Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bytecodealliance
GitHub Repository: bytecodealliance/wasmtime
Path: blob/main/cranelift/codegen/src/machinst/lower.rs
1693 views
1
//! This module implements lowering (instruction selection) from Cranelift IR
2
//! to machine instructions with virtual registers. This is *almost* the final
3
//! machine code, except for register allocation.
4
5
// TODO: separate the IR-query core of `Lower` from the lowering logic built on
6
// top of it, e.g. the side-effect/coloring analysis and the scan support.
7
8
use crate::entity::SecondaryMap;
9
use crate::inst_predicates::{has_lowering_side_effect, is_constant_64bit};
10
use crate::ir::pcc::{Fact, FactContext, PccError, PccResult};
11
use crate::ir::{
12
ArgumentPurpose, Block, BlockArg, Constant, ConstantData, DataFlowGraph, ExternalName,
13
Function, GlobalValue, GlobalValueData, Immediate, Inst, InstructionData, MemFlags,
14
RelSourceLoc, SigRef, Signature, Type, Value, ValueDef, ValueLabelAssignments, ValueLabelStart,
15
};
16
use crate::machinst::valueregs::InvalidSentinel;
17
use crate::machinst::{
18
ABIMachineSpec, BackwardsInsnIndex, BlockIndex, BlockLoweringOrder, CallArgList, CallInfo,
19
CallRetList, Callee, InsnIndex, LoweredBlock, MachLabel, Reg, Sig, SigSet, TryCallInfo, VCode,
20
VCodeBuilder, VCodeConstant, VCodeConstantData, VCodeConstants, VCodeInst, ValueRegs, Writable,
21
writable_value_regs,
22
};
23
use crate::settings::Flags;
24
use crate::{CodegenError, CodegenResult, trace};
25
use alloc::vec::Vec;
26
use cranelift_control::ControlPlane;
27
use rustc_hash::{FxHashMap, FxHashSet};
28
use smallvec::{SmallVec, smallvec};
29
use std::fmt::Debug;
30
31
use super::{VCodeBuildDirection, VRegAllocator};
32
33
/// A vector of ValueRegs, used to represent the outputs of an instruction.
34
pub type InstOutput = SmallVec<[ValueRegs<Reg>; 2]>;
35
36
/// An "instruction color" partitions CLIF instructions by side-effecting ops.
37
/// All instructions with the same "color" are guaranteed not to be separated by
38
/// any side-effecting op (for this purpose, loads are also considered
39
/// side-effecting, to avoid subtle questions w.r.t. the memory model), and
40
/// furthermore, it is guaranteed that for any two instructions A and B such
41
/// that color(A) == color(B), either A dominates B and B postdominates A, or
42
/// vice-versa. (For now, in practice, only ops in the same basic block can ever
43
/// have the same color, trivially providing the second condition.) Intuitively,
44
/// this means that the ops of the same color must always execute "together", as
45
/// part of one atomic contiguous section of the dynamic execution trace, and
46
/// they can be freely permuted (modulo true dataflow dependencies) without
47
/// affecting program behavior.
48
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
49
struct InstColor(u32);
50
impl InstColor {
51
fn new(n: u32) -> InstColor {
52
InstColor(n)
53
}
54
55
/// Get an arbitrary index representing this color. The index is unique
56
/// *within a single function compilation*, but indices may be reused across
57
/// functions.
58
pub fn get(self) -> u32 {
59
self.0
60
}
61
}
62
63
/// A representation of all of the ways in which a value is available, aside
64
/// from as a direct register.
65
///
66
/// - An instruction, if it would be allowed to occur at the current location
67
/// instead (see [Lower::get_input_as_source_or_const()] for more details).
68
///
69
/// - A constant, if the value is known to be a constant.
70
#[derive(Clone, Copy, Debug)]
71
pub struct NonRegInput {
72
/// An instruction produces this value (as the given output), and its
73
/// computation (and side-effect if applicable) could occur at the
74
/// current instruction's location instead.
75
///
76
/// If this instruction's operation is merged into the current instruction,
77
/// the backend must call [Lower::sink_inst()].
78
///
79
/// This enum indicates whether this use of the source instruction
80
/// is unique or not.
81
pub inst: InputSourceInst,
82
/// The value is a known constant.
83
pub constant: Option<u64>,
84
}
85
86
/// When examining an input to an instruction, this enum provides one
87
/// of several options: there is or isn't a single instruction (that
88
/// we can see and merge with) that produces that input's value, and
89
/// we are or aren't the single user of that instruction.
90
#[derive(Clone, Copy, Debug)]
91
pub enum InputSourceInst {
92
/// The input in question is the single, unique use of the given
93
/// instruction and output index, and it can be sunk to the
94
/// location of this input.
95
UniqueUse(Inst, usize),
96
/// The input in question is one of multiple uses of the given
97
/// instruction. It can still be sunk to the location of this
98
/// input.
99
Use(Inst, usize),
100
/// We cannot determine which instruction produced the input, or
101
/// it is one of several instructions (e.g., due to a control-flow
102
/// merge and blockparam), or the source instruction cannot be
103
/// allowed to sink to the current location due to side-effects.
104
None,
105
}
106
107
impl InputSourceInst {
108
/// Get the instruction and output index for this source, whether
109
/// we are its single or one of many users.
110
pub fn as_inst(&self) -> Option<(Inst, usize)> {
111
match self {
112
&InputSourceInst::UniqueUse(inst, output_idx)
113
| &InputSourceInst::Use(inst, output_idx) => Some((inst, output_idx)),
114
&InputSourceInst::None => None,
115
}
116
}
117
}
118
119
/// A machine backend.
120
pub trait LowerBackend {
121
/// The machine instruction type.
122
type MInst: VCodeInst;
123
124
/// Lower a single instruction.
125
///
126
/// For a branch, this function should not generate the actual branch
127
/// instruction. However, it must force any values it needs for the branch
128
/// edge (block-param actuals) into registers, because the actual branch
129
/// generation (`lower_branch()`) happens *after* any possible merged
130
/// out-edge.
131
///
132
/// Returns `None` if no lowering for the instruction was found.
133
fn lower(&self, ctx: &mut Lower<Self::MInst>, inst: Inst) -> Option<InstOutput>;
134
135
/// Lower a block-terminating group of branches (which together can be seen
136
/// as one N-way branch), given a vcode MachLabel for each target.
137
///
138
/// Returns `None` if no lowering for the branch was found.
139
fn lower_branch(
140
&self,
141
ctx: &mut Lower<Self::MInst>,
142
inst: Inst,
143
targets: &[MachLabel],
144
) -> Option<()>;
145
146
/// A bit of a hack: give a fixed register that always holds the result of a
147
/// `get_pinned_reg` instruction, if known. This allows elision of moves
148
/// into the associated vreg, instead using the real reg directly.
149
fn maybe_pinned_reg(&self) -> Option<Reg> {
150
None
151
}
152
153
/// The type of state carried between `check_fact` invocations.
154
type FactFlowState: Default + Clone + Debug;
155
156
/// Check any facts about an instruction, given VCode with facts
157
/// on VRegs. Takes mutable `VCode` so that it can propagate some
158
/// kinds of facts automatically.
159
fn check_fact(
160
&self,
161
_ctx: &FactContext<'_>,
162
_vcode: &mut VCode<Self::MInst>,
163
_inst: InsnIndex,
164
_state: &mut Self::FactFlowState,
165
) -> PccResult<()> {
166
Err(PccError::UnimplementedBackend)
167
}
168
}
169
170
/// Machine-independent lowering driver / machine-instruction container. Maintains a correspondence
171
/// from original Inst to MachInsts.
172
pub struct Lower<'func, I: VCodeInst> {
173
/// The function to lower.
174
pub(crate) f: &'func Function,
175
176
/// Lowered machine instructions.
177
vcode: VCodeBuilder<I>,
178
179
/// VReg allocation context, given to the vcode field at build time to finalize the vcode.
180
vregs: VRegAllocator<I>,
181
182
/// Mapping from `Value` (SSA value in IR) to virtual register.
183
value_regs: SecondaryMap<Value, ValueRegs<Reg>>,
184
185
/// sret registers, if needed.
186
sret_reg: Option<ValueRegs<Reg>>,
187
188
/// Instruction colors at block exits. From this map, we can recover all
189
/// instruction colors by scanning backward from the block end and
190
/// decrementing on any color-changing (side-effecting) instruction.
191
block_end_colors: SecondaryMap<Block, InstColor>,
192
193
/// Instruction colors at side-effecting ops. This is the *entry* color,
194
/// i.e., the version of global state that exists before an instruction
195
/// executes. For each side-effecting instruction, the *exit* color is its
196
/// entry color plus one.
197
side_effect_inst_entry_colors: FxHashMap<Inst, InstColor>,
198
199
/// Current color as we scan during lowering. While we are lowering an
200
/// instruction, this is equal to the color *at entry to* the instruction.
201
cur_scan_entry_color: Option<InstColor>,
202
203
/// Current instruction as we scan during lowering.
204
cur_inst: Option<Inst>,
205
206
/// Instruction constant values, if known.
207
inst_constants: FxHashMap<Inst, u64>,
208
209
/// Use-counts per SSA value, as counted in the input IR. These
210
/// are "coarsened", in the abstract-interpretation sense: we only
211
/// care about "0, 1, many" states, as this is all we need and
212
/// this lets us do an efficient fixpoint analysis.
213
///
214
/// See doc comment on `ValueUseState` for more details.
215
value_ir_uses: SecondaryMap<Value, ValueUseState>,
216
217
/// Actual uses of each SSA value so far, incremented while lowering.
218
value_lowered_uses: SecondaryMap<Value, u32>,
219
220
/// Effectful instructions that have been sunk; they are not codegen'd at
221
/// their original locations.
222
inst_sunk: FxHashSet<Inst>,
223
224
/// Instructions collected for the CLIF inst in progress, in forward order.
225
ir_insts: Vec<I>,
226
227
/// Try-call block arg normal-return values, indexed by instruction.
228
try_call_rets: FxHashMap<Inst, SmallVec<[ValueRegs<Writable<Reg>>; 2]>>,
229
230
/// Try-call block arg exceptional-return payloads, indexed by
231
/// instruction. Payloads are carried in registers per the ABI and
232
/// can only be one register each.
233
try_call_payloads: FxHashMap<Inst, SmallVec<[Writable<Reg>; 2]>>,
234
235
/// The register to use for GetPinnedReg, if any, on this architecture.
236
pinned_reg: Option<Reg>,
237
238
/// Compilation flags.
239
flags: Flags,
240
}
241
242
/// How is a value used in the IR?
243
///
244
/// This can be seen as a coarsening of an integer count. We only need
245
/// distinct states for zero, one, or many.
246
///
247
/// This analysis deserves further explanation. The basic idea is that
248
/// we want to allow instruction lowering to know whether a value that
249
/// an instruction references is *only* referenced by that one use, or
250
/// by others as well. This is necessary to know when we might want to
251
/// move a side-effect: we cannot, for example, duplicate a load, so
252
/// we cannot let instruction lowering match a load as part of a
253
/// subpattern and potentially incorporate it.
254
///
255
/// Note that a lot of subtlety comes into play once we have
256
/// *indirect* uses. The classical example of this in our development
257
/// history was the x86 compare instruction, which is incorporated
258
/// into flags users (e.g. `selectif`, `trueif`, branches) and can
259
/// subsequently incorporate loads, or at least we would like it
260
/// to. However, danger awaits: the compare might be the only user of
261
/// a load, so we might think we can just move the load (and nothing
262
/// is duplicated -- success!), except that the compare itself is
263
/// codegen'd in multiple places, where it is incorporated as a
264
/// subpattern itself.
265
///
266
/// So we really want a notion of "unique all the way along the
267
/// matching path". Rust's `&T` and `&mut T` offer a partial analogy
268
/// to the semantics that we want here: we want to know when we've
269
/// matched a unique use of an instruction, and that instruction's
270
/// unique use of another instruction, etc, just as `&mut T` can only
271
/// be obtained by going through a chain of `&mut T`. If one has a
272
/// `&T` to a struct containing `&mut T` (one of several uses of an
273
/// instruction that itself has a unique use of an instruction), one
274
/// can only get a `&T` (one can only get a "I am one of several users
275
/// of this instruction" result).
276
///
277
/// We could track these paths, either dynamically as one "looks up the operand
278
/// tree" or precomputed. But the former requires state and means that the
279
/// `Lower` API carries that state implicitly, which we'd like to avoid if we
280
/// can. And the latter implies O(n^2) storage: it is an all-pairs property (is
281
/// inst `i` unique from the point of view of `j`).
282
///
283
/// To make matters even a little more complex still, a value that is
284
/// not uniquely used when initially viewing the IR can *become*
285
/// uniquely used, at least as a root allowing further unique uses of
286
/// e.g. loads to merge, if no other instruction actually merges
287
/// it. To be more concrete, if we have `v1 := load; v2 := op v1; v3
288
/// := op v2; v4 := op v2` then `v2` is non-uniquely used, so from the
289
/// point of view of lowering `v4` or `v3`, we cannot merge the load
290
/// at `v1`. But if we decide just to use the assigned register for
291
/// `v2` at both `v3` and `v4`, then we only actually codegen `v2`
292
/// once, so it *is* a unique root at that point and we *can* merge
293
/// the load.
294
///
295
/// Note also that the color scheme is not sufficient to give us this
296
/// information, for various reasons: reasoning about side-effects
297
/// does not tell us about potential duplication of uses through pure
298
/// ops.
299
///
300
/// To keep things simple and avoid error-prone lowering APIs that
301
/// would extract more information about whether instruction merging
302
/// happens or not (we don't have that info now, and it would be
303
/// difficult to refactor to get it and make that refactor 100%
304
/// correct), we give up on the above "can become unique if not
305
/// actually merged" point. Instead, we compute a
306
/// transitive-uniqueness. That is what this enum represents.
307
///
308
/// There is one final caveat as well to the result of this analysis. Notably,
309
/// we define some instructions to be "root" instructions, which means that we
310
/// assume they will always be codegen'd at the root of a matching tree, and not
311
/// matched. (This comes with the caveat that we actually enforce this property
312
/// by making them "opaque" to subtree matching in
313
/// `get_value_as_source_or_const`). Because they will always be codegen'd once,
314
/// they in some sense "reset" multiplicity: these root instructions can be used
315
/// many times, but because their result(s) are only computed once, they only
316
/// use their inputs once.
317
///
318
/// We currently define all multi-result instructions to be "root" instructions,
319
/// because it is too complex to reason about matching through them, and they
320
/// cause too-coarse-grained approximation of multiplicity otherwise: the
321
/// analysis would have to assume (as it used to!) that they are always
322
/// multiply-used, simply because they have multiple outputs even if those
323
/// outputs are used only once.
324
///
325
/// In the future we could define other instructions to be "root" instructions
326
/// as well, if we make the corresponding change to get_value_as_source_or_const
327
/// as well.
328
///
329
/// To define `ValueUseState` more plainly: a value is `Unused` if no references
330
/// exist to it; `Once` if only one other op refers to it, *and* that other op
331
/// is `Unused` or `Once`; and `Multiple` otherwise. In other words, `Multiple`
332
/// is contagious (except through root instructions): even if an op's result
333
/// value is directly used only once in the CLIF, that value is `Multiple` if
334
/// the op that uses it is itself used multiple times (hence could be codegen'd
335
/// multiple times). In brief, this analysis tells us whether, if every op
336
/// merged all of its operand tree, a given op could be codegen'd in more than
337
/// one place.
338
///
339
/// To compute this, we first consider direct uses. At this point
340
/// `Unused` answers are correct, `Multiple` answers are correct, but
341
/// some `Once`s may change to `Multiple`s. Then we propagate
342
/// `Multiple` transitively using a workqueue/fixpoint algorithm.
343
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
344
enum ValueUseState {
345
/// Not used at all.
346
Unused,
347
/// Used exactly once.
348
Once,
349
/// Used multiple times.
350
Multiple,
351
}
352
353
impl ValueUseState {
354
/// Add one use.
355
fn inc(&mut self) {
356
let new = match self {
357
Self::Unused => Self::Once,
358
Self::Once | Self::Multiple => Self::Multiple,
359
};
360
*self = new;
361
}
362
}
363
364
/// Notion of "relocation distance". This gives an estimate of how far away a symbol will be from a
365
/// reference.
366
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
367
pub enum RelocDistance {
368
/// Target of relocation is "nearby". The threshold for this is fuzzy but should be interpreted
369
/// as approximately "within the compiled output of one module"; e.g., within AArch64's +/-
370
/// 128MB offset. If unsure, use `Far` instead.
371
Near,
372
/// Target of relocation could be anywhere in the address space.
373
Far,
374
}
375
376
impl<'func, I: VCodeInst> Lower<'func, I> {
377
/// Prepare a new lowering context for the given IR function.
378
pub fn new(
379
f: &'func Function,
380
abi: Callee<I::ABIMachineSpec>,
381
emit_info: I::Info,
382
block_order: BlockLoweringOrder,
383
sigs: SigSet,
384
flags: Flags,
385
) -> CodegenResult<Self> {
386
let constants = VCodeConstants::with_capacity(f.dfg.constants.len());
387
let vcode = VCodeBuilder::new(
388
sigs,
389
abi,
390
emit_info,
391
block_order,
392
constants,
393
VCodeBuildDirection::Backward,
394
flags.log2_min_function_alignment(),
395
);
396
397
// We usually need two VRegs per instruction result, plus extras for
398
// various temporaries, but two per Value is a good starting point.
399
let mut vregs = VRegAllocator::with_capacity(f.dfg.num_values() * 2);
400
401
let mut value_regs = SecondaryMap::with_default(ValueRegs::invalid());
402
let mut try_call_rets = FxHashMap::default();
403
let mut try_call_payloads = FxHashMap::default();
404
405
// Assign a vreg to each block param, each inst result, and
406
// each edge-defined block-call arg.
407
for bb in f.layout.blocks() {
408
for &param in f.dfg.block_params(bb) {
409
let ty = f.dfg.value_type(param);
410
if value_regs[param].is_invalid() {
411
let regs = vregs.alloc_with_maybe_fact(ty, f.dfg.facts[param].clone())?;
412
value_regs[param] = regs;
413
trace!("bb {} param {}: regs {:?}", bb, param, regs);
414
}
415
}
416
for inst in f.layout.block_insts(bb) {
417
for &result in f.dfg.inst_results(inst) {
418
let ty = f.dfg.value_type(result);
419
if value_regs[result].is_invalid() && !ty.is_invalid() {
420
let regs = vregs.alloc_with_maybe_fact(ty, f.dfg.facts[result].clone())?;
421
value_regs[result] = regs;
422
trace!(
423
"bb {} inst {} ({:?}): result {} regs {:?}",
424
bb, inst, f.dfg.insts[inst], result, regs,
425
);
426
}
427
}
428
429
if let Some(et) = f.dfg.insts[inst].exception_table() {
430
let exdata = &f.dfg.exception_tables[et];
431
let sig = &f.dfg.signatures[exdata.signature()];
432
433
let mut rets = smallvec![];
434
for ty in sig.returns.iter().map(|ret| ret.value_type) {
435
rets.push(vregs.alloc(ty)?.map(|r| Writable::from_reg(r)));
436
}
437
try_call_rets.insert(inst, rets);
438
439
let mut payloads = smallvec![];
440
// Note that this is intentionally using the calling
441
// convention of the callee to determine what payload types
442
// are available. The callee defines that, not the calling
443
// convention of the caller.
444
for &ty in sig
445
.call_conv
446
.exception_payload_types(I::ABIMachineSpec::word_type())
447
{
448
payloads.push(Writable::from_reg(vregs.alloc(ty)?.only_reg().unwrap()));
449
}
450
try_call_payloads.insert(inst, payloads);
451
}
452
}
453
}
454
455
// Find the sret register, if it's used.
456
let mut sret_param = None;
457
for ret in vcode.abi().signature().returns.iter() {
458
if ret.purpose == ArgumentPurpose::StructReturn {
459
let entry_bb = f.stencil.layout.entry_block().unwrap();
460
for (&param, sig_param) in f
461
.dfg
462
.block_params(entry_bb)
463
.iter()
464
.zip(vcode.abi().signature().params.iter())
465
{
466
if sig_param.purpose == ArgumentPurpose::StructReturn {
467
assert!(sret_param.is_none());
468
sret_param = Some(param);
469
}
470
}
471
472
assert!(sret_param.is_some());
473
}
474
}
475
476
let sret_reg = sret_param.map(|param| {
477
let regs = value_regs[param];
478
assert!(regs.len() == 1);
479
regs
480
});
481
482
// Compute instruction colors, find constant instructions, and find instructions with
483
// side-effects, in one combined pass.
484
let mut cur_color = 0;
485
let mut block_end_colors = SecondaryMap::with_default(InstColor::new(0));
486
let mut side_effect_inst_entry_colors = FxHashMap::default();
487
let mut inst_constants = FxHashMap::default();
488
for bb in f.layout.blocks() {
489
cur_color += 1;
490
for inst in f.layout.block_insts(bb) {
491
let side_effect = has_lowering_side_effect(f, inst);
492
493
trace!("bb {} inst {} has color {}", bb, inst, cur_color);
494
if side_effect {
495
side_effect_inst_entry_colors.insert(inst, InstColor::new(cur_color));
496
trace!(" -> side-effecting; incrementing color for next inst");
497
cur_color += 1;
498
}
499
500
// Determine if this is a constant; if so, add to the table.
501
if let Some(c) = is_constant_64bit(f, inst) {
502
trace!(" -> constant: {}", c);
503
inst_constants.insert(inst, c);
504
}
505
}
506
507
block_end_colors[bb] = InstColor::new(cur_color);
508
}
509
510
let value_ir_uses = compute_use_states(f, sret_param);
511
512
Ok(Lower {
513
f,
514
vcode,
515
vregs,
516
value_regs,
517
sret_reg,
518
block_end_colors,
519
side_effect_inst_entry_colors,
520
inst_constants,
521
value_ir_uses,
522
value_lowered_uses: SecondaryMap::default(),
523
inst_sunk: FxHashSet::default(),
524
cur_scan_entry_color: None,
525
cur_inst: None,
526
ir_insts: vec![],
527
try_call_rets,
528
try_call_payloads,
529
pinned_reg: None,
530
flags,
531
})
532
}
533
534
pub fn sigs(&self) -> &SigSet {
535
self.vcode.sigs()
536
}
537
538
pub fn sigs_mut(&mut self) -> &mut SigSet {
539
self.vcode.sigs_mut()
540
}
541
542
pub fn vregs_mut(&mut self) -> &mut VRegAllocator<I> {
543
&mut self.vregs
544
}
545
546
fn gen_arg_setup(&mut self) {
547
if let Some(entry_bb) = self.f.layout.entry_block() {
548
trace!(
549
"gen_arg_setup: entry BB {} args are:\n{:?}",
550
entry_bb,
551
self.f.dfg.block_params(entry_bb)
552
);
553
554
for (i, param) in self.f.dfg.block_params(entry_bb).iter().enumerate() {
555
if self.value_ir_uses[*param] == ValueUseState::Unused {
556
continue;
557
}
558
let regs = writable_value_regs(self.value_regs[*param]);
559
for insn in self
560
.vcode
561
.vcode
562
.abi
563
.gen_copy_arg_to_regs(&self.vcode.vcode.sigs, i, regs, &mut self.vregs)
564
.into_iter()
565
{
566
self.emit(insn);
567
}
568
}
569
if let Some(insn) = self
570
.vcode
571
.vcode
572
.abi
573
.gen_retval_area_setup(&self.vcode.vcode.sigs, &mut self.vregs)
574
{
575
self.emit(insn);
576
}
577
578
// The `args` instruction below must come first. Finish
579
// the current "IR inst" (with a default source location,
580
// as for other special instructions inserted during
581
// lowering) and continue the scan backward.
582
self.finish_ir_inst(Default::default());
583
584
if let Some(insn) = self.vcode.vcode.abi.take_args() {
585
self.emit(insn);
586
}
587
}
588
}
589
590
/// Generate the return instruction.
591
pub fn gen_return(&mut self, rets: &[ValueRegs<Reg>]) {
592
let mut out_rets = vec![];
593
594
let mut rets = rets.into_iter();
595
for (i, ret) in self
596
.abi()
597
.signature()
598
.returns
599
.clone()
600
.into_iter()
601
.enumerate()
602
{
603
let regs = if ret.purpose == ArgumentPurpose::StructReturn {
604
self.sret_reg.unwrap()
605
} else {
606
*rets.next().unwrap()
607
};
608
609
let (regs, insns) = self.vcode.abi().gen_copy_regs_to_retval(
610
self.vcode.sigs(),
611
i,
612
regs,
613
&mut self.vregs,
614
);
615
out_rets.extend(regs);
616
for insn in insns {
617
self.emit(insn);
618
}
619
}
620
621
// Hack: generate a virtual instruction that uses vmctx in
622
// order to keep it alive for the duration of the function,
623
// for the benefit of debuginfo.
624
if self.f.dfg.values_labels.is_some() {
625
if let Some(vmctx_val) = self.f.special_param(ArgumentPurpose::VMContext) {
626
if self.value_ir_uses[vmctx_val] != ValueUseState::Unused {
627
let vmctx_reg = self.value_regs[vmctx_val].only_reg().unwrap();
628
self.emit(I::gen_dummy_use(vmctx_reg));
629
}
630
}
631
}
632
633
let inst = self.abi().gen_rets(out_rets);
634
self.emit(inst);
635
}
636
637
/// Generate list of registers to hold the output of a call with
638
/// signature `sig`.
639
pub fn gen_call_output(&mut self, sig: &Signature) -> InstOutput {
640
let mut rets = smallvec![];
641
for ty in sig.returns.iter().map(|ret| ret.value_type) {
642
rets.push(self.vregs.alloc_with_deferred_error(ty));
643
}
644
rets
645
}
646
647
/// Likewise, but for a `SigRef` instead.
648
pub fn gen_call_output_from_sig_ref(&mut self, sig_ref: SigRef) -> InstOutput {
649
self.gen_call_output(&self.f.dfg.signatures[sig_ref])
650
}
651
652
/// Set up arguments values `args` for a call with signature `sig`.
653
pub fn gen_call_args(&mut self, sig: Sig, args: &[ValueRegs<Reg>]) -> CallArgList {
654
let (uses, insts) = self.vcode.abi().gen_call_args(
655
self.vcode.sigs(),
656
sig,
657
args,
658
/* is_tail_call */ false,
659
&self.flags,
660
&mut self.vregs,
661
);
662
for insn in insts {
663
self.emit(insn);
664
}
665
uses
666
}
667
668
/// Likewise, but for a `return_call`.
669
pub fn gen_return_call_args(&mut self, sig: Sig, args: &[ValueRegs<Reg>]) -> CallArgList {
670
let (uses, insts) = self.vcode.abi().gen_call_args(
671
self.vcode.sigs(),
672
sig,
673
args,
674
/* is_tail_call */ true,
675
&self.flags,
676
&mut self.vregs,
677
);
678
for insn in insts {
679
self.emit(insn);
680
}
681
uses
682
}
683
684
/// Set up return values `outputs` for a call with signature `sig`.
685
pub fn gen_call_rets(&mut self, sig: Sig, outputs: &[ValueRegs<Reg>]) -> CallRetList {
686
self.vcode
687
.abi()
688
.gen_call_rets(self.vcode.sigs(), sig, outputs, None, &mut self.vregs)
689
}
690
691
/// Likewise, but for a `try_call`.
692
pub fn gen_try_call_rets(&mut self, sig: Sig) -> CallRetList {
693
let ir_inst = self.cur_inst.unwrap();
694
let mut outputs: SmallVec<[ValueRegs<Reg>; 2]> = smallvec![];
695
for return_def in self.try_call_rets.get(&ir_inst).unwrap() {
696
outputs.push(return_def.map(|r| r.to_reg()));
697
}
698
let payloads = Some(&self.try_call_payloads.get(&ir_inst).unwrap()[..]);
699
700
self.vcode
701
.abi()
702
.gen_call_rets(self.vcode.sigs(), sig, &outputs, payloads, &mut self.vregs)
703
}
704
705
/// Populate a `CallInfo` for a call with signature `sig`.
706
pub fn gen_call_info<T>(
707
&mut self,
708
sig: Sig,
709
dest: T,
710
uses: CallArgList,
711
defs: CallRetList,
712
try_call_info: Option<TryCallInfo>,
713
) -> CallInfo<T> {
714
self.vcode
715
.abi()
716
.gen_call_info(self.vcode.sigs(), sig, dest, uses, defs, try_call_info)
717
}
718
719
/// Has this instruction been sunk to a use-site (i.e., away from its
720
/// original location)?
721
fn is_inst_sunk(&self, inst: Inst) -> bool {
722
self.inst_sunk.contains(&inst)
723
}
724
725
// Is any result of this instruction needed?
726
fn is_any_inst_result_needed(&self, inst: Inst) -> bool {
727
self.f
728
.dfg
729
.inst_results(inst)
730
.iter()
731
.any(|&result| self.value_lowered_uses[result] > 0)
732
}
733
734
fn lower_clif_block<B: LowerBackend<MInst = I>>(
735
&mut self,
736
backend: &B,
737
block: Block,
738
ctrl_plane: &mut ControlPlane,
739
) -> CodegenResult<()> {
740
self.cur_scan_entry_color = Some(self.block_end_colors[block]);
741
// Lowering loop:
742
// - For each non-branch instruction, in reverse order:
743
// - If side-effecting (load, store, branch/call/return,
744
// possible trap), or if used outside of this block, or if
745
// demanded by another inst, then lower.
746
//
747
// That's it! Lowering of side-effecting ops will force all *needed*
748
// (live) non-side-effecting ops to be lowered at the right places, via
749
// the `use_input_reg()` callback on the `Lower` (that's us). That's
750
// because `use_input_reg()` sets the eager/demand bit for any insts
751
// whose result registers are used.
752
//
753
// We set the VCodeBuilder to "backward" mode, so we emit
754
// blocks in reverse order wrt the BlockIndex sequence, and
755
// emit instructions in reverse order within blocks. Because
756
// the machine backend calls `ctx.emit()` in forward order, we
757
// collect per-IR-inst lowered instructions in `ir_insts`,
758
// then reverse these and append to the VCode at the end of
759
// each IR instruction.
760
for inst in self.f.layout.block_insts(block).rev() {
761
let data = &self.f.dfg.insts[inst];
762
let has_side_effect = has_lowering_side_effect(self.f, inst);
763
// If inst has been sunk to another location, skip it.
764
if self.is_inst_sunk(inst) {
765
continue;
766
}
767
// Are any outputs used at least once?
768
let value_needed = self.is_any_inst_result_needed(inst);
769
trace!(
770
"lower_clif_block: block {} inst {} ({:?}) is_branch {} side_effect {} value_needed {}",
771
block,
772
inst,
773
data,
774
data.opcode().is_branch(),
775
has_side_effect,
776
value_needed,
777
);
778
779
// Update scan state to color prior to this inst (as we are scanning
780
// backward).
781
self.cur_inst = Some(inst);
782
if has_side_effect {
783
let entry_color = *self
784
.side_effect_inst_entry_colors
785
.get(&inst)
786
.expect("every side-effecting inst should have a color-map entry");
787
self.cur_scan_entry_color = Some(entry_color);
788
}
789
790
// Skip lowering branches; these are handled separately
791
// (see `lower_clif_branches()` below).
792
if self.f.dfg.insts[inst].opcode().is_branch() {
793
continue;
794
}
795
796
// Value defined by "inst" becomes live after it in normal
797
// order, and therefore **before** in reversed order.
798
self.emit_value_label_live_range_start_for_inst(inst);
799
800
// Normal instruction: codegen if the instruction is side-effecting
801
// or any of its outputs is used.
802
if has_side_effect || value_needed {
803
trace!("lowering: inst {}: {}", inst, self.f.dfg.display_inst(inst));
804
let temp_regs = match backend.lower(self, inst) {
805
Some(regs) => regs,
806
None => {
807
let ty = if self.num_outputs(inst) > 0 {
808
Some(self.output_ty(inst, 0))
809
} else {
810
None
811
};
812
return Err(CodegenError::Unsupported(format!(
813
"should be implemented in ISLE: inst = `{}`, type = `{:?}`",
814
self.f.dfg.display_inst(inst),
815
ty
816
)));
817
}
818
};
819
820
// The ISLE generated code emits its own registers to define the
821
// instruction's lowered values in. However, other instructions
822
// that use this SSA value will be lowered assuming that the value
823
// is generated into a pre-assigned, different, register.
824
//
825
// To connect the two, we set up "aliases" in the VCodeBuilder
826
// that apply when it is building the Operand table for the
827
// regalloc to use. These aliases effectively rewrite any use of
828
// the pre-assigned register to the register that was returned by
829
// the ISLE lowering logic.
830
let results = self.f.dfg.inst_results(inst);
831
debug_assert_eq!(temp_regs.len(), results.len());
832
for (regs, &result) in temp_regs.iter().zip(results) {
833
let dsts = self.value_regs[result];
834
let mut regs = regs.regs().iter();
835
for &dst in dsts.regs().iter() {
836
let temp = regs.next().copied().unwrap_or(Reg::invalid_sentinel());
837
trace!("set vreg alias: {result:?} = {dst:?}, lowering = {temp:?}");
838
self.vregs.set_vreg_alias(dst, temp);
839
}
840
}
841
}
842
843
let start = self.vcode.vcode.num_insts();
844
let loc = self.srcloc(inst);
845
self.finish_ir_inst(loc);
846
847
// If the instruction had a user stack map, forward it from the CLIF
848
// to the vcode.
849
if let Some(entries) = self.f.dfg.user_stack_map_entries(inst) {
850
let end = self.vcode.vcode.num_insts();
851
debug_assert!(end > start);
852
debug_assert_eq!(
853
(start..end)
854
.filter(|i| self.vcode.vcode[InsnIndex::new(*i)].is_safepoint())
855
.count(),
856
1
857
);
858
for i in start..end {
859
let iix = InsnIndex::new(i);
860
if self.vcode.vcode[iix].is_safepoint() {
861
trace!(
862
"Adding user stack map from clif\n\n\
863
{inst:?} `{}`\n\n\
864
to vcode\n\n\
865
{iix:?} `{}`",
866
self.f.dfg.display_inst(inst),
867
&self.vcode.vcode[iix].pretty_print_inst(&mut Default::default()),
868
);
869
self.vcode
870
.add_user_stack_map(BackwardsInsnIndex::new(iix.index()), entries);
871
break;
872
}
873
}
874
}
875
876
// maybe insert random instruction
877
if ctrl_plane.get_decision() {
878
if ctrl_plane.get_decision() {
879
let imm: u64 = ctrl_plane.get_arbitrary();
880
let reg = self.alloc_tmp(crate::ir::types::I64).regs()[0];
881
I::gen_imm_u64(imm, reg).map(|inst| self.emit(inst));
882
} else {
883
let imm: f64 = ctrl_plane.get_arbitrary();
884
let tmp = self.alloc_tmp(crate::ir::types::I64).regs()[0];
885
let reg = self.alloc_tmp(crate::ir::types::F64).regs()[0];
886
for inst in I::gen_imm_f64(imm, tmp, reg) {
887
self.emit(inst);
888
}
889
}
890
}
891
}
892
893
// Add the block params to this block.
894
self.add_block_params(block)?;
895
896
self.cur_scan_entry_color = None;
897
Ok(())
898
}
899
900
fn add_block_params(&mut self, block: Block) -> CodegenResult<()> {
901
for &param in self.f.dfg.block_params(block) {
902
for &reg in self.value_regs[param].regs() {
903
let vreg = reg.to_virtual_reg().unwrap();
904
self.vcode.add_block_param(vreg);
905
}
906
}
907
Ok(())
908
}
909
910
fn get_value_labels<'a>(&'a self, val: Value, depth: usize) -> Option<&'a [ValueLabelStart]> {
911
if let Some(ref values_labels) = self.f.dfg.values_labels {
912
debug_assert!(self.f.dfg.value_is_real(val));
913
trace!(
914
"get_value_labels: val {} -> {:?}",
915
val,
916
values_labels.get(&val)
917
);
918
match values_labels.get(&val) {
919
Some(&ValueLabelAssignments::Starts(ref list)) => Some(&list[..]),
920
Some(&ValueLabelAssignments::Alias { value, .. }) if depth < 10 => {
921
self.get_value_labels(value, depth + 1)
922
}
923
_ => None,
924
}
925
} else {
926
None
927
}
928
}
929
930
fn emit_value_label_marks_for_value(&mut self, val: Value) {
931
let regs = self.value_regs[val];
932
if regs.len() > 1 {
933
return;
934
}
935
let reg = regs.only_reg().unwrap();
936
937
if let Some(label_starts) = self.get_value_labels(val, 0) {
938
let labels = label_starts
939
.iter()
940
.map(|&ValueLabelStart { label, .. }| label)
941
.collect::<FxHashSet<_>>();
942
for label in labels {
943
trace!(
944
"value labeling: defines val {:?} -> reg {:?} -> label {:?}",
945
val, reg, label,
946
);
947
self.vcode.add_value_label(reg, label);
948
}
949
}
950
}
951
952
fn emit_value_label_live_range_start_for_inst(&mut self, inst: Inst) {
953
if self.f.dfg.values_labels.is_none() {
954
return;
955
}
956
957
trace!(
958
"value labeling: srcloc {}: inst {}",
959
self.srcloc(inst),
960
inst
961
);
962
for &val in self.f.dfg.inst_results(inst) {
963
self.emit_value_label_marks_for_value(val);
964
}
965
}
966
967
fn emit_value_label_live_range_start_for_block_args(&mut self, block: Block) {
968
if self.f.dfg.values_labels.is_none() {
969
return;
970
}
971
972
trace!("value labeling: block {}", block);
973
for &arg in self.f.dfg.block_params(block) {
974
self.emit_value_label_marks_for_value(arg);
975
}
976
self.finish_ir_inst(Default::default());
977
}
978
979
fn finish_ir_inst(&mut self, loc: RelSourceLoc) {
980
// The VCodeBuilder builds in reverse order (and reverses at
981
// the end), but `ir_insts` is in forward order, so reverse
982
// it.
983
for inst in self.ir_insts.drain(..).rev() {
984
self.vcode.push(inst, loc);
985
}
986
}
987
988
fn finish_bb(&mut self) {
989
self.vcode.end_bb();
990
}
991
992
fn lower_clif_branch<B: LowerBackend<MInst = I>>(
993
&mut self,
994
backend: &B,
995
// Lowered block index:
996
bindex: BlockIndex,
997
// Original CLIF block:
998
block: Block,
999
branch: Inst,
1000
targets: &[MachLabel],
1001
) -> CodegenResult<()> {
1002
trace!(
1003
"lower_clif_branch: block {} branch {:?} targets {:?}",
1004
block, branch, targets,
1005
);
1006
// When considering code-motion opportunities, consider the current
1007
// program point to be this branch.
1008
self.cur_inst = Some(branch);
1009
1010
// Lower the branch in ISLE.
1011
backend
1012
.lower_branch(self, branch, targets)
1013
.unwrap_or_else(|| {
1014
panic!(
1015
"should be implemented in ISLE: branch = `{}`",
1016
self.f.dfg.display_inst(branch),
1017
)
1018
});
1019
let loc = self.srcloc(branch);
1020
self.finish_ir_inst(loc);
1021
// Add block param outputs for current block.
1022
self.lower_branch_blockparam_args(bindex);
1023
Ok(())
1024
}
1025
1026
fn lower_branch_blockparam_args(&mut self, block: BlockIndex) {
1027
let mut branch_arg_vregs: SmallVec<[Reg; 16]> = smallvec![];
1028
1029
// TODO: why not make `block_order` public?
1030
for succ_idx in 0..self.vcode.block_order().succ_indices(block).1.len() {
1031
branch_arg_vregs.clear();
1032
let (succ, args) = self.collect_block_call(block, succ_idx, &mut branch_arg_vregs);
1033
self.vcode.add_succ(succ, args);
1034
}
1035
}
1036
1037
fn collect_branch_and_targets(
1038
&self,
1039
bindex: BlockIndex,
1040
_bb: Block,
1041
targets: &mut SmallVec<[MachLabel; 2]>,
1042
) -> Option<Inst> {
1043
targets.clear();
1044
let (opt_inst, succs) = self.vcode.block_order().succ_indices(bindex);
1045
targets.extend(succs.iter().map(|succ| MachLabel::from_block(*succ)));
1046
opt_inst
1047
}
1048
1049
/// Collect the outgoing block-call arguments for a given edge out
1050
/// of a lowered block.
1051
fn collect_block_call<'a>(
1052
&mut self,
1053
block: BlockIndex,
1054
succ_idx: usize,
1055
buffer: &'a mut SmallVec<[Reg; 16]>,
1056
) -> (BlockIndex, &'a [Reg]) {
1057
let block_order = self.vcode.block_order();
1058
let (_, succs) = block_order.succ_indices(block);
1059
let succ = succs[succ_idx];
1060
let this_lb = block_order.lowered_order()[block.index()];
1061
let succ_lb = block_order.lowered_order()[succ.index()];
1062
1063
let (branch_inst, succ_idx) = match (this_lb, succ_lb) {
1064
(_, LoweredBlock::CriticalEdge { .. }) => {
1065
// The successor is a split-critical-edge block. In this
1066
// case, this block-call has no arguments, and the
1067
// arguments go on the critical edge block's unconditional
1068
// branch instead.
1069
return (succ, &[]);
1070
}
1071
(LoweredBlock::CriticalEdge { pred, succ_idx, .. }, _) => {
1072
// This is a split-critical-edge block. In this case, our
1073
// block-call has the arguments that in the CLIF appear in
1074
// the predecessor's branch to this edge.
1075
let branch_inst = self.f.layout.last_inst(pred).unwrap();
1076
(branch_inst, succ_idx as usize)
1077
}
1078
1079
(this, _) => {
1080
let block = this.orig_block().unwrap();
1081
// Ordinary block, with an ordinary block as
1082
// successor. Take the arguments from the branch.
1083
let branch_inst = self.f.layout.last_inst(block).unwrap();
1084
(branch_inst, succ_idx)
1085
}
1086
};
1087
1088
let block_call = self.f.dfg.insts[branch_inst]
1089
.branch_destination(&self.f.dfg.jump_tables, &self.f.dfg.exception_tables)[succ_idx];
1090
for arg in block_call.args(&self.f.dfg.value_lists) {
1091
match arg {
1092
BlockArg::Value(arg) => {
1093
debug_assert!(self.f.dfg.value_is_real(arg));
1094
let regs = self.put_value_in_regs(arg);
1095
buffer.extend_from_slice(regs.regs());
1096
}
1097
BlockArg::TryCallRet(i) => {
1098
let regs = self.try_call_rets.get(&branch_inst).unwrap()[i as usize]
1099
.map(|r| r.to_reg());
1100
buffer.extend_from_slice(regs.regs());
1101
}
1102
BlockArg::TryCallExn(i) => {
1103
let reg =
1104
self.try_call_payloads.get(&branch_inst).unwrap()[i as usize].to_reg();
1105
buffer.push(reg);
1106
}
1107
}
1108
}
1109
(succ, &buffer[..])
1110
}
1111
1112
/// Lower the function.
1113
pub fn lower<B: LowerBackend<MInst = I>>(
1114
mut self,
1115
backend: &B,
1116
ctrl_plane: &mut ControlPlane,
1117
) -> CodegenResult<VCode<I>> {
1118
trace!("about to lower function: {:?}", self.f);
1119
1120
self.vcode.init_retval_area(&mut self.vregs)?;
1121
1122
// Get the pinned reg here (we only parameterize this function on `B`,
1123
// not the whole `Lower` impl).
1124
self.pinned_reg = backend.maybe_pinned_reg();
1125
1126
self.vcode.set_entry(BlockIndex::new(0));
1127
1128
// Reused vectors for branch lowering.
1129
let mut targets: SmallVec<[MachLabel; 2]> = SmallVec::new();
1130
1131
// get a copy of the lowered order; we hold this separately because we
1132
// need a mut ref to the vcode to mutate it below.
1133
let lowered_order: SmallVec<[LoweredBlock; 64]> = self
1134
.vcode
1135
.block_order()
1136
.lowered_order()
1137
.iter()
1138
.cloned()
1139
.collect();
1140
1141
// Main lowering loop over lowered blocks.
1142
for (bindex, lb) in lowered_order.iter().enumerate().rev() {
1143
let bindex = BlockIndex::new(bindex);
1144
1145
// Lower the block body in reverse order (see comment in
1146
// `lower_clif_block()` for rationale).
1147
1148
// End branch.
1149
if let Some(bb) = lb.orig_block() {
1150
if let Some(branch) = self.collect_branch_and_targets(bindex, bb, &mut targets) {
1151
self.lower_clif_branch(backend, bindex, bb, branch, &targets)?;
1152
self.finish_ir_inst(self.srcloc(branch));
1153
}
1154
} else {
1155
// If no orig block, this must be a pure edge block;
1156
// get the successor and emit a jump. This block has
1157
// no block params; and this jump's block-call args
1158
// will be filled in by
1159
// `lower_branch_blockparam_args`.
1160
let succ = self.vcode.block_order().succ_indices(bindex).1[0];
1161
self.emit(I::gen_jump(MachLabel::from_block(succ)));
1162
self.finish_ir_inst(Default::default());
1163
self.lower_branch_blockparam_args(bindex);
1164
}
1165
1166
// Original block body.
1167
if let Some(bb) = lb.orig_block() {
1168
self.lower_clif_block(backend, bb, ctrl_plane)?;
1169
self.emit_value_label_live_range_start_for_block_args(bb);
1170
}
1171
1172
if bindex.index() == 0 {
1173
// Set up the function with arg vreg inits.
1174
self.gen_arg_setup();
1175
self.finish_ir_inst(Default::default());
1176
}
1177
1178
self.finish_bb();
1179
1180
// Check for any deferred vreg-temp allocation errors, and
1181
// bubble one up at this time if it exists.
1182
if let Some(e) = self.vregs.take_deferred_error() {
1183
return Err(e);
1184
}
1185
}
1186
1187
// Now that we've emitted all instructions into the
1188
// VCodeBuilder, let's build the VCode.
1189
trace!(
1190
"built vcode:\n{:?}Backwards {:?}",
1191
&self.vregs, &self.vcode.vcode
1192
);
1193
let vcode = self.vcode.build(self.vregs);
1194
1195
Ok(vcode)
1196
}
1197
1198
pub fn value_is_unused(&self, val: Value) -> bool {
1199
match self.value_ir_uses[val] {
1200
ValueUseState::Unused => true,
1201
_ => false,
1202
}
1203
}
1204
1205
pub fn block_successor_label(&self, block: Block, succ: usize) -> MachLabel {
1206
trace!("block_successor_label: block {block} succ {succ}");
1207
let lowered = self
1208
.vcode
1209
.block_order()
1210
.lowered_index_for_block(block)
1211
.expect("Unreachable block");
1212
trace!(" -> lowered block {lowered:?}");
1213
let (_, succs) = self.vcode.block_order().succ_indices(lowered);
1214
trace!(" -> succs {succs:?}");
1215
let succ_block = *succs.get(succ).expect("Successor index out of range");
1216
MachLabel::from_block(succ_block)
1217
}
1218
}
1219
1220
/// Pre-analysis: compute `value_ir_uses`. See comment on
1221
/// `ValueUseState` for a description of what this analysis
1222
/// computes.
1223
fn compute_use_states(
1224
f: &Function,
1225
sret_param: Option<Value>,
1226
) -> SecondaryMap<Value, ValueUseState> {
1227
// We perform the analysis without recursion, so we don't
1228
// overflow the stack on long chains of ops in the input.
1229
//
1230
// This is sort of a hybrid of a "shallow use-count" pass and
1231
// a DFS. We iterate over all instructions and mark their args
1232
// as used. However when we increment a use-count to
1233
// "Multiple" we push its args onto the stack and do a DFS,
1234
// immediately marking the whole dependency tree as
1235
// Multiple. Doing both (shallow use-counting over all insts,
1236
// and deep Multiple propagation) lets us trim both
1237
// traversals, stopping recursion when a node is already at
1238
// the appropriate state.
1239
//
1240
// In particular, note that the *coarsening* into {Unused,
1241
// Once, Multiple} is part of what makes this pass more
1242
// efficient than a full indirect-use-counting pass.
1243
1244
let mut value_ir_uses = SecondaryMap::with_default(ValueUseState::Unused);
1245
1246
if let Some(sret_param) = sret_param {
1247
// There's an implicit use of the struct-return parameter in each
1248
// copy of the function epilogue, which we count here.
1249
value_ir_uses[sret_param] = ValueUseState::Multiple;
1250
}
1251
1252
// Stack of iterators over Values as we do DFS to mark
1253
// Multiple-state subtrees. The iterator type is whatever is
1254
// returned by `uses` below.
1255
let mut stack: SmallVec<[_; 16]> = smallvec![];
1256
1257
// Find the args for the inst corresponding to the given value.
1258
//
1259
// Note that "root" instructions are skipped here. This means that multiple
1260
// uses of any result of a multi-result instruction are not considered
1261
// multiple uses of the operands of a multi-result instruction. This
1262
// requires tight coupling with `get_value_as_source_or_const` above which
1263
// is the consumer of the map that this function is producing.
1264
let uses = |value| {
1265
trace!(" -> pushing args for {} onto stack", value);
1266
if let ValueDef::Result(src_inst, _) = f.dfg.value_def(value) {
1267
if is_value_use_root(f, src_inst) {
1268
None
1269
} else {
1270
Some(f.dfg.inst_values(src_inst))
1271
}
1272
} else {
1273
None
1274
}
1275
};
1276
1277
// Do a DFS through `value_ir_uses` to mark a subtree as
1278
// Multiple.
1279
for inst in f
1280
.layout
1281
.blocks()
1282
.flat_map(|block| f.layout.block_insts(block))
1283
{
1284
// Iterate over all values used by all instructions, noting an
1285
// additional use on each operand.
1286
for arg in f.dfg.inst_values(inst) {
1287
debug_assert!(f.dfg.value_is_real(arg));
1288
let old = value_ir_uses[arg];
1289
value_ir_uses[arg].inc();
1290
let new = value_ir_uses[arg];
1291
trace!("arg {} used, old state {:?}, new {:?}", arg, old, new);
1292
1293
// On transition to Multiple, do DFS.
1294
if old == ValueUseState::Multiple || new != ValueUseState::Multiple {
1295
continue;
1296
}
1297
if let Some(iter) = uses(arg) {
1298
stack.push(iter);
1299
}
1300
while let Some(iter) = stack.last_mut() {
1301
if let Some(value) = iter.next() {
1302
debug_assert!(f.dfg.value_is_real(value));
1303
trace!(" -> DFS reaches {}", value);
1304
if value_ir_uses[value] == ValueUseState::Multiple {
1305
// Truncate DFS here: no need to go further,
1306
// as whole subtree must already be Multiple.
1307
// With debug asserts, check one level of
1308
// that invariant at least.
1309
debug_assert!(uses(value).into_iter().flatten().all(|arg| {
1310
debug_assert!(f.dfg.value_is_real(arg));
1311
value_ir_uses[arg] == ValueUseState::Multiple
1312
}));
1313
continue;
1314
}
1315
value_ir_uses[value] = ValueUseState::Multiple;
1316
trace!(" -> became Multiple");
1317
if let Some(iter) = uses(value) {
1318
stack.push(iter);
1319
}
1320
} else {
1321
// Empty iterator, discard.
1322
stack.pop();
1323
}
1324
}
1325
}
1326
}
1327
1328
value_ir_uses
1329
}
1330
1331
/// Definition of a "root" instruction for the calculation of `ValueUseState`.
1332
///
1333
/// This function calculates whether `inst` is considered a "root" for value-use
1334
/// information. This concept is used to forcibly prevent looking-through the
1335
/// instruction during `get_value_as_source_or_const` as it additionally
1336
/// prevents propagating `Multiple`-used results of the `inst` here to the
1337
/// operands of the instruction.
1338
///
1339
/// Currently this is defined as multi-result instructions. That means that
1340
/// lowerings are never allowed to look through a multi-result instruction to
1341
/// generate patterns. Note that this isn't possible in ISLE today anyway so
1342
/// this isn't currently much of a loss.
1343
///
1344
/// The main purpose of this function is to prevent the operands of a
1345
/// multi-result instruction from being forcibly considered `Multiple`-used
1346
/// regardless of circumstances.
1347
fn is_value_use_root(f: &Function, inst: Inst) -> bool {
1348
f.dfg.inst_results(inst).len() > 1
1349
}
1350
1351
/// Function-level queries.
1352
impl<'func, I: VCodeInst> Lower<'func, I> {
1353
pub fn dfg(&self) -> &DataFlowGraph {
1354
&self.f.dfg
1355
}
1356
1357
/// Get the `Callee`.
1358
pub fn abi(&self) -> &Callee<I::ABIMachineSpec> {
1359
self.vcode.abi()
1360
}
1361
1362
/// Get the `Callee`.
1363
pub fn abi_mut(&mut self) -> &mut Callee<I::ABIMachineSpec> {
1364
self.vcode.abi_mut()
1365
}
1366
}
1367
1368
/// Instruction input/output queries.
1369
impl<'func, I: VCodeInst> Lower<'func, I> {
1370
/// Get the instdata for a given IR instruction.
1371
pub fn data(&self, ir_inst: Inst) -> &InstructionData {
1372
&self.f.dfg.insts[ir_inst]
1373
}
1374
1375
/// Likewise, but starting with a GlobalValue identifier.
1376
pub fn symbol_value_data<'b>(
1377
&'b self,
1378
global_value: GlobalValue,
1379
) -> Option<(&'b ExternalName, RelocDistance, i64)> {
1380
let gvdata = &self.f.global_values[global_value];
1381
match gvdata {
1382
&GlobalValueData::Symbol {
1383
ref name,
1384
ref offset,
1385
colocated,
1386
..
1387
} => {
1388
let offset = offset.bits();
1389
let dist = if colocated {
1390
RelocDistance::Near
1391
} else {
1392
RelocDistance::Far
1393
};
1394
Some((name, dist, offset))
1395
}
1396
_ => None,
1397
}
1398
}
1399
1400
/// Returns the memory flags of a given memory access.
1401
pub fn memflags(&self, ir_inst: Inst) -> Option<MemFlags> {
1402
match &self.f.dfg.insts[ir_inst] {
1403
&InstructionData::AtomicCas { flags, .. } => Some(flags),
1404
&InstructionData::AtomicRmw { flags, .. } => Some(flags),
1405
&InstructionData::Load { flags, .. }
1406
| &InstructionData::LoadNoOffset { flags, .. }
1407
| &InstructionData::Store { flags, .. } => Some(flags),
1408
&InstructionData::StoreNoOffset { flags, .. } => Some(flags),
1409
_ => None,
1410
}
1411
}
1412
1413
/// Get the source location for a given instruction.
1414
pub fn srcloc(&self, ir_inst: Inst) -> RelSourceLoc {
1415
self.f.rel_srclocs()[ir_inst]
1416
}
1417
1418
/// Get the number of inputs to the given IR instruction. This is a count only of the Value
1419
/// arguments to the instruction: block arguments will not be included in this count.
1420
pub fn num_inputs(&self, ir_inst: Inst) -> usize {
1421
self.f.dfg.inst_args(ir_inst).len()
1422
}
1423
1424
/// Get the number of outputs to the given IR instruction.
1425
pub fn num_outputs(&self, ir_inst: Inst) -> usize {
1426
self.f.dfg.inst_results(ir_inst).len()
1427
}
1428
1429
/// Get the type for an instruction's input.
1430
pub fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type {
1431
self.value_ty(self.input_as_value(ir_inst, idx))
1432
}
1433
1434
/// Get the type for a value.
1435
pub fn value_ty(&self, val: Value) -> Type {
1436
self.f.dfg.value_type(val)
1437
}
1438
1439
/// Get the type for an instruction's output.
1440
pub fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type {
1441
self.f.dfg.value_type(self.f.dfg.inst_results(ir_inst)[idx])
1442
}
1443
1444
/// Get the value of a constant instruction (`iconst`, etc.) as a 64-bit
1445
/// value, if possible.
1446
pub fn get_constant(&self, ir_inst: Inst) -> Option<u64> {
1447
self.inst_constants.get(&ir_inst).map(|&c| {
1448
// The upper bits must be zero, enforced during legalization and by
1449
// the CLIF verifier.
1450
debug_assert_eq!(c, {
1451
let input_size = self.output_ty(ir_inst, 0).bits() as u64;
1452
let shift = 64 - input_size;
1453
(c << shift) >> shift
1454
});
1455
c
1456
})
1457
}
1458
1459
/// Get the input as one of two options other than a direct register:
1460
///
1461
/// - An instruction, given that it is effect-free or able to sink its
1462
/// effect to the current instruction being lowered, and given it has only
1463
/// one output, and if effect-ful, given that this is the only use;
1464
/// - A constant, if the value is a constant.
1465
///
1466
/// The instruction input may be available in either of these forms. It may
1467
/// be available in neither form, if the conditions are not met; if so, use
1468
/// `put_input_in_regs()` instead to get it in a register.
1469
///
1470
/// If the backend merges the effect of a side-effecting instruction, it
1471
/// must call `sink_inst()`. When this is called, it indicates that the
1472
/// effect has been sunk to the current scan location. The sunk
1473
/// instruction's result(s) must have *no* uses remaining, because it will
1474
/// not be codegen'd (it has been integrated into the current instruction).
1475
pub fn input_as_value(&self, ir_inst: Inst, idx: usize) -> Value {
1476
let val = self.f.dfg.inst_args(ir_inst)[idx];
1477
debug_assert!(self.f.dfg.value_is_real(val));
1478
val
1479
}
1480
1481
/// Resolves a particular input of an instruction to the `Value` that it is
1482
/// represented with.
1483
///
1484
/// For more information see [`Lower::get_value_as_source_or_const`].
1485
pub fn get_input_as_source_or_const(&self, ir_inst: Inst, idx: usize) -> NonRegInput {
1486
let val = self.input_as_value(ir_inst, idx);
1487
self.get_value_as_source_or_const(val)
1488
}
1489
1490
/// Resolves a `Value` definition to the source instruction it came from
1491
/// plus whether it's a unique-use of that instruction.
1492
///
1493
/// This function is the workhorse of pattern-matching in ISLE which enables
1494
/// combining multiple instructions together. This is used implicitly in
1495
/// patterns such as `(iadd x (iconst y))` where this function is used to
1496
/// extract the `(iconst y)` operand.
1497
///
1498
/// At its core this function is a wrapper around
1499
/// [`DataFlowGraph::value_def`]. This function applies a filter on top of
1500
/// that, however, to determine when it is actually safe to "look through"
1501
/// the `val` definition here and view the underlying instruction. This
1502
/// protects against duplicating side effects, such as loads, for example.
1503
///
1504
/// Internally this uses the data computed from `compute_use_states` along
1505
/// with other instruction properties to know what to return.
1506
pub fn get_value_as_source_or_const(&self, val: Value) -> NonRegInput {
1507
trace!(
1508
"get_input_for_val: val {} at cur_inst {:?} cur_scan_entry_color {:?}",
1509
val, self.cur_inst, self.cur_scan_entry_color,
1510
);
1511
let inst = match self.f.dfg.value_def(val) {
1512
// OK to merge source instruction if we have a source
1513
// instruction, and one of these two conditions hold:
1514
//
1515
// - It has no side-effects and this instruction is not a "value-use
1516
// root" instruction. Instructions which are considered "roots"
1517
// for value-use calculations do not have accurate information
1518
// known about the `ValueUseState` of their operands. This is
1519
// currently done for multi-result instructions to prevent a use
1520
// of each result from forcing all operands of the multi-result
1521
// instruction to also be `Multiple`. This in turn means that the
1522
// `ValueUseState` for operands of a "root" instruction to be a
1523
// lie if pattern matching were to look through the multi-result
1524
// instruction. As a result the "look through this instruction"
1525
// logic only succeeds if it's not a root instruction.
1526
//
1527
// - It has a side-effect, has one output value, that one
1528
// output has only one use, directly or indirectly (so
1529
// cannot be duplicated -- see comment on
1530
// `ValueUseState`), and the instruction's color is *one
1531
// less than* the current scan color.
1532
//
1533
// This latter set of conditions is testing whether a
1534
// side-effecting instruction can sink to the current scan
1535
// location; this is possible if the in-color of this inst is
1536
// equal to the out-color of the producing inst, so no other
1537
// side-effecting ops occur between them (which will only be true
1538
// if they are in the same BB, because color increments at each BB
1539
// start).
1540
//
1541
// If it is actually sunk, then in `merge_inst()`, we update the
1542
// scan color so that as we scan over the range past which the
1543
// instruction was sunk, we allow other instructions (that came
1544
// prior to the sunk instruction) to sink.
1545
ValueDef::Result(src_inst, result_idx) => {
1546
let src_side_effect = has_lowering_side_effect(self.f, src_inst);
1547
trace!(" -> src inst {}", self.f.dfg.display_inst(src_inst));
1548
trace!(" -> has lowering side effect: {}", src_side_effect);
1549
if is_value_use_root(self.f, src_inst) {
1550
// If this instruction is a "root instruction" then it's
1551
// required that we can't look through it to see the
1552
// definition. This means that the `ValueUseState` for the
1553
// operands of this result assume that this instruction is
1554
// generated exactly once which might get violated were we
1555
// to allow looking through it.
1556
trace!(" -> is a root instruction");
1557
InputSourceInst::None
1558
} else if !src_side_effect {
1559
// Otherwise if this instruction has no side effects and the
1560
// value is used only once then we can look through it with
1561
// a "unique" tag. A non-unique `Use` can be shown for other
1562
// values ensuring consumers know how it's computed but that
1563
// it's not available to omit.
1564
if self.value_ir_uses[val] == ValueUseState::Once {
1565
InputSourceInst::UniqueUse(src_inst, result_idx)
1566
} else {
1567
InputSourceInst::Use(src_inst, result_idx)
1568
}
1569
} else {
1570
// Side-effect: test whether this is the only use of the
1571
// only result of the instruction, and whether colors allow
1572
// the code-motion.
1573
trace!(
1574
" -> side-effecting op {} for val {}: use state {:?}",
1575
src_inst, val, self.value_ir_uses[val]
1576
);
1577
if self.cur_scan_entry_color.is_some()
1578
&& self.value_ir_uses[val] == ValueUseState::Once
1579
&& self.num_outputs(src_inst) == 1
1580
&& self
1581
.side_effect_inst_entry_colors
1582
.get(&src_inst)
1583
.unwrap()
1584
.get()
1585
+ 1
1586
== self.cur_scan_entry_color.unwrap().get()
1587
{
1588
InputSourceInst::UniqueUse(src_inst, 0)
1589
} else {
1590
InputSourceInst::None
1591
}
1592
}
1593
}
1594
_ => InputSourceInst::None,
1595
};
1596
let constant = inst.as_inst().and_then(|(inst, _)| self.get_constant(inst));
1597
1598
NonRegInput { inst, constant }
1599
}
1600
1601
/// Increment the reference count for the Value, ensuring that it gets lowered.
1602
pub fn increment_lowered_uses(&mut self, val: Value) {
1603
self.value_lowered_uses[val] += 1
1604
}
1605
1606
/// Put the `idx`th input into register(s) and return the assigned register.
1607
pub fn put_input_in_regs(&mut self, ir_inst: Inst, idx: usize) -> ValueRegs<Reg> {
1608
let val = self.f.dfg.inst_args(ir_inst)[idx];
1609
self.put_value_in_regs(val)
1610
}
1611
1612
/// Put the given value into register(s) and return the assigned register.
1613
pub fn put_value_in_regs(&mut self, val: Value) -> ValueRegs<Reg> {
1614
debug_assert!(self.f.dfg.value_is_real(val));
1615
trace!("put_value_in_regs: val {}", val);
1616
1617
if let Some(inst) = self.f.dfg.value_def(val).inst() {
1618
assert!(!self.inst_sunk.contains(&inst));
1619
}
1620
1621
let regs = self.value_regs[val];
1622
trace!(" -> regs {:?}", regs);
1623
assert!(regs.is_valid());
1624
1625
self.value_lowered_uses[val] += 1;
1626
1627
regs
1628
}
1629
1630
/// Get the ValueRegs for the edge-defined values for special
1631
/// try-call-return block arguments.
1632
pub fn try_call_return_defs(&mut self, ir_inst: Inst) -> &[ValueRegs<Writable<Reg>>] {
1633
&self.try_call_rets.get(&ir_inst).unwrap()[..]
1634
}
1635
1636
/// Get the Regs for the edge-defined values for special
1637
/// try-call-return exception payload arguments.
1638
pub fn try_call_exception_defs(&mut self, ir_inst: Inst) -> &[Writable<Reg>] {
1639
&self.try_call_payloads.get(&ir_inst).unwrap()[..]
1640
}
1641
}
1642
1643
/// Codegen primitives: allocate temps, emit instructions, set result registers,
1644
/// ask for an input to be gen'd into a register.
1645
impl<'func, I: VCodeInst> Lower<'func, I> {
1646
/// Get a new temp.
1647
pub fn alloc_tmp(&mut self, ty: Type) -> ValueRegs<Writable<Reg>> {
1648
writable_value_regs(self.vregs.alloc_with_deferred_error(ty))
1649
}
1650
1651
/// Get the current root instruction that we are lowering.
1652
pub fn cur_inst(&self) -> Inst {
1653
self.cur_inst.unwrap()
1654
}
1655
1656
/// Emit a machine instruction.
1657
pub fn emit(&mut self, mach_inst: I) {
1658
trace!("emit: {:?}", mach_inst);
1659
self.ir_insts.push(mach_inst);
1660
}
1661
1662
/// Indicate that the side-effect of an instruction has been sunk to the
1663
/// current scan location. This should only be done with the instruction's
1664
/// original results are not used (i.e., `put_input_in_regs` is not invoked
1665
/// for the input produced by the sunk instruction), otherwise the
1666
/// side-effect will occur twice.
1667
pub fn sink_inst(&mut self, ir_inst: Inst) {
1668
assert!(has_lowering_side_effect(self.f, ir_inst));
1669
assert!(self.cur_scan_entry_color.is_some());
1670
1671
for result in self.dfg().inst_results(ir_inst) {
1672
assert!(self.value_lowered_uses[*result] == 0);
1673
}
1674
1675
let sunk_inst_entry_color = self
1676
.side_effect_inst_entry_colors
1677
.get(&ir_inst)
1678
.cloned()
1679
.unwrap();
1680
let sunk_inst_exit_color = InstColor::new(sunk_inst_entry_color.get() + 1);
1681
assert!(sunk_inst_exit_color == self.cur_scan_entry_color.unwrap());
1682
self.cur_scan_entry_color = Some(sunk_inst_entry_color);
1683
self.inst_sunk.insert(ir_inst);
1684
}
1685
1686
/// Retrieve immediate data given a handle.
1687
pub fn get_immediate_data(&self, imm: Immediate) -> &ConstantData {
1688
self.f.dfg.immediates.get(imm).unwrap()
1689
}
1690
1691
/// Retrieve constant data given a handle.
1692
pub fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData {
1693
self.f.dfg.constants.get(constant_handle)
1694
}
1695
1696
/// Indicate that a constant should be emitted.
1697
pub fn use_constant(&mut self, constant: VCodeConstantData) -> VCodeConstant {
1698
self.vcode.constants().insert(constant)
1699
}
1700
1701
/// Cause the value in `reg` to be in a virtual reg, by copying it into a
1702
/// new virtual reg if `reg` is a real reg. `ty` describes the type of the
1703
/// value in `reg`.
1704
pub fn ensure_in_vreg(&mut self, reg: Reg, ty: Type) -> Reg {
1705
if reg.to_virtual_reg().is_some() {
1706
reg
1707
} else {
1708
let new_reg = self.alloc_tmp(ty).only_reg().unwrap();
1709
self.emit(I::gen_move(new_reg, reg, ty));
1710
new_reg.to_reg()
1711
}
1712
}
1713
1714
/// Add a range fact to a register, if no other fact is present.
1715
pub fn add_range_fact(&mut self, reg: Reg, bit_width: u16, min: u64, max: u64) {
1716
if self.flags.enable_pcc() {
1717
self.vregs.set_fact_if_missing(
1718
reg.to_virtual_reg().unwrap(),
1719
Fact::Range {
1720
bit_width,
1721
min,
1722
max,
1723
},
1724
);
1725
}
1726
}
1727
}
1728
1729
#[cfg(test)]
1730
mod tests {
1731
use super::ValueUseState;
1732
use crate::cursor::{Cursor, FuncCursor};
1733
use crate::ir::types;
1734
use crate::ir::{Function, InstBuilder};
1735
1736
#[test]
1737
fn multi_result_use_once() {
1738
let mut func = Function::new();
1739
let block0 = func.dfg.make_block();
1740
let mut pos = FuncCursor::new(&mut func);
1741
pos.insert_block(block0);
1742
let v1 = pos.ins().iconst(types::I64, 0);
1743
let v2 = pos.ins().iconst(types::I64, 1);
1744
let v3 = pos.ins().iconcat(v1, v2);
1745
let (v4, v5) = pos.ins().isplit(v3);
1746
pos.ins().return_(&[v4, v5]);
1747
let func = pos.func;
1748
1749
let uses = super::compute_use_states(&func, None);
1750
assert_eq!(uses[v1], ValueUseState::Once);
1751
assert_eq!(uses[v2], ValueUseState::Once);
1752
assert_eq!(uses[v3], ValueUseState::Once);
1753
assert_eq!(uses[v4], ValueUseState::Once);
1754
assert_eq!(uses[v5], ValueUseState::Once);
1755
}
1756
1757
#[test]
1758
fn results_used_twice_but_not_operands() {
1759
let mut func = Function::new();
1760
let block0 = func.dfg.make_block();
1761
let mut pos = FuncCursor::new(&mut func);
1762
pos.insert_block(block0);
1763
let v1 = pos.ins().iconst(types::I64, 0);
1764
let v2 = pos.ins().iconst(types::I64, 1);
1765
let v3 = pos.ins().iconcat(v1, v2);
1766
let (v4, v5) = pos.ins().isplit(v3);
1767
pos.ins().return_(&[v4, v4]);
1768
let func = pos.func;
1769
1770
let uses = super::compute_use_states(&func, None);
1771
assert_eq!(uses[v1], ValueUseState::Once);
1772
assert_eq!(uses[v2], ValueUseState::Once);
1773
assert_eq!(uses[v3], ValueUseState::Once);
1774
assert_eq!(uses[v4], ValueUseState::Multiple);
1775
assert_eq!(uses[v5], ValueUseState::Unused);
1776
}
1777
}
1778
1779