Path: blob/main/cranelift/codegen/src/opts/arithmetic.isle
1693 views
;; rewrites for integer and floating-point arithmetic ;; eg: `iadd`, `isub`, `ineg`, `imul`, `fadd`, `fsub`, `fmul` ;; For commutative instructions, we depend on cprop.isle pushing immediates to ;; the right, and thus only simplify patterns like `x+0`, not `0+x`. ;; x+0 == x. (rule (simplify (iadd ty x (iconst_u ty 0))) (subsume x)) ;; x-0 == x. (rule (simplify (isub ty x (iconst_u ty 0))) (subsume x)) ;; 0-x == (ineg x). (rule (simplify (isub ty (iconst_u ty 0) x)) (ineg ty x)) ;; x + -y == -y + x == -(y - x) == x - y (rule (simplify (iadd ty x (ineg ty y))) (isub ty x y)) (rule (simplify (iadd ty (ineg ty y) x)) (isub ty x y)) (rule (simplify (ineg ty (isub ty y x))) (isub ty x y)) ;; x - -y == x + y (rule (simplify (isub ty x (ineg ty y))) (iadd ty x y)) ;; ineg(ineg(x)) == x. (rule (simplify (ineg ty (ineg ty x))) (subsume x)) ;; ineg(x) * ineg(y) == x*y. (rule (simplify (imul ty (ineg ty x) (ineg ty y))) (subsume (imul ty x y))) ;; iabs(ineg(x)) == iabs(x). (rule (simplify (iabs ty (ineg ty x))) (iabs ty x)) ;; iabs(iabs(x)) == iabs(x). (rule (simplify (iabs ty inner @ (iabs ty x))) (subsume inner)) ;; x-x == 0. (rule (simplify (isub (ty_int ty) x x)) (subsume (iconst_u ty 0))) ;; x*1 == x. (rule (simplify (imul ty x (iconst_u ty 1))) (subsume x)) ;; x*0 == 0. (rule (simplify (imul ty _ zero @ (iconst_u ty 0))) (subsume zero)) ;; x*-1 == ineg(x). (rule (simplify (imul ty x (iconst_s ty -1))) (ineg ty x)) ;; (!x) + 1 == ineg(x) (rule (simplify (iadd ty (bnot ty x) (iconst_u ty 1))) (ineg ty x)) ;; !(x - 1) == !(x + (-1)) == ineg(x) (rule (simplify (bnot ty (isub ty x (iconst_s ty 1)))) (ineg ty x)) (rule (simplify (bnot ty (iadd ty x (iconst_s ty -1)))) (ineg ty x)) ;; x / 1 == x. (rule (simplify_skeleton (sdiv x (iconst_s ty 1))) x) (rule (simplify_skeleton (udiv x (iconst_u ty 1))) x) ;; Unsigned `x / d == x >> ilog2(d)` when d is a power of two. (rule (simplify_skeleton (udiv x (iconst_u ty (u64_extract_power_of_two d)))) (ushr ty x (iconst_u ty (u64_ilog2 d)))) ;; Signed `x / d` when d is a power of two is a bit more involved... (rule (simplify_skeleton (sdiv x (iconst_u ty (u64_extract_power_of_two d)))) (if-let true (u64_gt d 1)) (let ((k u32 (u64_trailing_zeros d)) (t1 Value (sshr ty x (iconst_u ty (u32_sub k 1)))) (t2 Value (ushr ty t1 (iconst_u ty (u32_sub (ty_bits ty) k)))) (t3 Value (iadd ty x t2)) (t4 Value (sshr ty t3 (iconst_s ty k)))) t4)) ;; And signed `x / d` when d is a negative power of two is the same, but with a ;; negation. (rule (simplify_skeleton (sdiv x (iconst_s ty d))) (if-let true (i64_is_negative_power_of_two d)) (if-let true (i64_ne d -1)) (let ((k u32 (i64_trailing_zeros d)) (t1 Value (sshr ty x (iconst_u ty (u32_sub k 1)))) (t2 Value (ushr ty t1 (iconst_u ty (u32_sub (ty_bits ty) k)))) (t3 Value (iadd ty x t2)) (t4 Value (sshr ty t3 (iconst_s ty k))) (t5 Value (ineg ty t4))) t5)) ;; General cases for `udiv` with constant divisors. (rule (simplify_skeleton (udiv x (iconst_u $I32 (u64_extract_non_zero (u32_from_u64 d))))) (if-let false (u32_is_power_of_two d)) (apply_div_const_magic_u32 (Opcode.Udiv) x d)) (rule (simplify_skeleton (udiv x (iconst_u $I64 (u64_extract_non_zero d)))) (if-let false (u64_is_power_of_two d)) (apply_div_const_magic_u64 (Opcode.Udiv) x d)) ;; General cases for `sdiv` with constant divisors. (rule (simplify_skeleton (sdiv x (iconst_s $I32 (i64_extract_non_zero (i32_from_i64 d))))) (if-let false (i64_is_any_sign_power_of_two d)) (apply_div_const_magic_s32 (Opcode.Sdiv) x d)) (rule (simplify_skeleton (sdiv x (iconst_s $I64 (i64_extract_non_zero d)))) (if-let false (i64_is_any_sign_power_of_two d)) (apply_div_const_magic_s64 (Opcode.Sdiv) x d)) ;; x % 1 == 0 (rule (simplify_skeleton (urem x (iconst_u ty 1))) (iconst_u ty 0)) (rule (simplify_skeleton (srem x (iconst_u ty 1))) (iconst_u ty 0)) (rule (simplify_skeleton (srem x (iconst_s ty -1))) (iconst_u ty 0)) ;; Unsigned `x % d == x & ((1 << ilog2(d)) - 1)` when `d` is a power of two. (rule (simplify_skeleton (urem x (iconst_u ty (u64_extract_power_of_two d)))) (if-let true (u64_gt d 1)) (let ((mask Value (iconst_u ty (u64_sub (u64_shl 1 (u64_ilog2 d)) 1)))) (band ty x mask))) ;; Signed `x % d` when `d` is a (possibly negative) power of two is a little ;; more complicated. (rule (simplify_skeleton (srem x d_val @ (iconst_s ty d))) ;; Interestingly, this same sequence works for both positive and negative ;; powers of two. (if-let true (i64_is_any_sign_power_of_two d)) (if-let true (i64_ne d 1)) (if-let true (i64_ne d -1)) (let ((k u32 (i64_trailing_zeros d)) (t1 Value (sshr ty x (iconst_u ty (u32_sub k 1)))) (t2 Value (ushr ty t1 (iconst_u ty (u32_sub (ty_bits ty) k)))) (t3 Value (iadd ty x t2)) (t4 Value (band ty t3 (iconst_s ty (i64_wrapping_neg (i64_shl 1 k))))) (t5 Value (isub ty x t4))) t5)) ;; General cases for `urem` with constant divisors. (rule (simplify_skeleton (urem x (iconst_u $I32 (u64_extract_non_zero (u32_from_u64 d))))) (if-let false (u32_is_power_of_two d)) (apply_div_const_magic_u32 (Opcode.Urem) x d)) (rule (simplify_skeleton (urem x (iconst_u $I64 (u64_extract_non_zero d)))) (if-let false (u64_is_power_of_two d)) (apply_div_const_magic_u64 (Opcode.Urem) x d)) ;; General cases for `srem` with constant divisors. (rule (simplify_skeleton (srem x (iconst_s $I32 (i64_extract_non_zero (i32_from_i64 d))))) (if-let false (i64_is_any_sign_power_of_two d)) (apply_div_const_magic_s32 (Opcode.Srem) x d)) (rule (simplify_skeleton (srem x (iconst_s $I64 (i64_extract_non_zero d)))) (if-let false (i64_is_any_sign_power_of_two d)) (apply_div_const_magic_s64 (Opcode.Srem) x d)) ;; x*2 == x+x. (rule (simplify (imul ty x (iconst_u _ 2))) (iadd ty x x)) ;; x*c == x<<log2(c) when c is a power of two. ;; ;; Note that the type of `iconst` must be the same as the type of `imul`, ;; so these rules can only fire in situations where it's safe to construct an ;; `iconst` of that type. (rule (simplify (imul ty x (iconst _ (imm64_power_of_two c)))) (ishl ty x (iconst ty (imm64 c)))) (rule (simplify (imul ty (iconst _ (imm64_power_of_two c)) x)) (ishl ty x (iconst ty (imm64 c)))) ;; fneg(fneg(x)) == x. (rule (simplify (fneg ty (fneg ty x))) (subsume x)) ;; If both of the multiplied arguments to an `fma` are negated then remove ;; both of them since they cancel out. (rule (simplify (fma ty (fneg ty x) (fneg ty y) z)) (fma ty x y z)) ;; If both of the multiplied arguments to an `fmul` are negated then remove ;; both of them since they cancel out. (rule (simplify (fmul ty (fneg ty x) (fneg ty y))) (fmul ty x y)) ;; (a op (b op (c op d))) ==> ((a op b) op (c op d)) ;; ;; and ;; ;; (((a op b) op c) op d) ==> ((a op b) op (c op d)) ;; ;; where `op` is an associative operation: `iadd`, `imul`, `band`, or `bxor`. ;; ;; This increases instruction-level parallelism and shrinks live ranges. It also ;; canonicalizes into the shallow-and-wide form for reassociating constants ;; together for cprop. ;; ;; NB: We subsume to avoid exponential e-node blow up due to reassociating very ;; large chains of operations. ;; ;; TODO: We should add `bor` rules for this as well. Unfortunately, they ;; conflict with our `bswap` recognizing rules when we `subsume`. (rule (simplify (iadd ty a (iadd ty b (iadd ty c d)))) (subsume (iadd ty (iadd ty a b) (iadd ty c d)))) (rule (simplify (iadd ty (iadd ty (iadd ty a b) c) d)) (subsume (iadd ty (iadd ty a b) (iadd ty c d)))) (rule (simplify (imul ty a (imul ty b (imul ty c d)))) (subsume (imul ty (imul ty a b) (imul ty c d)))) (rule (simplify (imul ty (imul ty (imul ty a b) c) d)) (subsume (imul ty (imul ty a b) (imul ty c d)))) (rule (simplify (band ty a (band ty b (band ty c d)))) (subsume (band ty (band ty a b) (band ty c d)))) (rule (simplify (band ty (band ty (band ty a b) c) d)) (subsume (band ty (band ty a b) (band ty c d)))) (rule (simplify (bxor ty a (bxor ty b (bxor ty c d)))) (subsume (bxor ty (bxor ty a b) (bxor ty c d)))) (rule (simplify (bxor ty (bxor ty (bxor ty a b) c) d)) (subsume (bxor ty (bxor ty a b) (bxor ty c d)))) ;; Similar rules but for associating combinations of + and - ;; a -(b-(c-d)) = (a-b) + (c-d) (rule (simplify (isub ty a (isub ty b (isub ty c d)))) (subsume (iadd ty (isub ty a b) (isub ty c d)))) ;; a -(b-(c+d)) = (a-b) + (c+d) (rule (simplify (isub ty a (isub ty b (iadd ty c d)))) (subsume (iadd ty (isub ty a b) (iadd ty c d)))) ;; a -(b+(c-d)) = (a-b) - (c-d) (rule (simplify (isub ty a (iadd ty b (isub ty c d)))) (subsume (isub ty (isub ty a b) (isub ty c d)))) ;; a -(b+(c+d)) = (a-b) - (c+d) (rule (simplify (isub ty a (iadd ty b (iadd ty c d)))) (subsume (isub ty (isub ty a b) (iadd ty c d)))) ;; a +(b-(c-d)) = (a+b) - (c-d) (rule (simplify (iadd ty a (isub ty b (isub ty c d)))) (subsume (isub ty (iadd ty a b) (isub ty c d)))) ;; a +(b-(c+d)) = (a+b) - (c+d) (rule (simplify (iadd ty a (isub ty b (iadd ty c d)))) (subsume (isub ty (iadd ty a b) (iadd ty c d)))) ;; a +(b+(c-d)) = (a+b) + (c-d) (rule (simplify (iadd ty a (iadd ty b (isub ty c d)))) (subsume (iadd ty (iadd ty a b) (isub ty c d)))) ;; and nested the other way ;; ((a-b)-c)-d = (a-b) - (c+d) (rule (simplify (isub ty (isub ty (isub ty a b) c) d)) (subsume (isub ty (isub ty a b) (iadd ty c d)))) ;; ((a-b)-c)+d = (a-b) - (c-d) (rule (simplify (iadd ty (isub ty (isub ty a b) c) d)) (subsume (isub ty (isub ty a b) (isub ty c d)))) ;; ((a-b)+c)-d = (a-b) + (c-d) (rule (simplify (isub ty (iadd ty (isub ty a b) c) d)) (subsume (iadd ty (isub ty a b) (isub ty c d)))) ;; ((a-b)+c)+d = (a-b) + (c+d) (rule (simplify (iadd ty (iadd ty (isub ty a b) c) d)) (subsume (iadd ty (isub ty a b) (iadd ty c d)))) ;; ((a+b)-c)-d = (a+b) - (c+d) (rule (simplify (isub ty (isub ty (iadd ty a b) c) d)) (subsume (isub ty (iadd ty a b) (iadd ty c d)))) ;; ((a+b)-c)+d = (a+b) - (c-d) (rule (simplify (iadd ty (isub ty (iadd ty a b) c) d)) (subsume (isub ty (iadd ty a b) (isub ty c d)))) ;; ((a+b)+c)-d = (a+b) + (c-d) (rule (simplify (isub ty (iadd ty (iadd ty a b) c) d)) (subsume (iadd ty (iadd ty a b) (isub ty c d)))) ;; Detect people open-coding `mulhi`: (x as big * y as big) >> bits ;; LLVM doesn't have an intrinsic for it, so you'll see it in code like ;; <https://github.com/rust-lang/rust/blob/767453eb7ca188e991ac5568c17b984dd4893e77/library/core/src/num/mod.rs#L174-L180> (rule (simplify (sshr ty (imul ty (sextend _ x@(value_type half_ty)) (sextend _ y@(value_type half_ty))) (iconst_u _ k))) (if-let true (ty_equal half_ty (ty_half_width ty))) (if-let true (u64_eq k (ty_bits_u64 half_ty))) (sextend ty (smulhi half_ty x y))) (rule (simplify (ushr ty (imul ty (uextend _ x@(value_type half_ty)) (uextend _ y@(value_type half_ty))) (iconst_u _ k))) (if-let true (ty_equal half_ty (ty_half_width ty))) (if-let true (u64_eq k (ty_bits_u64 half_ty))) (uextend ty (umulhi half_ty x y))) ;; Cranelift's `fcvt_from_{u,s}int` instructions are polymorphic over the input ;; type so remove any unnecessary `uextend` or `sextend` to give backends ;; the chance to convert from the smallest integral type to the float. This ;; can help lowerings on x64 for example which has a less efficient u64-to-float ;; conversion than other bit widths. (rule (simplify (fcvt_from_uint ty (uextend _ val))) (fcvt_from_uint ty val)) (rule (simplify (fcvt_from_sint ty (sextend _ val))) (fcvt_from_sint ty val)) ;; or(x, C) + (-C) --> and(x, ~C) (rule (simplify (iadd ty (bor ty x (iconst_s ty n)) (iconst_s ty m))) (if-let m (i64_checked_neg n)) (band ty x (iconst ty (imm64_masked ty (i64_cast_unsigned (i64_not n)))))) ;; (x + y) - (x | y) --> x & y (rule (simplify (isub ty (iadd ty x y) (bor ty x y))) (band ty x y)) ;; x * (1 << y) == x << y (rule (simplify (imul ty x (ishl ty (iconst_s ty 1) y))) (ishl ty x y))