Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
bytecodealliance
GitHub Repository: bytecodealliance/wasmtime
Path: blob/main/cranelift/interpreter/src/interpreter.rs
1692 views
1
//! Cranelift IR interpreter.
2
//!
3
//! This module partially contains the logic for interpreting Cranelift IR.
4
5
use crate::address::{Address, AddressFunctionEntry, AddressRegion, AddressSize};
6
use crate::environment::{FuncIndex, FunctionStore};
7
use crate::frame::Frame;
8
use crate::instruction::DfgInstructionContext;
9
use crate::state::{InterpreterFunctionRef, MemoryError, State};
10
use crate::step::{ControlFlow, CraneliftTrap, StepError, step};
11
use crate::value::{DataValueExt, ValueError};
12
use cranelift_codegen::data_value::DataValue;
13
use cranelift_codegen::ir::{
14
ArgumentPurpose, Block, Endianness, ExternalName, FuncRef, Function, GlobalValue,
15
GlobalValueData, LibCall, MemFlags, StackSlot, Type,
16
};
17
use log::trace;
18
use smallvec::SmallVec;
19
use std::fmt::Debug;
20
use std::iter;
21
use thiserror::Error;
22
23
/// The Cranelift interpreter; this contains some high-level functions to control the interpreter's
24
/// flow. The interpreter state is defined separately (see [InterpreterState]) as the execution
25
/// semantics for each Cranelift instruction (see [step]).
26
pub struct Interpreter<'a> {
27
state: InterpreterState<'a>,
28
fuel: Option<u64>,
29
}
30
31
impl<'a> Interpreter<'a> {
32
pub fn new(state: InterpreterState<'a>) -> Self {
33
Self { state, fuel: None }
34
}
35
36
/// The `fuel` mechanism sets a number of instructions that
37
/// the interpreter can execute before stopping. If this
38
/// value is `None` (the default), no limit is imposed.
39
pub fn with_fuel(self, fuel: Option<u64>) -> Self {
40
Self { fuel, ..self }
41
}
42
43
/// Call a function by name; this is a helpful proxy for [Interpreter::call_by_index].
44
pub fn call_by_name(
45
&mut self,
46
func_name: &str,
47
arguments: &[DataValue],
48
) -> Result<ControlFlow<'a>, InterpreterError> {
49
let index = self
50
.state
51
.functions
52
.index_of(func_name)
53
.ok_or_else(|| InterpreterError::UnknownFunctionName(func_name.to_string()))?;
54
self.call_by_index(index, arguments)
55
}
56
57
/// Call a function by its index in the [FunctionStore]; this is a proxy for
58
/// `Interpreter::call`.
59
pub fn call_by_index(
60
&mut self,
61
index: FuncIndex,
62
arguments: &[DataValue],
63
) -> Result<ControlFlow<'a>, InterpreterError> {
64
match self.state.functions.get_by_index(index) {
65
None => Err(InterpreterError::UnknownFunctionIndex(index)),
66
Some(func) => self.call(func, arguments),
67
}
68
}
69
70
/// Interpret a call to a [Function] given its [DataValue] arguments.
71
fn call(
72
&mut self,
73
function: &'a Function,
74
arguments: &[DataValue],
75
) -> Result<ControlFlow<'a>, InterpreterError> {
76
trace!("Call: {}({:?})", function.name, arguments);
77
let first_block = function
78
.layout
79
.blocks()
80
.next()
81
.expect("to have a first block");
82
let parameters = function.dfg.block_params(first_block);
83
self.state.push_frame(function);
84
self.state
85
.current_frame_mut()
86
.set_all(parameters, arguments.to_vec());
87
88
self.block(first_block)
89
}
90
91
/// Interpret a [Block] in a [Function]. This drives the interpretation over sequences of
92
/// instructions, which may continue in other blocks, until the function returns.
93
fn block(&mut self, block: Block) -> Result<ControlFlow<'a>, InterpreterError> {
94
trace!("Block: {block}");
95
let function = self.state.current_frame_mut().function();
96
let layout = &function.layout;
97
let mut maybe_inst = layout.first_inst(block);
98
while let Some(inst) = maybe_inst {
99
if self.consume_fuel() == FuelResult::Stop {
100
return Err(InterpreterError::FuelExhausted);
101
}
102
103
let inst_context = DfgInstructionContext::new(inst, &function.dfg);
104
match step(&mut self.state, inst_context)? {
105
ControlFlow::Assign(values) => {
106
self.state
107
.current_frame_mut()
108
.set_all(function.dfg.inst_results(inst), values.to_vec());
109
maybe_inst = layout.next_inst(inst)
110
}
111
ControlFlow::Continue => maybe_inst = layout.next_inst(inst),
112
ControlFlow::ContinueAt(block, block_arguments) => {
113
trace!("Block: {block}");
114
self.state
115
.current_frame_mut()
116
.set_all(function.dfg.block_params(block), block_arguments.to_vec());
117
maybe_inst = layout.first_inst(block)
118
}
119
ControlFlow::Call(called_function, arguments) => {
120
match self.call(called_function, &arguments)? {
121
ControlFlow::Return(rets) => {
122
self.state
123
.current_frame_mut()
124
.set_all(function.dfg.inst_results(inst), rets.to_vec());
125
maybe_inst = layout.next_inst(inst)
126
}
127
ControlFlow::Trap(trap) => return Ok(ControlFlow::Trap(trap)),
128
cf => {
129
panic!("invalid control flow after call: {cf:?}")
130
}
131
}
132
}
133
ControlFlow::ReturnCall(callee, args) => {
134
self.state.pop_frame();
135
136
return match self.call(callee, &args)? {
137
ControlFlow::Return(rets) => Ok(ControlFlow::Return(rets)),
138
ControlFlow::Trap(trap) => Ok(ControlFlow::Trap(trap)),
139
cf => {
140
panic!("invalid control flow after return_call: {cf:?}")
141
}
142
};
143
}
144
ControlFlow::Return(returned_values) => {
145
self.state.pop_frame();
146
return Ok(ControlFlow::Return(returned_values));
147
}
148
ControlFlow::Trap(trap) => return Ok(ControlFlow::Trap(trap)),
149
}
150
}
151
Err(InterpreterError::Unreachable)
152
}
153
154
fn consume_fuel(&mut self) -> FuelResult {
155
match self.fuel {
156
Some(0) => FuelResult::Stop,
157
Some(ref mut n) => {
158
*n -= 1;
159
FuelResult::Continue
160
}
161
162
// We do not have fuel enabled, so unconditionally continue
163
None => FuelResult::Continue,
164
}
165
}
166
}
167
168
#[derive(Debug, PartialEq, Clone)]
169
/// The result of consuming fuel. Signals if the caller should stop or continue.
170
pub enum FuelResult {
171
/// We still have `fuel` available and should continue execution.
172
Continue,
173
/// The available `fuel` has been exhausted, we should stop now.
174
Stop,
175
}
176
177
/// The ways interpretation can fail.
178
#[derive(Error, Debug)]
179
pub enum InterpreterError {
180
#[error("failed to interpret instruction")]
181
StepError(#[from] StepError),
182
#[error("reached an unreachable statement")]
183
Unreachable,
184
#[error("unknown function index (has it been added to the function store?): {0}")]
185
UnknownFunctionIndex(FuncIndex),
186
#[error("unknown function with name (has it been added to the function store?): {0}")]
187
UnknownFunctionName(String),
188
#[error("value error")]
189
ValueError(#[from] ValueError),
190
#[error("fuel exhausted")]
191
FuelExhausted,
192
}
193
194
pub type LibCallValues = SmallVec<[DataValue; 1]>;
195
pub type LibCallHandler = fn(LibCall, LibCallValues) -> Result<LibCallValues, CraneliftTrap>;
196
197
/// Maintains the [Interpreter]'s state, implementing the [State] trait.
198
pub struct InterpreterState<'a> {
199
pub functions: FunctionStore<'a>,
200
pub libcall_handler: LibCallHandler,
201
pub frame_stack: Vec<Frame<'a>>,
202
/// Number of bytes from the bottom of the stack where the current frame's stack space is
203
pub frame_offset: usize,
204
pub stack: Vec<u8>,
205
pub pinned_reg: DataValue,
206
pub native_endianness: Endianness,
207
}
208
209
impl Default for InterpreterState<'_> {
210
fn default() -> Self {
211
let native_endianness = if cfg!(target_endian = "little") {
212
Endianness::Little
213
} else {
214
Endianness::Big
215
};
216
Self {
217
functions: FunctionStore::default(),
218
libcall_handler: |_, _| Err(CraneliftTrap::UnreachableCodeReached),
219
frame_stack: vec![],
220
frame_offset: 0,
221
stack: Vec::with_capacity(1024),
222
pinned_reg: DataValue::I64(0),
223
native_endianness,
224
}
225
}
226
}
227
228
impl<'a> InterpreterState<'a> {
229
pub fn with_function_store(self, functions: FunctionStore<'a>) -> Self {
230
Self { functions, ..self }
231
}
232
233
/// Registers a libcall handler
234
pub fn with_libcall_handler(mut self, handler: LibCallHandler) -> Self {
235
self.libcall_handler = handler;
236
self
237
}
238
}
239
240
impl<'a> State<'a> for InterpreterState<'a> {
241
fn get_function(&self, func_ref: FuncRef) -> Option<&'a Function> {
242
self.functions
243
.get_from_func_ref(func_ref, self.frame_stack.last().unwrap().function())
244
}
245
fn get_current_function(&self) -> &'a Function {
246
self.current_frame().function()
247
}
248
249
fn get_libcall_handler(&self) -> LibCallHandler {
250
self.libcall_handler
251
}
252
253
fn push_frame(&mut self, function: &'a Function) {
254
if let Some(frame) = self.frame_stack.iter().last() {
255
self.frame_offset += frame.function().fixed_stack_size() as usize;
256
}
257
258
// Grow the stack by the space necessary for this frame
259
self.stack
260
.extend(iter::repeat(0).take(function.fixed_stack_size() as usize));
261
262
self.frame_stack.push(Frame::new(function));
263
}
264
fn pop_frame(&mut self) {
265
if let Some(frame) = self.frame_stack.pop() {
266
// Shorten the stack after exiting the frame
267
self.stack
268
.truncate(self.stack.len() - frame.function().fixed_stack_size() as usize);
269
270
// Reset frame_offset to the start of this function
271
if let Some(frame) = self.frame_stack.iter().last() {
272
self.frame_offset -= frame.function().fixed_stack_size() as usize;
273
}
274
}
275
}
276
277
fn current_frame_mut(&mut self) -> &mut Frame<'a> {
278
let num_frames = self.frame_stack.len();
279
match num_frames {
280
0 => panic!("unable to retrieve the current frame because no frames were pushed"),
281
_ => &mut self.frame_stack[num_frames - 1],
282
}
283
}
284
285
fn current_frame(&self) -> &Frame<'a> {
286
let num_frames = self.frame_stack.len();
287
match num_frames {
288
0 => panic!("unable to retrieve the current frame because no frames were pushed"),
289
_ => &self.frame_stack[num_frames - 1],
290
}
291
}
292
293
fn stack_address(
294
&self,
295
size: AddressSize,
296
slot: StackSlot,
297
offset: u64,
298
) -> Result<Address, MemoryError> {
299
let stack_slots = &self.get_current_function().sized_stack_slots;
300
let stack_slot = &stack_slots[slot];
301
302
// offset must be `0 <= Offset < sizeof(SS)`
303
if offset >= stack_slot.size as u64 {
304
return Err(MemoryError::InvalidOffset {
305
offset,
306
max: stack_slot.size as u64,
307
});
308
}
309
310
// Calculate the offset from the current frame to the requested stack slot
311
let slot_offset: u64 = stack_slots
312
.keys()
313
.filter(|k| k < &slot)
314
.map(|k| stack_slots[k].size as u64)
315
.sum();
316
317
let final_offset = self.frame_offset as u64 + slot_offset + offset;
318
Address::from_parts(size, AddressRegion::Stack, 0, final_offset)
319
}
320
321
fn checked_load(
322
&self,
323
addr: Address,
324
ty: Type,
325
mem_flags: MemFlags,
326
) -> Result<DataValue, MemoryError> {
327
let load_size = ty.bytes() as usize;
328
let addr_start = addr.offset as usize;
329
let addr_end = addr_start + load_size;
330
331
let src = match addr.region {
332
AddressRegion::Stack => {
333
if addr_end > self.stack.len() {
334
return Err(MemoryError::OutOfBoundsLoad {
335
addr,
336
load_size,
337
mem_flags,
338
});
339
}
340
341
&self.stack[addr_start..addr_end]
342
}
343
_ => unimplemented!(),
344
};
345
346
// Aligned flag is set and address is not aligned for the given type
347
if mem_flags.aligned() && addr_start % load_size != 0 {
348
return Err(MemoryError::MisalignedLoad { addr, load_size });
349
}
350
351
Ok(match mem_flags.endianness(self.native_endianness) {
352
Endianness::Big => DataValue::read_from_slice_be(src, ty),
353
Endianness::Little => DataValue::read_from_slice_le(src, ty),
354
})
355
}
356
357
fn checked_store(
358
&mut self,
359
addr: Address,
360
v: DataValue,
361
mem_flags: MemFlags,
362
) -> Result<(), MemoryError> {
363
let store_size = v.ty().bytes() as usize;
364
let addr_start = addr.offset as usize;
365
let addr_end = addr_start + store_size;
366
367
let dst = match addr.region {
368
AddressRegion::Stack => {
369
if addr_end > self.stack.len() {
370
return Err(MemoryError::OutOfBoundsStore {
371
addr,
372
store_size,
373
mem_flags,
374
});
375
}
376
377
&mut self.stack[addr_start..addr_end]
378
}
379
_ => unimplemented!(),
380
};
381
382
// Aligned flag is set and address is not aligned for the given type
383
if mem_flags.aligned() && addr_start % store_size != 0 {
384
return Err(MemoryError::MisalignedStore { addr, store_size });
385
}
386
387
Ok(match mem_flags.endianness(self.native_endianness) {
388
Endianness::Big => v.write_to_slice_be(dst),
389
Endianness::Little => v.write_to_slice_le(dst),
390
})
391
}
392
393
fn function_address(
394
&self,
395
size: AddressSize,
396
name: &ExternalName,
397
) -> Result<Address, MemoryError> {
398
let curr_func = self.get_current_function();
399
let (entry, index) = match name {
400
ExternalName::User(username) => {
401
let ext_name = &curr_func.params.user_named_funcs()[*username];
402
403
// TODO: This is not optimal since we are looking up by string name
404
let index = self.functions.index_of(&ext_name.to_string()).unwrap();
405
406
(AddressFunctionEntry::UserFunction, index.as_u32())
407
}
408
409
ExternalName::TestCase(testname) => {
410
// TODO: This is not optimal since we are looking up by string name
411
let index = self.functions.index_of(&testname.to_string()).unwrap();
412
413
(AddressFunctionEntry::UserFunction, index.as_u32())
414
}
415
ExternalName::LibCall(libcall) => {
416
// We don't properly have a "libcall" store, but we can use `LibCall::all()`
417
// and index into that.
418
let index = LibCall::all_libcalls()
419
.iter()
420
.position(|lc| lc == libcall)
421
.unwrap();
422
423
(AddressFunctionEntry::LibCall, index as u32)
424
}
425
_ => unimplemented!("function_address: {:?}", name),
426
};
427
428
Address::from_parts(size, AddressRegion::Function, entry as u64, index as u64)
429
}
430
431
fn get_function_from_address(&self, address: Address) -> Option<InterpreterFunctionRef<'a>> {
432
let index = address.offset as u32;
433
if address.region != AddressRegion::Function {
434
return None;
435
}
436
437
match AddressFunctionEntry::from(address.entry) {
438
AddressFunctionEntry::UserFunction => self
439
.functions
440
.get_by_index(FuncIndex::from_u32(index))
441
.map(InterpreterFunctionRef::from),
442
443
AddressFunctionEntry::LibCall => LibCall::all_libcalls()
444
.get(index as usize)
445
.copied()
446
.map(InterpreterFunctionRef::from),
447
}
448
}
449
450
/// Non-Recursively resolves a global value until its address is found
451
fn resolve_global_value(&self, gv: GlobalValue) -> Result<DataValue, MemoryError> {
452
// Resolving a Global Value is a "pointer" chasing operation that lends itself to
453
// using a recursive solution. However, resolving this in a recursive manner
454
// is a bad idea because its very easy to add a bunch of global values and
455
// blow up the call stack.
456
//
457
// Adding to the challenges of this, is that the operations possible with GlobalValues
458
// mean that we cannot use a simple loop to resolve each global value, we must keep
459
// a pending list of operations.
460
461
// These are the possible actions that we can perform
462
#[derive(Debug)]
463
enum ResolveAction {
464
Resolve(GlobalValue),
465
/// Perform an add on the current address
466
Add(DataValue),
467
/// Load From the current address and replace it with the loaded value
468
Load {
469
/// Offset added to the base pointer before doing the load.
470
offset: i32,
471
472
/// Type of the loaded value.
473
global_type: Type,
474
},
475
}
476
477
let func = self.get_current_function();
478
479
// We start with a sentinel value that will fail if we try to load / add to it
480
// without resolving the base GV First.
481
let mut current_val = DataValue::I8(0);
482
let mut action_stack = vec![ResolveAction::Resolve(gv)];
483
484
loop {
485
match action_stack.pop() {
486
Some(ResolveAction::Resolve(gv)) => match func.global_values[gv] {
487
GlobalValueData::VMContext => {
488
// Fetch the VMContext value from the values of the first block in the function
489
let index = func
490
.signature
491
.params
492
.iter()
493
.enumerate()
494
.find(|(_, p)| p.purpose == ArgumentPurpose::VMContext)
495
.map(|(i, _)| i)
496
// This should be validated by the verifier
497
.expect("No VMCtx argument was found, but one is referenced");
498
499
let first_block =
500
func.layout.blocks().next().expect("to have a first block");
501
let vmctx_value = func.dfg.block_params(first_block)[index];
502
current_val = self.current_frame().get(vmctx_value).clone();
503
}
504
GlobalValueData::Load {
505
base,
506
offset,
507
global_type,
508
..
509
} => {
510
action_stack.push(ResolveAction::Load {
511
offset: offset.into(),
512
global_type,
513
});
514
action_stack.push(ResolveAction::Resolve(base));
515
}
516
GlobalValueData::IAddImm {
517
base,
518
offset,
519
global_type,
520
} => {
521
let offset: i64 = offset.into();
522
let dv = DataValue::int(offset as i128, global_type)
523
.map_err(|_| MemoryError::InvalidAddressType(global_type))?;
524
action_stack.push(ResolveAction::Add(dv));
525
action_stack.push(ResolveAction::Resolve(base));
526
}
527
GlobalValueData::Symbol { .. } => unimplemented!(),
528
GlobalValueData::DynScaleTargetConst { .. } => unimplemented!(),
529
},
530
Some(ResolveAction::Add(dv)) => {
531
current_val = current_val
532
.add(dv.clone())
533
.map_err(|_| MemoryError::InvalidAddress(dv))?;
534
}
535
Some(ResolveAction::Load {
536
offset,
537
global_type,
538
}) => {
539
let mut addr = Address::try_from(current_val)?;
540
let mem_flags = MemFlags::trusted();
541
// We can forego bounds checking here since its performed in `checked_load`
542
addr.offset += offset as u64;
543
current_val = self.checked_load(addr, global_type, mem_flags)?;
544
}
545
546
// We are done resolving this, return the current value
547
None => return Ok(current_val),
548
}
549
}
550
}
551
552
fn get_pinned_reg(&self) -> DataValue {
553
self.pinned_reg.clone()
554
}
555
556
fn set_pinned_reg(&mut self, v: DataValue) {
557
self.pinned_reg = v;
558
}
559
}
560
561
#[cfg(test)]
562
mod tests {
563
use super::*;
564
use crate::step::CraneliftTrap;
565
use cranelift_codegen::ir::TrapCode;
566
use cranelift_codegen::ir::immediates::Ieee32;
567
use cranelift_reader::parse_functions;
568
use smallvec::smallvec;
569
570
// Most interpreter tests should use the more ergonomic `test interpret` filetest but this
571
// unit test serves as a sanity check that the interpreter still works without all of the
572
// filetest infrastructure.
573
#[test]
574
fn sanity() {
575
let code = "function %test() -> i8 {
576
block0:
577
v0 = iconst.i32 1
578
v1 = iadd_imm v0, 1
579
v2 = irsub_imm v1, 44 ; 44 - 2 == 42 (see irsub_imm's semantics)
580
v3 = icmp_imm eq v2, 42
581
return v3
582
}";
583
584
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
585
let mut env = FunctionStore::default();
586
env.add(func.name.to_string(), &func);
587
let state = InterpreterState::default().with_function_store(env);
588
let result = Interpreter::new(state).call_by_name("%test", &[]).unwrap();
589
590
assert_eq!(result, ControlFlow::Return(smallvec![DataValue::I8(1)]));
591
}
592
593
// We don't have a way to check for traps with the current filetest infrastructure
594
#[test]
595
fn udiv_by_zero_traps() {
596
let code = "function %test() -> i32 {
597
block0:
598
v0 = iconst.i32 1
599
v1 = udiv_imm.i32 v0, 0
600
return v1
601
}";
602
603
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
604
let mut env = FunctionStore::default();
605
env.add(func.name.to_string(), &func);
606
let state = InterpreterState::default().with_function_store(env);
607
let trap = Interpreter::new(state).call_by_name("%test", &[]).unwrap();
608
609
assert_eq!(
610
trap,
611
ControlFlow::Trap(CraneliftTrap::User(TrapCode::INTEGER_DIVISION_BY_ZERO))
612
);
613
}
614
615
#[test]
616
fn sdiv_min_by_neg_one_traps_with_overflow() {
617
let code = "function %test() -> i8 {
618
block0:
619
v0 = iconst.i32 -2147483648
620
v1 = sdiv_imm.i32 v0, -1
621
return v1
622
}";
623
624
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
625
let mut env = FunctionStore::default();
626
env.add(func.name.to_string(), &func);
627
let state = InterpreterState::default().with_function_store(env);
628
let result = Interpreter::new(state).call_by_name("%test", &[]).unwrap();
629
630
match result {
631
ControlFlow::Trap(CraneliftTrap::User(TrapCode::INTEGER_OVERFLOW)) => {}
632
_ => panic!("Unexpected ControlFlow: {result:?}"),
633
}
634
}
635
636
// This test verifies that functions can refer to each other using the function store. A double indirection is
637
// required, which is tricky to get right: a referenced function is a FuncRef when called but a FuncIndex inside the
638
// function store. This test would preferably be a CLIF filetest but the filetest infrastructure only looks at a
639
// single function at a time--we need more than one function in the store for this test.
640
#[test]
641
fn function_references() {
642
let code = "
643
function %child(i32) -> i32 {
644
block0(v0: i32):
645
v1 = iadd_imm v0, -1
646
return v1
647
}
648
649
function %parent(i32) -> i32 {
650
fn42 = %child(i32) -> i32
651
block0(v0: i32):
652
v1 = iadd_imm v0, 1
653
v2 = call fn42(v1)
654
return v2
655
}";
656
657
let mut env = FunctionStore::default();
658
let funcs = parse_functions(code).unwrap().to_vec();
659
funcs.iter().for_each(|f| env.add(f.name.to_string(), f));
660
661
let state = InterpreterState::default().with_function_store(env);
662
let result = Interpreter::new(state)
663
.call_by_name("%parent", &[DataValue::I32(0)])
664
.unwrap();
665
666
assert_eq!(result, ControlFlow::Return(smallvec![DataValue::I32(0)]));
667
}
668
669
#[test]
670
fn fuel() {
671
let code = "function %test() -> i8 {
672
block0:
673
v0 = iconst.i32 1
674
v1 = iadd_imm v0, 1
675
return v1
676
}";
677
678
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
679
let mut env = FunctionStore::default();
680
env.add(func.name.to_string(), &func);
681
682
// The default interpreter should not enable the fuel mechanism
683
let state = InterpreterState::default().with_function_store(env.clone());
684
let result = Interpreter::new(state).call_by_name("%test", &[]).unwrap();
685
686
assert_eq!(result, ControlFlow::Return(smallvec![DataValue::I32(2)]));
687
688
// With 2 fuel, we should execute the iconst and iadd, but not the return thus giving a
689
// fuel exhausted error
690
let state = InterpreterState::default().with_function_store(env.clone());
691
let result = Interpreter::new(state)
692
.with_fuel(Some(2))
693
.call_by_name("%test", &[]);
694
match result {
695
Err(InterpreterError::FuelExhausted) => {}
696
_ => panic!("Expected Err(FuelExhausted), but got {result:?}"),
697
}
698
699
// With 3 fuel, we should be able to execute the return instruction, and complete the test
700
let state = InterpreterState::default().with_function_store(env.clone());
701
let result = Interpreter::new(state)
702
.with_fuel(Some(3))
703
.call_by_name("%test", &[])
704
.unwrap();
705
706
assert_eq!(result, ControlFlow::Return(smallvec![DataValue::I32(2)]));
707
}
708
709
// Verifies that writing to the stack on a called function does not overwrite the parents
710
// stack slots.
711
#[test]
712
fn stack_slots_multi_functions() {
713
let code = "
714
function %callee(i64, i64) -> i64 {
715
ss0 = explicit_slot 8
716
ss1 = explicit_slot 8
717
718
block0(v0: i64, v1: i64):
719
stack_store.i64 v0, ss0
720
stack_store.i64 v1, ss1
721
v2 = stack_load.i64 ss0
722
v3 = stack_load.i64 ss1
723
v4 = iadd.i64 v2, v3
724
return v4
725
}
726
727
function %caller(i64, i64, i64, i64) -> i64 {
728
fn0 = %callee(i64, i64) -> i64
729
ss0 = explicit_slot 8
730
ss1 = explicit_slot 8
731
732
block0(v0: i64, v1: i64, v2: i64, v3: i64):
733
stack_store.i64 v0, ss0
734
stack_store.i64 v1, ss1
735
736
v4 = call fn0(v2, v3)
737
738
v5 = stack_load.i64 ss0
739
v6 = stack_load.i64 ss1
740
741
v7 = iadd.i64 v4, v5
742
v8 = iadd.i64 v7, v6
743
744
return v8
745
}";
746
747
let mut env = FunctionStore::default();
748
let funcs = parse_functions(code).unwrap().to_vec();
749
funcs.iter().for_each(|f| env.add(f.name.to_string(), f));
750
751
let state = InterpreterState::default().with_function_store(env);
752
let result = Interpreter::new(state)
753
.call_by_name(
754
"%caller",
755
&[
756
DataValue::I64(3),
757
DataValue::I64(5),
758
DataValue::I64(7),
759
DataValue::I64(11),
760
],
761
)
762
.unwrap();
763
764
assert_eq!(result, ControlFlow::Return(smallvec![DataValue::I64(26)]))
765
}
766
767
#[test]
768
fn out_of_slot_write_traps() {
769
let code = "
770
function %stack_write() {
771
ss0 = explicit_slot 8
772
773
block0:
774
v0 = iconst.i64 10
775
stack_store.i64 v0, ss0+8
776
return
777
}";
778
779
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
780
let mut env = FunctionStore::default();
781
env.add(func.name.to_string(), &func);
782
let state = InterpreterState::default().with_function_store(env);
783
let trap = Interpreter::new(state)
784
.call_by_name("%stack_write", &[])
785
.unwrap();
786
787
assert_eq!(
788
trap,
789
ControlFlow::Trap(CraneliftTrap::User(TrapCode::HEAP_OUT_OF_BOUNDS))
790
);
791
}
792
793
#[test]
794
fn partial_out_of_slot_write_traps() {
795
let code = "
796
function %stack_write() {
797
ss0 = explicit_slot 8
798
799
block0:
800
v0 = iconst.i64 10
801
stack_store.i64 v0, ss0+4
802
return
803
}";
804
805
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
806
let mut env = FunctionStore::default();
807
env.add(func.name.to_string(), &func);
808
let state = InterpreterState::default().with_function_store(env);
809
let trap = Interpreter::new(state)
810
.call_by_name("%stack_write", &[])
811
.unwrap();
812
813
assert_eq!(
814
trap,
815
ControlFlow::Trap(CraneliftTrap::User(TrapCode::HEAP_OUT_OF_BOUNDS))
816
);
817
}
818
819
#[test]
820
fn out_of_slot_read_traps() {
821
let code = "
822
function %stack_load() {
823
ss0 = explicit_slot 8
824
825
block0:
826
v0 = stack_load.i64 ss0+8
827
return
828
}";
829
830
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
831
let mut env = FunctionStore::default();
832
env.add(func.name.to_string(), &func);
833
let state = InterpreterState::default().with_function_store(env);
834
let trap = Interpreter::new(state)
835
.call_by_name("%stack_load", &[])
836
.unwrap();
837
838
assert_eq!(
839
trap,
840
ControlFlow::Trap(CraneliftTrap::User(TrapCode::HEAP_OUT_OF_BOUNDS))
841
);
842
}
843
844
#[test]
845
fn partial_out_of_slot_read_traps() {
846
let code = "
847
function %stack_load() {
848
ss0 = explicit_slot 8
849
850
block0:
851
v0 = stack_load.i64 ss0+4
852
return
853
}";
854
855
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
856
let mut env = FunctionStore::default();
857
env.add(func.name.to_string(), &func);
858
let state = InterpreterState::default().with_function_store(env);
859
let trap = Interpreter::new(state)
860
.call_by_name("%stack_load", &[])
861
.unwrap();
862
863
assert_eq!(
864
trap,
865
ControlFlow::Trap(CraneliftTrap::User(TrapCode::HEAP_OUT_OF_BOUNDS))
866
);
867
}
868
869
#[test]
870
fn partial_out_of_slot_read_by_addr_traps() {
871
let code = "
872
function %stack_load() {
873
ss0 = explicit_slot 8
874
875
block0:
876
v0 = stack_addr.i64 ss0
877
v1 = iconst.i64 4
878
v2 = iadd.i64 v0, v1
879
v3 = load.i64 v2
880
return
881
}";
882
883
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
884
let mut env = FunctionStore::default();
885
env.add(func.name.to_string(), &func);
886
let state = InterpreterState::default().with_function_store(env);
887
let trap = Interpreter::new(state)
888
.call_by_name("%stack_load", &[])
889
.unwrap();
890
891
assert_eq!(
892
trap,
893
ControlFlow::Trap(CraneliftTrap::User(TrapCode::HEAP_OUT_OF_BOUNDS))
894
);
895
}
896
897
#[test]
898
fn partial_out_of_slot_write_by_addr_traps() {
899
let code = "
900
function %stack_store() {
901
ss0 = explicit_slot 8
902
903
block0:
904
v0 = stack_addr.i64 ss0
905
v1 = iconst.i64 4
906
v2 = iadd.i64 v0, v1
907
store.i64 v1, v2
908
return
909
}";
910
911
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
912
let mut env = FunctionStore::default();
913
env.add(func.name.to_string(), &func);
914
let state = InterpreterState::default().with_function_store(env);
915
let trap = Interpreter::new(state)
916
.call_by_name("%stack_store", &[])
917
.unwrap();
918
919
assert_eq!(
920
trap,
921
ControlFlow::Trap(CraneliftTrap::User(TrapCode::HEAP_OUT_OF_BOUNDS))
922
);
923
}
924
925
#[test]
926
fn srem_trap() {
927
let code = "function %test() -> i64 {
928
block0:
929
v0 = iconst.i64 0x8000_0000_0000_0000
930
v1 = iconst.i64 -1
931
v2 = srem.i64 v0, v1
932
return v2
933
}";
934
935
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
936
let mut env = FunctionStore::default();
937
env.add(func.name.to_string(), &func);
938
let state = InterpreterState::default().with_function_store(env);
939
let trap = Interpreter::new(state).call_by_name("%test", &[]).unwrap();
940
941
assert_eq!(
942
trap,
943
ControlFlow::Trap(CraneliftTrap::User(TrapCode::INTEGER_OVERFLOW))
944
);
945
}
946
947
#[test]
948
fn libcall() {
949
let code = "function %test() -> i64 {
950
fn0 = colocated %CeilF32 (f32) -> f32 fast
951
block0:
952
v1 = f32const 0x0.5
953
v2 = call fn0(v1)
954
return v2
955
}";
956
957
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
958
let mut env = FunctionStore::default();
959
env.add(func.name.to_string(), &func);
960
let state = InterpreterState::default()
961
.with_function_store(env)
962
.with_libcall_handler(|libcall, args| {
963
Ok(smallvec![match (libcall, &args[..]) {
964
(LibCall::CeilF32, [DataValue::F32(a)]) => DataValue::F32(a.ceil()),
965
_ => panic!("Unexpected args"),
966
}])
967
});
968
969
let result = Interpreter::new(state).call_by_name("%test", &[]).unwrap();
970
971
assert_eq!(
972
result,
973
ControlFlow::Return(smallvec![DataValue::F32(Ieee32::with_float(1.0))])
974
)
975
}
976
977
#[test]
978
fn misaligned_store_traps() {
979
let code = "
980
function %test() {
981
ss0 = explicit_slot 16
982
983
block0:
984
v0 = stack_addr.i64 ss0
985
v1 = iconst.i64 1
986
store.i64 aligned v1, v0+2
987
return
988
}";
989
990
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
991
let mut env = FunctionStore::default();
992
env.add(func.name.to_string(), &func);
993
let state = InterpreterState::default().with_function_store(env);
994
let trap = Interpreter::new(state).call_by_name("%test", &[]).unwrap();
995
996
assert_eq!(trap, ControlFlow::Trap(CraneliftTrap::HeapMisaligned));
997
}
998
999
#[test]
1000
fn misaligned_load_traps() {
1001
let code = "
1002
function %test() {
1003
ss0 = explicit_slot 16
1004
1005
block0:
1006
v0 = stack_addr.i64 ss0
1007
v1 = iconst.i64 1
1008
store.i64 aligned v1, v0
1009
v2 = load.i64 aligned v0+2
1010
return
1011
}";
1012
1013
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
1014
let mut env = FunctionStore::default();
1015
env.add(func.name.to_string(), &func);
1016
let state = InterpreterState::default().with_function_store(env);
1017
let trap = Interpreter::new(state).call_by_name("%test", &[]).unwrap();
1018
1019
assert_eq!(trap, ControlFlow::Trap(CraneliftTrap::HeapMisaligned));
1020
}
1021
1022
// When a trap occurs in a function called by another function, the trap was not being propagated
1023
// correctly. Instead the interpterer panicked with a invalid control flow state.
1024
// See this issue for more details: https://github.com/bytecodealliance/wasmtime/issues/6155
1025
#[test]
1026
fn trap_across_call_propagates_correctly() {
1027
let code = "
1028
function %u2() -> f32 system_v {
1029
ss0 = explicit_slot 69
1030
ss1 = explicit_slot 69
1031
ss2 = explicit_slot 69
1032
1033
block0:
1034
v0 = f32const -0x1.434342p-60
1035
v1 = stack_addr.i64 ss2+24
1036
store notrap aligned v0, v1
1037
return v0
1038
}
1039
1040
function %u1() -> f32 system_v {
1041
sig0 = () -> f32 system_v
1042
fn0 = colocated %u2 sig0
1043
1044
block0:
1045
v57 = call fn0()
1046
return v57
1047
}";
1048
1049
let mut env = FunctionStore::default();
1050
1051
let funcs = parse_functions(code).unwrap();
1052
for func in &funcs {
1053
env.add(func.name.to_string(), func);
1054
}
1055
1056
let state = InterpreterState::default().with_function_store(env);
1057
let trap = Interpreter::new(state).call_by_name("%u1", &[]).unwrap();
1058
1059
// Ensure that the correct trap was propagated.
1060
assert_eq!(trap, ControlFlow::Trap(CraneliftTrap::HeapMisaligned));
1061
}
1062
}
1063
1064