Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bytecodealliance
GitHub Repository: bytecodealliance/wasmtime
Path: blob/main/cranelift/codegen/src/opts/icmp.isle
1693 views
;; `icmp`-related rewrites

;; `x == x` is always true for integers; `x != x` is false. Strict
;; inequalities are false, and loose inequalities are true.
(rule (simplify (eq  (ty_int ty) x x)) (subsume (iconst_u ty 1)))
(rule (simplify (ne  (ty_int ty) x x)) (subsume (iconst_u ty 0)))
(rule (simplify (ugt (ty_int ty) x x)) (subsume (iconst_u ty 0)))
(rule (simplify (uge (ty_int ty) x x)) (subsume (iconst_u ty 1)))
(rule (simplify (sgt (ty_int ty) x x)) (subsume (iconst_u ty 0)))
(rule (simplify (sge (ty_int ty) x x)) (subsume (iconst_u ty 1)))
(rule (simplify (ult (ty_int ty) x x)) (subsume (iconst_u ty 0)))
(rule (simplify (ule (ty_int ty) x x)) (subsume (iconst_u ty 1)))
(rule (simplify (slt (ty_int ty) x x)) (subsume (iconst_u ty 0)))
(rule (simplify (sle (ty_int ty) x x)) (subsume (iconst_u ty 1)))

;; For integers, adding the same thing on both sides of an equality check
;; (or an inequality check) doesn't change the result.
;; This applies for arbitrary expressions, not just constants, so we need to
;; check all possible orderings since nothing normalizes it.

(rule (simplify (eq ty (iadd _ a k) (iadd _ b k)))
      (subsume (eq ty a b)))
(rule (simplify (eq ty (iadd _ a k) (iadd _ k b)))
      (subsume (eq ty a b)))
(rule (simplify (eq ty (iadd _ k a) (iadd _ b k)))
      (subsume (eq ty a b)))
(rule (simplify (eq ty (iadd _ k a) (iadd _ k b)))
      (subsume (eq ty a b)))
(rule (simplify (ne ty (iadd _ a k) (iadd _ b k)))
      (subsume (ne ty a b)))
(rule (simplify (ne ty (iadd _ a k) (iadd _ k b)))
      (subsume (ne ty a b)))
(rule (simplify (ne ty (iadd _ k a) (iadd _ b k)))
      (subsume (ne ty a b)))
(rule (simplify (ne ty (iadd _ k a) (iadd _ k b)))
      (subsume (ne ty a b)))

;; To avoid repeating all the above rules again, normalize isub to iadd
;; (a - b) == (c - d) ⟹ (a + d) == (c + b)

(rule (simplify (eq ty1 (isub ty2 a b) (isub ty3 c d)))
      (eq ty1 (iadd ty2 a d) (iadd ty3 c b)))
(rule (simplify (ne ty1 (isub ty2 a b) (isub ty3 c d)))
      (ne ty1 (iadd ty2 a d) (iadd ty3 c b)))

;; Optimize icmp-of-icmp.
;; ne(icmp(ty, cc, x, y), 0) == icmp(ty, cc, x, y)
;; e.g. neq(ugt(x, y), 0) == ugt(x, y)
(rule (simplify (ne ty
                      (uextend_maybe _ inner @ (icmp ty _ _ _))
                      (iconst_u _ 0)))
      (subsume inner))

;; eq(icmp(ty, cc, x, y), 0) == icmp(ty, cc_complement, x, y)
;; e.g. eq(ugt(x, y), 0) == ule(x, y)
(rule (simplify (eq ty
                      (uextend_maybe _ (icmp ty cc x y))
                      (iconst_u _ 0)))
      (subsume (icmp ty (intcc_complement cc) x y)))

;; ne(icmp(ty, cc, x, y), 1) == icmp(ty, cc_complement, x, y)
;; e.g. ne(ugt(x, y), 1) == ule(x, y)
(rule (simplify (ne ty
                      (uextend_maybe _ (icmp ty cc x y))
                      (iconst_u _ 1)))
      (subsume (icmp ty (intcc_complement cc) x y)))

;; eq(icmp(ty, cc, x, y), 1) == icmp(ty, cc, x, y)
;; e.g. eq(ugt(x, y), 1) == ugt(x, y)
(rule (simplify (eq ty
                      (uextend_maybe _ inner @ (icmp _ _ _ _))
                      (iconst_u _ 1)))
      (subsume inner))

;; Optimize select-of-uextend-of-icmp to select-of-icmp, because
;; select can take an I8 condition too.
(rule (simplify
       (select ty (uextend _ c @ (icmp _ _ _ _)) x y))
      (select ty c x y))
(rule (simplify
       (select ty (uextend _ c @ (icmp _ _ _ _)) x y))
      (select ty c x y))

;; Masking the result of a comparison with 1 always results in the comparison
;; itself. Note that comparisons in wasm may sometimes be hidden behind
;; extensions.
(rule (simplify
       (band (ty_int _)
             cmp @ (icmp _ _ _ _)
             (iconst_u _ 1)))
      cmp)
(rule (simplify
       (band (ty_int _)
             extend @ (uextend _ (icmp _ _ _ _))
             (iconst_u _ 1)))
      extend)

;; Comparisons against largest/smallest signed/unsigned values:
;; ult(x, 0) == false.
(rule (simplify (ult (fits_in_64 (ty_int bty)) x zero @ (iconst_u _ 0)))
      (subsume (iconst_u bty 0)))

;; ule(x, 0) == eq(x, 0)
(rule (simplify (ule (fits_in_64 (ty_int bty)) x zero @ (iconst_u _ 0)))
      (eq bty x zero))

;; ugt(x, 0) == ne(x, 0).
(rule (simplify (ugt (fits_in_64 (ty_int bty)) x zero @ (iconst_u _ 0)))
      (ne bty x zero))

;; uge(x, 0) == true.
(rule (simplify (uge (fits_in_64 (ty_int bty)) x zero @ (iconst_u _ 0)))
      (subsume (iconst_u bty 1)))

;; ult(x, UMAX) == ne(x, UMAX).
(rule (simplify (ult (fits_in_64 (ty_int bty)) x umax @ (iconst_u cty y)))
       (if-let true (u64_eq y (ty_umax cty)))
       (ne bty x umax))

;; ule(x, UMAX) == true.
(rule (simplify (ule (fits_in_64 (ty_int bty)) x umax @ (iconst_u cty y)))
       (if-let true (u64_eq y (ty_umax cty)))
       (subsume (iconst_u bty 1)))

;; ugt(x, UMAX) == false.
(rule (simplify (ugt (fits_in_64 (ty_int bty)) x umax @ (iconst_u cty y)))
       (if-let true (u64_eq y (ty_umax cty)))
       (subsume (iconst_u bty 0)))

;; uge(x, UMAX) == eq(x, UMAX).
(rule (simplify (uge (fits_in_64 (ty_int bty)) x umax @ (iconst_u cty y)))
       (if-let true (u64_eq y (ty_umax cty)))
       (eq bty x umax))

;; slt(x, SMIN) == false.
(rule (simplify (slt (fits_in_64 (ty_int bty)) x smin @ (iconst_u cty y)))
       (if-let true (u64_eq y (ty_smin cty)))
       (subsume (iconst_u bty 0)))

;; sle(x, SMIN) == eq(x, SMIN).
(rule (simplify (sle (fits_in_64 (ty_int bty)) x smin @ (iconst_u cty y)))
       (if-let true (u64_eq y (ty_smin cty)))
       (eq bty x smin))

;; sgt(x, SMIN) == ne(x, SMIN).
(rule (simplify (sgt (fits_in_64 (ty_int bty)) x smin @ (iconst_u cty y)))
       (if-let true (u64_eq y (ty_smin cty)))
       (ne bty x smin))

;; sge(x, SMIN) == true.
(rule (simplify (sge (fits_in_64 (ty_int bty)) x smin @ (iconst_u cty y)))
       (if-let true (u64_eq y (ty_smin cty)))
       (subsume (iconst_u bty 1)))

;; slt(x, SMAX) == ne(x, SMAX).
(rule (simplify (slt (fits_in_64 (ty_int bty)) x smax @ (iconst_u cty y)))
       (if-let true (u64_eq y (ty_smax cty)))
       (ne bty x smax))

;; sle(x, SMAX) == true.
(rule (simplify (sle (fits_in_64 (ty_int bty)) x smax @ (iconst_u cty y)))
       (if-let true (u64_eq y (ty_smax cty)))
       (subsume (iconst_u bty 1)))

;; sgt(x, SMAX) == false.
(rule (simplify (sgt (fits_in_64 (ty_int bty)) x smax @ (iconst_u cty y)))
       (if-let true (u64_eq y (ty_smax cty)))
       (subsume (iconst_u bty 0)))

;; sge(x, SMAX) == eq(x, SMAX).
(rule (simplify (sge (fits_in_64 (ty_int bty)) x smax @ (iconst_u cty y)))
       (if-let true (u64_eq y (ty_smax cty)))
       (eq bty x smax))

;; `band`/`bor` of 2 comparisons:
(rule (simplify (band (fits_in_64 ty) (icmp ty cc1 x y) (icmp ty cc2 x y)))
  (if-let signed (intcc_comparable cc1 cc2))
  (compose_icmp ty (u64_and (decompose_intcc cc1) (decompose_intcc cc2)) signed x y))

(rule (simplify (bor (fits_in_64 ty) (icmp ty cc1 x y) (icmp ty cc2 x y)))
  (if-let signed (intcc_comparable cc1 cc2))
  (compose_icmp ty (u64_or (decompose_intcc cc1) (decompose_intcc cc2)) signed x y))

;; Prefer comparing against zero
;; uge(x, 1) == ne(x, 0)
(rule (simplify (uge ty x (iconst_u cty 1)))
      (ne ty x (iconst_u cty 0)))
;; ult(x, 1) == eq(x, 0)
(rule (simplify (ult ty x (iconst_u cty 1)))
      (eq ty x (iconst_u cty 0)))
;; sge(x, 1) == sgt(x, 0)
(rule (simplify (sge ty x (iconst_s cty 1)))
      (sgt ty x (iconst_s cty 0)))
;; slt(x, 1) == sle(x, 0)
(rule (simplify (slt ty x (iconst_s cty 1)))
      (sle ty x (iconst_s cty 0)))
;; sgt(x, -1) == sge(x, 0)
(rule (simplify (sgt ty x (iconst_s cty -1)))
      (sge ty x (iconst_s cty 0)))
;; sle(x, -1) == slt(x, 0)
(rule (simplify (sle ty x (iconst_s cty -1)))
      (slt ty x (iconst_s cty 0)))

(decl pure partial intcc_comparable (IntCC IntCC) bool)
(rule (intcc_comparable x y)
  (if-let (u64_extract_non_zero class) (u64_and (intcc_class x) (intcc_class y)))
  (u64_eq 2 class))

(decl pure decompose_intcc (IntCC) u64)
(rule (decompose_intcc (IntCC.Equal)) 1)
(rule (decompose_intcc (IntCC.UnsignedLessThan)) 2)
(rule (decompose_intcc (IntCC.SignedLessThan)) 2)
(rule (decompose_intcc (IntCC.UnsignedLessThanOrEqual)) 3)
(rule (decompose_intcc (IntCC.SignedLessThanOrEqual)) 3)
(rule (decompose_intcc (IntCC.UnsignedGreaterThan)) 4)
(rule (decompose_intcc (IntCC.SignedGreaterThan)) 4)
(rule (decompose_intcc (IntCC.UnsignedGreaterThanOrEqual)) 5)
(rule (decompose_intcc (IntCC.SignedGreaterThanOrEqual)) 5)
(rule (decompose_intcc (IntCC.NotEqual)) 6)

(decl compose_icmp (Type u64 bool Value Value) Value)
(rule (compose_icmp ty 0 _ _ _) (subsume (iconst_u ty 0)))
(rule (compose_icmp ty 1 _ x y) (icmp ty (IntCC.Equal) x y))
(rule (compose_icmp ty 2 false x y) (icmp ty (IntCC.UnsignedLessThan) x y))
(rule (compose_icmp ty 2 true x y) (icmp ty (IntCC.SignedLessThan) x y))
(rule (compose_icmp ty 3 false x y) (icmp ty (IntCC.UnsignedLessThanOrEqual) x y))
(rule (compose_icmp ty 3 true x y) (icmp ty (IntCC.SignedLessThanOrEqual) x y))
(rule (compose_icmp ty 4 false x y) (icmp ty (IntCC.UnsignedGreaterThan) x y))
(rule (compose_icmp ty 4 true x y) (icmp ty (IntCC.SignedGreaterThan) x y))
(rule (compose_icmp ty 5 false x y) (icmp ty (IntCC.UnsignedGreaterThanOrEqual) x y))
(rule (compose_icmp ty 5 true x y) (icmp ty (IntCC.SignedGreaterThanOrEqual) x y))
(rule (compose_icmp ty 6 _ x y) (icmp ty (IntCC.NotEqual) x y))
(rule (compose_icmp ty 7 _ _ _) (subsume (iconst_u ty 1)))

(decl pure intcc_class (IntCC) u64)
(rule (intcc_class (IntCC.UnsignedLessThan)) 1)
(rule (intcc_class (IntCC.UnsignedLessThanOrEqual)) 1)
(rule (intcc_class (IntCC.UnsignedGreaterThan)) 1)
(rule (intcc_class (IntCC.UnsignedGreaterThanOrEqual)) 1)
(rule (intcc_class (IntCC.SignedLessThan)) 2)
(rule (intcc_class (IntCC.SignedLessThanOrEqual)) 2)
(rule (intcc_class (IntCC.SignedGreaterThan)) 2)
(rule (intcc_class (IntCC.SignedGreaterThanOrEqual)) 2)
(rule (intcc_class (IntCC.Equal)) 3)
(rule (intcc_class (IntCC.NotEqual)) 3)

;; Pattern-match what LLVM emits today for 128-bit comparisons into actual
;; 128-bit comparisons. Platforms like x64 and aarch64 have more optimal
;; lowerings for 128-bit arithmetic than the default structure.
(rule (simplify (select ty (eq _   a_hi @ (value_type $I64) b_hi @ (value_type $I64))
                           (uge ty a_lo @ (value_type $I64) b_lo @ (value_type $I64))
                           (uge ty a_hi b_hi)))
      (uge ty (iconcat $I64 a_lo a_hi) (iconcat $I64 b_lo b_hi)))

(rule (simplify (select ty (eq _   a_hi @ (value_type $I64) b_hi @ (value_type $I64))
                           (uge ty a_lo @ (value_type $I64) b_lo @ (value_type $I64))
                           (sge ty a_hi b_hi)))
      (sge ty (iconcat $I64 a_lo a_hi) (iconcat $I64 b_lo b_hi)))

(rule (simplify (select ty (eq _   a_hi @ (value_type $I64) b_hi @ (value_type $I64))
                           (ugt ty a_lo @ (value_type $I64) b_lo @ (value_type $I64))
                           (ugt ty a_hi b_hi)))
      (ugt ty (iconcat $I64 a_lo a_hi) (iconcat $I64 b_lo b_hi)))

(rule (simplify (select ty (eq _   a_hi @ (value_type $I64) b_hi @ (value_type $I64))
                           (ugt ty a_lo @ (value_type $I64) b_lo @ (value_type $I64))
                           (sgt ty a_hi b_hi)))
      (sgt ty (iconcat $I64 a_lo a_hi) (iconcat $I64 b_lo b_hi)))

(rule (simplify (select ty (eq _   a_hi @ (value_type $I64) b_hi @ (value_type $I64))
                           (ule ty a_lo @ (value_type $I64) b_lo @ (value_type $I64))
                           (ule ty a_hi b_hi)))
      (ule ty (iconcat $I64 a_lo a_hi) (iconcat $I64 b_lo b_hi)))

(rule (simplify (select ty (eq _   a_hi @ (value_type $I64) b_hi @ (value_type $I64))
                           (ule ty a_lo @ (value_type $I64) b_lo @ (value_type $I64))
                           (sle ty a_hi b_hi)))
      (sle ty (iconcat $I64 a_lo a_hi) (iconcat $I64 b_lo b_hi)))

(rule (simplify (select ty (eq _   a_hi @ (value_type $I64) b_hi @ (value_type $I64))
                           (ult ty a_lo @ (value_type $I64) b_lo @ (value_type $I64))
                           (ult ty a_hi b_hi)))
      (ult ty (iconcat $I64 a_lo a_hi) (iconcat $I64 b_lo b_hi)))

(rule (simplify (select ty (eq _   a_hi @ (value_type $I64) b_hi @ (value_type $I64))
                           (ult ty a_lo @ (value_type $I64) b_lo @ (value_type $I64))
                           (slt ty a_hi b_hi)))
      (slt ty (iconcat $I64 a_lo a_hi) (iconcat $I64 b_lo b_hi)))


(rule (simplify (eq cty x (bxor (ty_int bty) x y))) (subsume (eq cty y (iconst_u bty 0))))
(rule (simplify (ne cty x (bxor (ty_int bty) x y))) (subsume (ne cty y (iconst_u bty 0))))

; (x - y) > x == y > x
(rule (simplify (ugt cty (isub ty x y) x)) (ugt cty y x))
(rule (simplify (ule cty (isub ty x y) x)) (ule cty y x))

;; (x < y) ? x : y != x == x > y, for both signed and unsigned.
(rule (simplify (ne cty (select ty (slt cty x y) x y) x)) (sgt cty x y))
(rule (simplify (ne cty (select ty (ult cty x y) x y) x)) (ugt cty x y))