` values will be available.
1509
pub fn accumulate_outgoing_args_size(&mut self, size: u32) {
1510
if size > self.outgoing_args_size {
1511
self.outgoing_args_size = size;
1512
}
1513
}
1514
1515
/// Accumulate the incoming argument area size requirements for a tail call,
1516
/// as it could be larger than the incoming arguments of the function
1517
/// currently being compiled.
1518
pub fn accumulate_tail_args_size(&mut self, size: u32) {
1519
if size > self.tail_args_size {
1520
self.tail_args_size = size;
1521
}
1522
}
1523
1524
pub fn is_forward_edge_cfi_enabled(&self) -> bool {
1525
self.isa_flags.is_forward_edge_cfi_enabled()
1526
}
1527
1528
/// Get the calling convention implemented by this ABI object.
1529
pub fn call_conv(&self) -> isa::CallConv {
1530
self.call_conv
1531
}
1532
1533
/// Get the ABI-dependent MachineEnv for managing register allocation.
1534
pub fn machine_env(&self) -> &MachineEnv {
1535
M::get_machine_env(&self.flags, self.call_conv)
1536
}
1537
1538
/// The offsets of all sized stack slots (not spill slots) for debuginfo purposes.
1539
pub fn sized_stackslot_offsets(&self) -> &PrimaryMap<StackSlot, u32> {
1540
&self.sized_stackslots
1541
}
1542
1543
/// The offsets of all dynamic stack slots (not spill slots) for debuginfo purposes.
1544
pub fn dynamic_stackslot_offsets(&self) -> &PrimaryMap<DynamicStackSlot, u32> {
1545
&self.dynamic_stackslots
1546
}
1547
1548
/// Generate an instruction which copies an argument to a destination
1549
/// register.
1550
pub fn gen_copy_arg_to_regs(
1551
&mut self,
1552
sigs: &SigSet,
1553
idx: usize,
1554
into_regs: ValueRegs<Writable<Reg>>,
1555
vregs: &mut VRegAllocator<M::I>,
1556
) -> SmallInstVec<M::I> {
1557
let mut insts = smallvec![];
1558
let mut copy_arg_slot_to_reg = |slot: &ABIArgSlot, into_reg: &Writable<Reg>| {
1559
match slot {
1560
&ABIArgSlot::Reg { reg, .. } => {
1561
// Add a preg -> def pair to the eventual `args`
1562
// instruction. Extension mode doesn't matter
1563
// (we're copying out, not in; we ignore high bits
1564
// by convention).
1565
let arg = ArgPair {
1566
vreg: *into_reg,
1567
preg: reg.into(),
1568
};
1569
self.reg_args.push(arg);
1570
}
1571
&ABIArgSlot::Stack {
1572
offset,
1573
ty,
1574
extension,
1575
..
1576
} => {
1577
// However, we have to respect the extension mode for stack
1578
// slots, or else we grab the wrong bytes on big-endian.
1579
let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1580
let ty =
1581
if ext != ArgumentExtension::None && M::word_bits() > ty_bits(ty) as u32 {
1582
M::word_type()
1583
} else {
1584
ty
1585
};
1586
insts.push(M::gen_load_stack(
1587
StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1588
*into_reg,
1589
ty,
1590
));
1591
}
1592
}
1593
};
1594
1595
match &sigs.args(self.sig)[idx] {
1596
&ABIArg::Slots { ref slots, .. } => {
1597
assert_eq!(into_regs.len(), slots.len());
1598
for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
1599
copy_arg_slot_to_reg(&slot, &into_reg);
1600
}
1601
}
1602
&ABIArg::StructArg { offset, .. } => {
1603
let into_reg = into_regs.only_reg().unwrap();
1604
// Buffer address is implicitly defined by the ABI.
1605
insts.push(M::gen_get_stack_addr(
1606
StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1607
into_reg,
1608
));
1609
}
1610
&ABIArg::ImplicitPtrArg { pointer, ty, .. } => {
1611
let into_reg = into_regs.only_reg().unwrap();
1612
// We need to dereference the pointer.
1613
let base = match &pointer {
1614
&ABIArgSlot::Reg { reg, ty, .. } => {
1615
let tmp = vregs.alloc_with_deferred_error(ty).only_reg().unwrap();
1616
self.reg_args.push(ArgPair {
1617
vreg: Writable::from_reg(tmp),
1618
preg: reg.into(),
1619
});
1620
tmp
1621
}
1622
&ABIArgSlot::Stack { offset, ty, .. } => {
1623
let addr_reg = writable_value_regs(vregs.alloc_with_deferred_error(ty))
1624
.only_reg()
1625
.unwrap();
1626
insts.push(M::gen_load_stack(
1627
StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
1628
addr_reg,
1629
ty,
1630
));
1631
addr_reg.to_reg()
1632
}
1633
};
1634
insts.push(M::gen_load_base_offset(into_reg, base, 0, ty));
1635
}
1636
}
1637
insts
1638
}
1639
1640
/// Generate an instruction which copies a source register to a return value slot.
1641
pub fn gen_copy_regs_to_retval(
1642
&self,
1643
sigs: &SigSet,
1644
idx: usize,
1645
from_regs: ValueRegs<Reg>,
1646
vregs: &mut VRegAllocator<M::I>,
1647
) -> (SmallVec<[RetPair; 2]>, SmallInstVec<M::I>) {
1648
let mut reg_pairs = smallvec![];
1649
let mut ret = smallvec![];
1650
let word_bits = M::word_bits() as u8;
1651
match &sigs.rets(self.sig)[idx] {
1652
&ABIArg::Slots { ref slots, .. } => {
1653
assert_eq!(from_regs.len(), slots.len());
1654
for (slot, &from_reg) in slots.iter().zip(from_regs.regs().iter()) {
1655
match slot {
1656
&ABIArgSlot::Reg {
1657
reg, ty, extension, ..
1658
} => {
1659
let from_bits = ty_bits(ty) as u8;
1660
let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1661
let vreg = match (ext, from_bits) {
1662
(ir::ArgumentExtension::Uext, n)
1663
| (ir::ArgumentExtension::Sext, n)
1664
if n < word_bits =>
1665
{
1666
let signed = ext == ir::ArgumentExtension::Sext;
1667
let dst =
1668
writable_value_regs(vregs.alloc_with_deferred_error(ty))
1669
.only_reg()
1670
.unwrap();
1671
ret.push(M::gen_extend(
1672
dst, from_reg, signed, from_bits,
1673
/* to_bits = */ word_bits,
1674
));
1675
dst.to_reg()
1676
}
1677
_ => {
1678
// No move needed, regalloc2 will emit it using the constraint
1679
// added by the RetPair.
1680
from_reg
1681
}
1682
};
1683
reg_pairs.push(RetPair {
1684
vreg,
1685
preg: Reg::from(reg),
1686
});
1687
}
1688
&ABIArgSlot::Stack {
1689
offset,
1690
ty,
1691
extension,
1692
..
1693
} => {
1694
let mut ty = ty;
1695
let from_bits = ty_bits(ty) as u8;
1696
// A machine ABI implementation should ensure that stack frames
1697
// have "reasonable" size. All current ABIs for machinst
1698
// backends (aarch64 and x64) enforce a 128MB limit.
1699
let off = i32::try_from(offset).expect(
1700
"Argument stack offset greater than 2GB; should hit impl limit first",
1701
);
1702
let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
1703
// Trash the from_reg; it should be its last use.
1704
match (ext, from_bits) {
1705
(ir::ArgumentExtension::Uext, n)
1706
| (ir::ArgumentExtension::Sext, n)
1707
if n < word_bits =>
1708
{
1709
assert_eq!(M::word_reg_class(), from_reg.class());
1710
let signed = ext == ir::ArgumentExtension::Sext;
1711
let dst =
1712
writable_value_regs(vregs.alloc_with_deferred_error(ty))
1713
.only_reg()
1714
.unwrap();
1715
ret.push(M::gen_extend(
1716
dst, from_reg, signed, from_bits,
1717
/* to_bits = */ word_bits,
1718
));
1719
// Store the extended version.
1720
ty = M::word_type();
1721
}
1722
_ => {}
1723
};
1724
ret.push(M::gen_store_base_offset(
1725
self.ret_area_ptr.unwrap(),
1726
off,
1727
from_reg,
1728
ty,
1729
));
1730
}
1731
}
1732
}
1733
}
1734
ABIArg::StructArg { .. } => {
1735
panic!("StructArg in return position is unsupported");
1736
}
1737
ABIArg::ImplicitPtrArg { .. } => {
1738
panic!("ImplicitPtrArg in return position is unsupported");
1739
}
1740
}
1741
(reg_pairs, ret)
1742
}
1743
1744
/// Generate any setup instruction needed to save values to the
1745
/// return-value area. This is usually used when were are multiple return
1746
/// values or an otherwise large return value that must be passed on the
1747
/// stack; typically the ABI specifies an extra hidden argument that is a
1748
/// pointer to that memory.
1749
pub fn gen_retval_area_setup(
1750
&mut self,
1751
sigs: &SigSet,
1752
vregs: &mut VRegAllocator<M::I>,
1753
) -> Option<M::I> {
1754
if let Some(i) = sigs[self.sig].stack_ret_arg {
1755
let ret_area_ptr = Writable::from_reg(self.ret_area_ptr.unwrap());
1756
let insts =
1757
self.gen_copy_arg_to_regs(sigs, i.into(), ValueRegs::one(ret_area_ptr), vregs);
1758
insts.into_iter().next().map(|inst| {
1759
trace!(
1760
"gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
1761
inst,
1762
ret_area_ptr.to_reg()
1763
);
1764
inst
1765
})
1766
} else {
1767
trace!("gen_retval_area_setup: not needed");
1768
None
1769
}
1770
}
1771
1772
/// Generate a return instruction.
1773
pub fn gen_rets(&self, rets: Vec<RetPair>) -> M::I {
1774
M::gen_rets(rets)
1775
}
1776
1777
/// Set up arguments values `args` for a call with signature `sig`.
1778
/// This will return a series of instructions to be emitted to set
1779
/// up all arguments, as well as a `CallArgList` list representing
1780
/// the arguments passed in registers. The latter need to be added
1781
/// as constraints to the actual call instruction.
1782
pub fn gen_call_args(
1783
&self,
1784
sigs: &SigSet,
1785
sig: Sig,
1786
args: &[ValueRegs<Reg>],
1787
is_tail_call: bool,
1788
flags: &settings::Flags,
1789
vregs: &mut VRegAllocator<M::I>,
1790
) -> (CallArgList, SmallInstVec<M::I>) {
1791
let mut uses: CallArgList = smallvec![];
1792
let mut insts = smallvec![];
1793
1794
assert_eq!(args.len(), sigs.num_args(sig));
1795
1796
let call_conv = sigs[sig].call_conv;
1797
let stack_arg_space = sigs[sig].sized_stack_arg_space;
1798
let stack_arg = |offset| {
1799
if is_tail_call {
1800
StackAMode::IncomingArg(offset, stack_arg_space)
1801
} else {
1802
StackAMode::OutgoingArg(offset)
1803
}
1804
};
1805
1806
let word_ty = M::word_type();
1807
let word_rc = M::word_reg_class();
1808
let word_bits = M::word_bits() as usize;
1809
1810
if is_tail_call {
1811
debug_assert_eq!(
1812
self.call_conv,
1813
isa::CallConv::Tail,
1814
"Can only do `return_call`s from within a `tail` calling convention function"
1815
);
1816
}
1817
1818
// Helper to process a single argument slot (register or stack slot).
1819
// This will either add the register to the `uses` list or write the
1820
// value to the stack slot in the outgoing argument area (or for tail
1821
// calls, the incoming argument area).
1822
let mut process_arg_slot = |insts: &mut SmallInstVec<M::I>, slot, vreg, ty| {
1823
match &slot {
1824
&ABIArgSlot::Reg { reg, .. } => {
1825
uses.push(CallArgPair {
1826
vreg,
1827
preg: reg.into(),
1828
});
1829
}
1830
&ABIArgSlot::Stack { offset, .. } => {
1831
insts.push(M::gen_store_stack(stack_arg(offset), vreg, ty));
1832
}
1833
};
1834
};
1835
1836
// First pass: Handle `StructArg` arguments. These need to be copied
1837
// into their associated stack buffers. This should happen before any
1838
// of the other arguments are processed, as the `memcpy` call might
1839
// clobber registers used by other arguments.
1840
for (idx, from_regs) in args.iter().enumerate() {
1841
match &sigs.args(sig)[idx] {
1842
&ABIArg::Slots { .. } | &ABIArg::ImplicitPtrArg { .. } => {}
1843
&ABIArg::StructArg { offset, size, .. } => {
1844
let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1845
insts.push(M::gen_get_stack_addr(
1846
stack_arg(offset),
1847
Writable::from_reg(tmp),
1848
));
1849
insts.extend(M::gen_memcpy(
1850
isa::CallConv::for_libcall(flags, call_conv),
1851
tmp,
1852
from_regs.only_reg().unwrap(),
1853
size as usize,
1854
|ty| {
1855
Writable::from_reg(
1856
vregs.alloc_with_deferred_error(ty).only_reg().unwrap(),
1857
)
1858
},
1859
));
1860
}
1861
}
1862
}
1863
1864
// Second pass: Handle everything except `StructArg` arguments.
1865
for (idx, from_regs) in args.iter().enumerate() {
1866
match sigs.args(sig)[idx] {
1867
ABIArg::Slots { ref slots, .. } => {
1868
assert_eq!(from_regs.len(), slots.len());
1869
for (slot, from_reg) in slots.iter().zip(from_regs.regs().iter()) {
1870
// Load argument slot value from `from_reg`, and perform any zero-
1871
// or sign-extension that is required by the ABI.
1872
let (ty, extension) = match *slot {
1873
ABIArgSlot::Reg { ty, extension, .. } => (ty, extension),
1874
ABIArgSlot::Stack { ty, extension, .. } => (ty, extension),
1875
};
1876
let ext = M::get_ext_mode(call_conv, extension);
1877
let (vreg, ty) = if ext != ir::ArgumentExtension::None
1878
&& ty_bits(ty) < word_bits
1879
{
1880
assert_eq!(word_rc, from_reg.class());
1881
let signed = match ext {
1882
ir::ArgumentExtension::Uext => false,
1883
ir::ArgumentExtension::Sext => true,
1884
_ => unreachable!(),
1885
};
1886
let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1887
insts.push(M::gen_extend(
1888
Writable::from_reg(tmp),
1889
*from_reg,
1890
signed,
1891
ty_bits(ty) as u8,
1892
word_bits as u8,
1893
));
1894
(tmp, word_ty)
1895
} else {
1896
(*from_reg, ty)
1897
};
1898
process_arg_slot(&mut insts, *slot, vreg, ty);
1899
}
1900
}
1901
ABIArg::ImplicitPtrArg {
1902
offset,
1903
pointer,
1904
ty,
1905
..
1906
} => {
1907
let vreg = from_regs.only_reg().unwrap();
1908
let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1909
insts.push(M::gen_get_stack_addr(
1910
stack_arg(offset),
1911
Writable::from_reg(tmp),
1912
));
1913
insts.push(M::gen_store_base_offset(tmp, 0, vreg, ty));
1914
process_arg_slot(&mut insts, pointer, tmp, word_ty);
1915
}
1916
ABIArg::StructArg { .. } => {}
1917
}
1918
}
1919
1920
// Finally, set the stack-return pointer to the return argument area.
1921
// For tail calls, this means forwarding the incoming stack-return pointer.
1922
if let Some(ret_arg) = sigs.get_ret_arg(sig) {
1923
let ret_area = if is_tail_call {
1924
self.ret_area_ptr.expect(
1925
"if the tail callee has a return pointer, then the tail caller must as well",
1926
)
1927
} else {
1928
let tmp = vregs.alloc_with_deferred_error(word_ty).only_reg().unwrap();
1929
let amode = StackAMode::OutgoingArg(stack_arg_space.into());
1930
insts.push(M::gen_get_stack_addr(amode, Writable::from_reg(tmp)));
1931
tmp
1932
};
1933
match ret_arg {
1934
// The return pointer must occupy a single slot.
1935
ABIArg::Slots { slots, .. } => {
1936
assert_eq!(slots.len(), 1);
1937
process_arg_slot(&mut insts, slots[0], ret_area, word_ty);
1938
}
1939
_ => unreachable!(),
1940
}
1941
}
1942
1943
(uses, insts)
1944
}
1945
1946
/// Set up return values `outputs` for a call with signature `sig`.
1947
/// This does not emit (or return) any instructions, but returns a
1948
/// `CallRetList` representing the return value constraints. This
1949
/// needs to be added to the actual call instruction.
1950
///
1951
/// If `try_call_payloads` is non-zero, it is expected to hold
1952
/// exception payload registers for try_call instructions. These
1953
/// will be added as needed to the `CallRetList` as well.
1954
pub fn gen_call_rets(
1955
&self,
1956
sigs: &SigSet,
1957
sig: Sig,
1958
outputs: &[ValueRegs<Reg>],
1959
try_call_payloads: Option<&[Writable<Reg>]>,
1960
vregs: &mut VRegAllocator<M::I>,
1961
) -> CallRetList {
1962
let callee_conv = sigs[sig].call_conv;
1963
let stack_arg_space = sigs[sig].sized_stack_arg_space;
1964
1965
let word_ty = M::word_type();
1966
let word_bits = M::word_bits() as usize;
1967
1968
let mut defs: CallRetList = smallvec![];
1969
let mut outputs = outputs.into_iter();
1970
let num_rets = sigs.num_rets(sig);
1971
for idx in 0..num_rets {
1972
let ret = sigs.rets(sig)[idx].clone();
1973
match ret {
1974
ABIArg::Slots {
1975
ref slots, purpose, ..
1976
} => {
1977
// We do not use the returned copy of the return buffer pointer,
1978
// so skip any StructReturn returns that may be present.
1979
if purpose == ArgumentPurpose::StructReturn {
1980
continue;
1981
}
1982
let retval_regs = outputs.next().unwrap();
1983
assert_eq!(retval_regs.len(), slots.len());
1984
for (slot, retval_reg) in slots.iter().zip(retval_regs.regs().iter()) {
1985
// We do not perform any extension because we're copying out, not in,
1986
// and we ignore high bits in our own registers by convention. However,
1987
// we still need to use the proper extended type to access stack slots
1988
// (this is critical on big-endian systems).
1989
let (ty, extension) = match *slot {
1990
ABIArgSlot::Reg { ty, extension, .. } => (ty, extension),
1991
ABIArgSlot::Stack { ty, extension, .. } => (ty, extension),
1992
};
1993
let ext = M::get_ext_mode(callee_conv, extension);
1994
let ty = if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
1995
word_ty
1996
} else {
1997
ty
1998
};
1999
2000
match slot {
2001
&ABIArgSlot::Reg { reg, .. } => {
2002
defs.push(CallRetPair {
2003
vreg: Writable::from_reg(*retval_reg),
2004
location: RetLocation::Reg(reg.into(), ty),
2005
});
2006
}
2007
&ABIArgSlot::Stack { offset, .. } => {
2008
let amode =
2009
StackAMode::OutgoingArg(offset + i64::from(stack_arg_space));
2010
defs.push(CallRetPair {
2011
vreg: Writable::from_reg(*retval_reg),
2012
location: RetLocation::Stack(amode, ty),
2013
});
2014
}
2015
}
2016
}
2017
}
2018
ABIArg::StructArg { .. } => {
2019
panic!("StructArg not supported in return position");
2020
}
2021
ABIArg::ImplicitPtrArg { .. } => {
2022
panic!("ImplicitPtrArg not supported in return position");
2023
}
2024
}
2025
}
2026
assert!(outputs.next().is_none());
2027
2028
if let Some(try_call_payloads) = try_call_payloads {
2029
// Let `M` say where the payload values are going to end up and then
2030
// double-check it's the same size as the calling convention's
2031
// reported number of exception types.
2032
let pregs = M::exception_payload_regs(callee_conv);
2033
assert_eq!(
2034
callee_conv.exception_payload_types(M::word_type()).len(),
2035
pregs.len()
2036
);
2037
2038
// We need to update `defs` to contain the exception
2039
// payload regs as well. We have two sources of info that
2040
// we join:
2041
//
2042
// - The machine-specific ABI implementation `M`, which
2043
// tells us the particular registers that payload values
2044
// must be in
2045
// - The passed-in lowering context, which gives us the
2046
// vregs we must define.
2047
//
2048
// Note that payload values may need to end up in the same
2049
// physical registers as ordinary return values; this is
2050
// not a conflict, because we either get one or the
2051
// other. For regalloc's purposes, we define both starting
2052
// here at the callsite, but we can share one def in the
2053
// `defs` list and alias one vreg to another. Thus we
2054
// handle the two cases below for each payload register:
2055
// overlaps a return value (and we alias to it) or not
2056
// (and we add a def).
2057
for (i, &preg) in pregs.iter().enumerate() {
2058
let vreg = try_call_payloads[i];
2059
if let Some(existing) = defs.iter().find(|def| match def.location {
2060
RetLocation::Reg(r, _) => r == preg,
2061
_ => false,
2062
}) {
2063
vregs.set_vreg_alias(vreg.to_reg(), existing.vreg.to_reg());
2064
} else {
2065
defs.push(CallRetPair {
2066
vreg,
2067
location: RetLocation::Reg(preg, word_ty),
2068
});
2069
}
2070
}
2071
}
2072
2073
defs
2074
}
2075
2076
/// Populate a `CallInfo` for a call with signature `sig`.
2077
///
2078
/// `dest` is the target-specific call destination value
2079
/// `uses` is the `CallArgList` describing argument constraints
2080
/// `defs` is the `CallRetList` describing return constraints
2081
/// `try_call_info` describes exception targets for try_call instructions
2082
///
2083
/// The clobber list is computed here from the above data.
2084
pub fn gen_call_info<T>(
2085
&self,
2086
sigs: &SigSet,
2087
sig: Sig,
2088
dest: T,
2089
uses: CallArgList,
2090
defs: CallRetList,
2091
try_call_info: Option<TryCallInfo>,
2092
) -> CallInfo<T> {
2093
let caller_conv = self.call_conv;
2094
let callee_conv = sigs[sig].call_conv;
2095
let stack_arg_space = sigs[sig].sized_stack_arg_space;
2096
2097
let clobbers = {
2098
// Get clobbers: all caller-saves. These may include return value
2099
// regs, which we will remove from the clobber set below.
2100
let mut clobbers =
2101
<M>::get_regs_clobbered_by_call(callee_conv, try_call_info.is_some());
2102
2103
// Remove retval regs from clobbers.
2104
for def in &defs {
2105
if let RetLocation::Reg(preg, _) = def.location {
2106
clobbers.remove(PReg::from(preg.to_real_reg().unwrap()));
2107
}
2108
}
2109
2110
clobbers
2111
};
2112
2113
// Any adjustment to SP to account for required outgoing arguments/stack return values must
2114
// be done inside of the call pseudo-op, to ensure that SP is always in a consistent
2115
// state for all other instructions. For example, if a tail-call abi function is called
2116
// here, the reclamation of the outgoing argument area must be done inside of the call
2117
// pseudo-op's emission to ensure that SP is consistent at all other points in the lowered
2118
// function. (Except the prologue and epilogue, but those are fairly special parts of the
2119
// function that establish the SP invariants that are relied on elsewhere and are generated
2120
// after the register allocator has run and thus cannot have register allocator-inserted
2121
// references to SP offsets.)
2122
2123
let callee_pop_size = if callee_conv == isa::CallConv::Tail {
2124
// The tail calling convention has callees pop stack arguments.
2125
stack_arg_space
2126
} else {
2127
0
2128
};
2129
2130
CallInfo {
2131
dest,
2132
uses,
2133
defs,
2134
clobbers,
2135
callee_conv,
2136
caller_conv,
2137
callee_pop_size,
2138
try_call_info,
2139
}
2140
}
2141
2142
/// Produce an instruction that computes a sized stackslot address.
2143
pub fn sized_stackslot_addr(
2144
&self,
2145
slot: StackSlot,
2146
offset: u32,
2147
into_reg: Writable<Reg>,
2148
) -> M::I {
2149
// Offset from beginning of stackslot area.
2150
let stack_off = self.sized_stackslots[slot] as i64;
2151
let sp_off: i64 = stack_off + (offset as i64);
2152
M::gen_get_stack_addr(StackAMode::Slot(sp_off), into_reg)
2153
}
2154
2155
/// Produce an instruction that computes a dynamic stackslot address.
2156
pub fn dynamic_stackslot_addr(&self, slot: DynamicStackSlot, into_reg: Writable<Reg>) -> M::I {
2157
let stack_off = self.dynamic_stackslots[slot] as i64;
2158
M::gen_get_stack_addr(StackAMode::Slot(stack_off), into_reg)
2159
}
2160
2161
/// Get an `args` pseudo-inst, if any, that should appear at the
2162
/// very top of the function body prior to regalloc.
2163
pub fn take_args(&mut self) -> Option<M::I> {
2164
if self.reg_args.len() > 0 {
2165
// Very first instruction is an `args` pseudo-inst that
2166
// establishes live-ranges for in-register arguments and
2167
// constrains them at the start of the function to the
2168
// locations defined by the ABI.
2169
Some(M::gen_args(std::mem::take(&mut self.reg_args)))
2170
} else {
2171
None
2172
}
2173
}
2174
}
2175
2176
/// ### Post-Regalloc Functions
2177
///
2178
/// These methods of `Callee` may only be called after
2179
/// regalloc.
2180
impl<M: ABIMachineSpec> Callee<M> {
2181
/// Compute the final frame layout, post-regalloc.
2182
///
2183
/// This must be called before gen_prologue or gen_epilogue.
2184
pub fn compute_frame_layout(
2185
&mut self,
2186
sigs: &SigSet,
2187
spillslots: usize,
2188
clobbered: Vec<Writable<RealReg>>,
2189
function_calls: FunctionCalls,
2190
) {
2191
let bytes = M::word_bytes();
2192
let total_stacksize = self.stackslots_size + bytes * spillslots as u32;
2193
let mask = M::stack_align(self.call_conv) - 1;
2194
let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
2195
self.frame_layout = Some(M::compute_frame_layout(
2196
self.call_conv,
2197
&self.flags,
2198
self.signature(),
2199
&clobbered,
2200
function_calls,
2201
self.stack_args_size(sigs),
2202
self.tail_args_size,
2203
self.stackslots_size,
2204
total_stacksize,
2205
self.outgoing_args_size,
2206
));
2207
}
2208
2209
/// Generate a prologue, post-regalloc.
2210
///
2211
/// This should include any stack frame or other setup necessary to use the
2212
/// other methods (`load_arg`, `store_retval`, and spillslot accesses.)
2213
pub fn gen_prologue(&self) -> SmallInstVec<M::I> {
2214
let frame_layout = self.frame_layout();
2215
let mut insts = smallvec![];
2216
2217
// Set up frame.
2218
insts.extend(M::gen_prologue_frame_setup(
2219
self.call_conv,
2220
&self.flags,
2221
&self.isa_flags,
2222
&frame_layout,
2223
));
2224
2225
// The stack limit check needs to cover all the stack adjustments we
2226
// might make, up to the next stack limit check in any function we
2227
// call. Since this happens after frame setup, the current function's
2228
// setup area needs to be accounted for in the caller's stack limit
2229
// check, but we need to account for any setup area that our callees
2230
// might need. Note that s390x may also use the outgoing args area for
2231
// backtrace support even in leaf functions, so that should be accounted
2232
// for unconditionally.
2233
let total_stacksize = (frame_layout.tail_args_size - frame_layout.incoming_args_size)
2234
+ frame_layout.clobber_size
2235
+ frame_layout.fixed_frame_storage_size
2236
+ frame_layout.outgoing_args_size
2237
+ if frame_layout.function_calls == FunctionCalls::None {
2238
0
2239
} else {
2240
frame_layout.setup_area_size
2241
};
2242
2243
// Leaf functions with zero stack don't need a stack check if one's
2244
// specified, otherwise always insert the stack check.
2245
if total_stacksize > 0 || frame_layout.function_calls != FunctionCalls::None {
2246
if let Some((reg, stack_limit_load)) = &self.stack_limit {
2247
insts.extend(stack_limit_load.clone());
2248
self.insert_stack_check(*reg, total_stacksize, &mut insts);
2249
}
2250
2251
if self.flags.enable_probestack() {
2252
let guard_size = 1 << self.flags.probestack_size_log2();
2253
match self.flags.probestack_strategy() {
2254
ProbestackStrategy::Inline => M::gen_inline_probestack(
2255
&mut insts,
2256
self.call_conv,
2257
total_stacksize,
2258
guard_size,
2259
),
2260
ProbestackStrategy::Outline => {
2261
if total_stacksize >= guard_size {
2262
M::gen_probestack(&mut insts, total_stacksize);
2263
}
2264
}
2265
}
2266
}
2267
}
2268
2269
// Save clobbered registers.
2270
insts.extend(M::gen_clobber_save(
2271
self.call_conv,
2272
&self.flags,
2273
&frame_layout,
2274
));
2275
2276
insts
2277
}
2278
2279
/// Generate an epilogue, post-regalloc.
2280
///
2281
/// Note that this must generate the actual return instruction (rather than
2282
/// emitting this in the lowering logic), because the epilogue code comes
2283
/// before the return and the two are likely closely related.
2284
pub fn gen_epilogue(&self) -> SmallInstVec<M::I> {
2285
let frame_layout = self.frame_layout();
2286
let mut insts = smallvec![];
2287
2288
// Restore clobbered registers.
2289
insts.extend(M::gen_clobber_restore(
2290
self.call_conv,
2291
&self.flags,
2292
&frame_layout,
2293
));
2294
2295
// Tear down frame.
2296
insts.extend(M::gen_epilogue_frame_restore(
2297
self.call_conv,
2298
&self.flags,
2299
&self.isa_flags,
2300
&frame_layout,
2301
));
2302
2303
// And return.
2304
insts.extend(M::gen_return(
2305
self.call_conv,
2306
&self.isa_flags,
2307
&frame_layout,
2308
));
2309
2310
trace!("Epilogue: {:?}", insts);
2311
insts
2312
}
2313
2314
/// Return a reference to the computed frame layout information. This
2315
/// function will panic if it's called before [`Self::compute_frame_layout`].
2316
pub fn frame_layout(&self) -> &FrameLayout {
2317
self.frame_layout
2318
.as_ref()
2319
.expect("frame layout not computed before prologue generation")
2320
}
2321
2322
/// Returns the full frame size for the given function, after prologue
2323
/// emission has run. This comprises the spill slots and stack-storage
2324
/// slots as well as storage for clobbered callee-save registers, but
2325
/// not arguments arguments pushed at callsites within this function,
2326
/// or other ephemeral pushes.
2327
pub fn frame_size(&self) -> u32 {
2328
let frame_layout = self.frame_layout();
2329
frame_layout.clobber_size + frame_layout.fixed_frame_storage_size
2330
}
2331
2332
/// Returns offset from the slot base in the current frame to the caller's SP.
2333
pub fn slot_base_to_caller_sp_offset(&self) -> u32 {
2334
let frame_layout = self.frame_layout();
2335
frame_layout.clobber_size
2336
+ frame_layout.fixed_frame_storage_size
2337
+ frame_layout.setup_area_size
2338
}
2339
2340
/// Returns the size of arguments expected on the stack.
2341
pub fn stack_args_size(&self, sigs: &SigSet) -> u32 {
2342
sigs[self.sig].sized_stack_arg_space
2343
}
2344
2345
/// Get the spill-slot size.
2346
pub fn get_spillslot_size(&self, rc: RegClass) -> u32 {
2347
let max = if self.dynamic_type_sizes.len() == 0 {
2348
16
2349
} else {
2350
*self
2351
.dynamic_type_sizes
2352
.iter()
2353
.max_by(|x, y| x.1.cmp(&y.1))
2354
.map(|(_k, v)| v)
2355
.unwrap()
2356
};
2357
M::get_number_of_spillslots_for_value(rc, max, &self.isa_flags)
2358
}
2359
2360
/// Get the spill slot offset relative to the fixed allocation area start.
2361
pub fn get_spillslot_offset(&self, slot: SpillSlot) -> i64 {
2362
self.frame_layout().spillslot_offset(slot)
2363
}
2364
2365
/// Generate a spill.
2366
pub fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg) -> M::I {
2367
let ty = M::I::canonical_type_for_rc(from_reg.class());
2368
debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
2369
2370
let sp_off = self.get_spillslot_offset(to_slot);
2371
trace!("gen_spill: {from_reg:?} into slot {to_slot:?} at offset {sp_off}");
2372
2373
let from = StackAMode::Slot(sp_off);
2374
<M>::gen_store_stack(from, Reg::from(from_reg), ty)
2375
}
2376
2377
/// Generate a reload (fill).
2378
pub fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot) -> M::I {
2379
let ty = M::I::canonical_type_for_rc(to_reg.to_reg().class());
2380
debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);
2381
2382
let sp_off = self.get_spillslot_offset(from_slot);
2383
trace!("gen_reload: {to_reg:?} from slot {from_slot:?} at offset {sp_off}");
2384
2385
let from = StackAMode::Slot(sp_off);
2386
<M>::gen_load_stack(from, to_reg.map(Reg::from), ty)
2387
}
2388
}
2389
2390
/// An input argument to a call instruction: the vreg that is used,
2391
/// and the preg it is constrained to (per the ABI).
2392
#[derive(Clone, Debug)]
2393
pub struct CallArgPair {
2394
/// The virtual register to use for the argument.
2395
pub vreg: Reg,
2396
/// The real register into which the arg goes.
2397
pub preg: Reg,
2398
}
2399
2400
/// An output return value from a call instruction: the vreg that is
2401
/// defined, and the preg or stack location it is constrained to (per
2402
/// the ABI).
2403
#[derive(Clone, Debug)]
2404
pub struct CallRetPair {
2405
/// The virtual register to define from this return value.
2406
pub vreg: Writable<Reg>,
2407
/// The real register from which the return value is read.
2408
pub location: RetLocation,
2409
}
2410
2411
/// A location to load a return-value from after a call completes.
2412
#[derive(Clone, Debug, PartialEq, Eq)]
2413
pub enum RetLocation {
2414
/// A physical register.
2415
Reg(Reg, Type),
2416
/// A stack location, identified by a `StackAMode`.
2417
Stack(StackAMode, Type),
2418
}
2419
2420
pub type CallArgList = SmallVec<[CallArgPair; 8]>;
2421
pub type CallRetList = SmallVec<[CallRetPair; 8]>;
2422
2423
impl<T> CallInfo<T> {
2424
/// Emit loads for any stack-carried return values using the call
2425
/// info and allocations.
2426
pub fn emit_retval_loads<
2427
M: ABIMachineSpec,
2428
EmitFn: FnMut(M::I),
2429
IslandFn: Fn(u32) -> Option<M::I>,
2430
>(
2431
&self,
2432
stackslots_size: u32,
2433
mut emit: EmitFn,
2434
emit_island: IslandFn,
2435
) {
2436
// Count stack-ret locations and emit an island to account for
2437
// this space usage.
2438
let mut space_needed = 0;
2439
for CallRetPair { location, .. } in &self.defs {
2440
if let RetLocation::Stack(..) = location {
2441
// Assume up to ten instructions, semi-arbitrarily:
2442
// load from stack, store to spillslot, codegen of
2443
// large offsets on RISC ISAs.
2444
space_needed += 10 * M::I::worst_case_size();
2445
}
2446
}
2447
if space_needed > 0 {
2448
if let Some(island_inst) = emit_island(space_needed) {
2449
emit(island_inst);
2450
}
2451
}
2452
2453
let temp = M::retval_temp_reg(self.callee_conv);
2454
// The temporary must be noted as clobbered.
2455
debug_assert!(
2456
M::get_regs_clobbered_by_call(self.callee_conv, self.try_call_info.is_some())
2457
.contains(PReg::from(temp.to_reg().to_real_reg().unwrap()))
2458
);
2459
2460
for CallRetPair { vreg, location } in &self.defs {
2461
match location {
2462
RetLocation::Reg(preg, ..) => {
2463
// The temporary must not also be an actual return
2464
// value register.
2465
debug_assert!(*preg != temp.to_reg());
2466
}
2467
RetLocation::Stack(amode, ty) => {
2468
if let Some(spillslot) = vreg.to_reg().to_spillslot() {
2469
// `temp` is an integer register of machine word
2470
// width, but `ty` may be floating-point/vector,
2471
// which (i) may not be loadable directly into an
2472
// int reg, and (ii) may be wider than a machine
2473
// word. For simplicity, and because there are not
2474
// always easy choices for volatile float/vec regs
2475
// (see e.g. x86-64, where fastcall clobbers only
2476
// xmm0-xmm5, but tail uses xmm0-xmm7 for
2477
// returns), we use the integer temp register in
2478
// steps.
2479
let parts = (ty.bytes() + M::word_bytes() - 1) / M::word_bytes();
2480
let one_part_load_ty =
2481
Type::int_with_byte_size(M::word_bytes().min(ty.bytes()) as u16)
2482
.unwrap();
2483
for part in 0..parts {
2484
emit(M::gen_load_stack(
2485
amode.offset_by(part * M::word_bytes()),
2486
temp,
2487
one_part_load_ty,
2488
));
2489
emit(M::gen_store_stack(
2490
StackAMode::Slot(
2491
i64::from(stackslots_size)
2492
+ i64::from(M::word_bytes())
2493
* ((spillslot.index() as i64) + (part as i64)),
2494
),
2495
temp.to_reg(),
2496
M::word_type(),
2497
));
2498
}
2499
} else {
2500
assert_ne!(*vreg, temp);
2501
emit(M::gen_load_stack(*amode, *vreg, *ty));
2502
}
2503
}
2504
}
2505
}
2506
}
2507
}
2508
2509
impl TryCallInfo {
2510
pub(crate) fn exception_handlers(
2511
&self,
2512
layout: &FrameLayout,
2513
) -> impl Iterator<Item = MachExceptionHandler> {
2514
self.exception_handlers.iter().map(|handler| match handler {
2515
TryCallHandler::Tag(tag, label) => MachExceptionHandler::Tag(*tag, *label),
2516
TryCallHandler::Default(label) => MachExceptionHandler::Default(*label),
2517
TryCallHandler::Context(reg) => {
2518
let loc = if let Some(spillslot) = reg.to_spillslot() {
2519
// The spillslot offset is relative to the "fixed
2520
// storage area", which comes after outgoing args.
2521
let offset = layout.spillslot_offset(spillslot) + i64::from(layout.outgoing_args_size);
2522
ExceptionContextLoc::SPOffset(u32::try_from(offset).expect("SP offset cannot be negative or larger than 4GiB"))
2523
} else if let Some(realreg) = reg.to_real_reg() {
2524
ExceptionContextLoc::GPR(realreg.hw_enc())
2525
} else {
2526
panic!("Virtual register present in try-call handler clause after register allocation");
2527
};
2528
MachExceptionHandler::Context(loc)
2529
}
2530
})
2531
}
2532
2533
pub(crate) fn pretty_print_dests(&self) -> String {
2534
self.exception_handlers
2535
.iter()
2536
.map(|handler| match handler {
2537
TryCallHandler::Tag(tag, label) => format!("{tag:?}: {label:?}"),
2538
TryCallHandler::Default(label) => format!("default: {label:?}"),
2539
TryCallHandler::Context(loc) => format!("context {loc:?}"),
2540
})
2541
.collect::<Vec<_>>()
2542
.join(", ")
2543
}
2544
2545
pub(crate) fn collect_operands(&mut self, collector: &mut impl OperandVisitor) {
2546
for handler in &mut self.exception_handlers {
2547
match handler {
2548
TryCallHandler::Context(ctx) => {
2549
collector.any_late_use(ctx);
2550
}
2551
TryCallHandler::Tag(_, _) | TryCallHandler::Default(_) => {}
2552
}
2553
}
2554
}
2555
}
2556
2557
#[cfg(test)]
2558
mod tests {
2559
use super::SigData;
2560
2561
#[test]
2562
fn sig_data_size() {
2563
// The size of `SigData` is performance sensitive, so make sure
2564
// we don't regress it unintentionally.
2565
assert_eq!(std::mem::size_of::<SigData>(), 24);
2566
}
2567
}
2568
2569